SOME PROPERTIES OF 2-AUTO-ENGEL GROUPS

MOHAMMAD REZA R. MOGHADDAM, M. FARROKHI D. G., AND HESAM SAFA

ABSTRACT. Given a group G, an element $x \in G$ and automorphism $\alpha \in \operatorname{Aut}(G)$, the *n*th autocommutator $[x,_n \alpha]$ is defined recursively by $[x, \alpha] = x^{-1}x^{\alpha}$ and $[x,_n \alpha] = [[x,_{n-1}\alpha], \alpha]$ for all n > 1. The group G is said to be *n*-auto-Engel if $[x,_n \alpha] = [\alpha,_n x] = 1$, for all $x \in G$ and all $\alpha \in \operatorname{Aut}(G)$, where $[\alpha, x] = [x, \alpha]^{-1}$. We study the structure of 2-auto-Engel groups and show that 2-auto-Engel groups indeed satisfy the equation $\alpha(x)\alpha^{-1}(x) = x^2$, for all $x \in G$ and $\alpha \in \operatorname{Aut}(G)$. Also, we give a precise description of all abelian 2-auto-Engel groups of finite 2-rank as well as 2-auto-Engel 2-groups, which are not purely non-abelian, and construct an infinite family of purely non-abelian 2-auto-Engel 2-groups.

1. INTRODUCTION

Let x_1 and x_2 be the elements of a given group G, then $x_1^{x_2} = x_2^{-1}x_1x_2$ and $[x_1, x_2] = x_1^{-1}x_1^{x_2}$ denote the *conjugate* of x_1 by x_2 and the *commutator* of x_1 and x_2 , respectively. As in Hegarty [8], the *autocommutator* of an element $x \in G$ and automorphism $\alpha \in \operatorname{Aut}(G)$ is defined by $[x, \alpha] = x^{-1}x^{\alpha}$. The same as for the commutator subgroup, one may define the *autocommutator subgroup* of G in an analogous way as follows:

$$K(G) = \langle [x, \alpha] : x \in G, \alpha \in \operatorname{Aut}(G) \rangle.$$

The notion of autocommutator subgroups have been already studied in [5, 8, 15]. For each element $x \in G$ and automorphisms $\alpha_1, \ldots, \alpha_n \in \operatorname{Aut}(G)$, we define the autocommutator of $x, \alpha_1, \ldots, \alpha_n$ of weight n + 1 $(n \ge 1)$, recursively by

$$[x, \alpha_1, \dots, \alpha_n] = [[x, \alpha_1, \dots, \alpha_{n-1}], \alpha_n].$$

Clearly the (n + 1)st term of the lower central series of G, can be considered as

$$\gamma_{n+1}(G) = \langle [x, \alpha_1, \dots, \alpha_n] : x \in G, \alpha_1, \dots, \alpha_n \in \operatorname{Inn}(G) \rangle.$$

So we may define the *n*th *autocommutator subgroup* of G, as

$$K_n(G) = \langle [x, \alpha_1, \alpha_2, \dots, \alpha_n] : x \in G, \alpha_1, \dots, \alpha_n \in \operatorname{Aut}(G) \rangle.$$

One notes that, the *n*th autocommutator subgroup is a characteristic subgroup of G containing $\gamma_{n+1}(G)$, for all $n \ge 1$. The following series of subgroups

$$G = K_0(G) \ge K(G) = K_1(G) \ge K_2(G) \ge \dots \ge K_n(G) \ge \dots$$

is called the *lower autocentral series* of G (see [15] for more details).

Let x be an element of G and $\alpha \in \text{Aut}(G)$. Then the autocommutator $[x, \alpha]$ $(n \geq 1)$ is defined inductively by $[x, \alpha] = [x, \alpha]$ and $[x, \alpha] = [[x, \alpha-1\alpha], \alpha]$, for

²⁰⁰⁰ Mathematics Subject Classification. Primary 20D45, 20F12; Secondary 20E36, 20D15.

Key words and phrases. Autocommutator subgroup, Engel element, auto-Engel element, 2-auto-Engel group, autocentral series.

 $n \geq 2$. The element x is called a right auto-Engel element, if for every $\alpha \in Aut(G)$, there exists a natural number $n = n(x, \alpha)$ such that $[x_{n}, \alpha] = 1$. If n can be chosen independent of α , then x is called a *right n-auto-Engel* element or simply a bounded right auto-Engel element. We denote the sets of right auto-Engel elements and bounded right auto-Engel elements of G by AR(G) and $\overline{AR(G)}$, respectively.

An element x is called a *left auto-Engel* element, if for every $\alpha \in Aut(G)$, there exists a natural number $n = n(x, \alpha)$ such that $[\alpha, x] = 1$. Note that, the automorphism α appears on the left and $[\alpha, x] = [x, \alpha]^{-1}$. If n can be chosen independent of α , then x is called a *left n-auto-Engel* element or simply a *bounded left auto-*Engel element. We denote the sets of left auto-Engel elements and bounded left auto-Engel elements of G by AL(G) and AL(G), respectively.

Clearly, if α runs over the set of all inner automorphisms of G, then a right or left auto-Engel element is a right or left Engel element, respectively [17].

The properties of Engel elements and Engel groups are studied by many authors, see for instance [9, 13]. Kappe [13] proved that the set of all right 2-Engel elements of a group forms a characteristic subgroup. Also, Levi [14] has shown that a 2-Engel group is nilpotent of class at most 3. Moreover, it is known that for any 2-Engel group G with finite exponent, we have $\exp(G') = \exp(G/Z(G)) (= \exp(\operatorname{Inn}(G))).$

2. Auto-Engel elements and n-auto-Engel groups

For a given group G and automorphisms α and β of G, we set $x^{\alpha\beta} = (x^{\alpha})^{\beta}$, for all $x \in G$. Using the above notation, we have the following identities.

- (a) $[xy, \alpha] = [x, \alpha]^y [y, \alpha];$

- (a) $[xg, \alpha] = [x, \alpha] [g, \alpha],$ (b) $[x, \alpha^{-1}] = ([x, \alpha]^{-1})^{\alpha^{-1}};$ (c) $[x^{-1}, \alpha] = ([x, \alpha]^{-1})^{x^{-1}};$ (d) $[x, \alpha\beta] = [x, \beta][x, \alpha]^{\beta} = [x, \beta][x, \alpha][x, \alpha, \beta];$ (e) $[x, \alpha]^{\beta} = [x^{\beta}, \alpha^{\beta}],$ (f) $[x, \alpha^{-1}, \beta]^{\alpha}[\alpha, \beta^{-1}, x]^{\beta}[\beta, x^{-1}, \alpha]^{x} = 1.$

The following relation holds between right and left auto-Engel elements.

Proposition 2.1. In any group G the inverse of a right n-auto-Engel element is a left (n+1)-auto-Engel element, that is $AR(G)^{-1} \subseteq AL(G)$ and $\overline{AR}(G)^{-1} \subseteq \overline{AL}(G)$.

Proof. Let x be a right n-auto-Engel element and α be any automorphism of G. Then by the above identities, $[x^{\alpha}, \beta] = [x, \beta^{\alpha^{-1}}]^{\alpha} = 1$. So x^{α} is also a right n-auto-Engel element and hence a right n-Engel element of G. Therefore

$$1 = [x^{\alpha}, x^{-1}]^{x^{-1}} = [[x^{\alpha}, x^{-1}], x^{-1}]^{x^{-1}} = [[x[x, \alpha], x^{-1}], x^{-1}]^{x^{-1}}$$
$$= [[[x, \alpha], x^{-1}], x^{-1}]^{x^{-1}} = [[x, \alpha], x^{-1}]^{x^{-1}}$$
$$= [[x, \alpha]^{x^{-1}}, x^{-1}] = [[\alpha, x^{-1}], x^{-1}]$$
$$= [\alpha, x^{+1}, x^{-1}].$$

Hence x^{-1} is a left (n+1)-auto-Engel element of G. This argument also shows that $AR(G)^{-1} \subseteq AL(G).$

For a group G, if G = AR(G) then Proposition 2.1 implies that G = AL(G), while the converse of the latter statement is not true in general. For example, consider the cyclic group \mathbb{Z}_6 of order 6. Clearly, $\mathbb{Z}_6 = AL(\mathbb{Z}_6)$. On the other hand, if α is the inverting automorphism of \mathbb{Z}_6 , then one can easily see that $[x, \alpha] = x^4$, for each $n \geq 1$. Therefore $AR(\mathbb{Z}_6) \subset \mathbb{Z}_6$. Hence, the following definition is meaningful.

Definition. A group G is called an *n*-auto-Engel group if $[x, \alpha] = [\alpha, n] = 1$, for all $x \in G$ and $\alpha \in Aut(G)$. Also, G is called an *auto-Engel group* if G = AR(G).

By the above discussion, the cyclic group \mathbb{Z}_6 is not an auto-Engel group. Now, we give some examples of auto-Engel groups.

- **Example 1.** (a) If $\mathbb{Z}_{2^n} = \langle x : x^{2^n} = 1 \rangle$ is the cyclic group of order 2^n and α is an automorphism of \mathbb{Z}_{2^n} , given by $\alpha : x \mapsto x^r$ (*r* odd), then it is easy to see that $[x^k, \alpha] = x^{k(r-1)^n} = 1$ for each $k \in \{1, \ldots, 2^n\}$. Thus \mathbb{Z}_{2^n} is an *n*-auto-Engel group.
 - (b) Let $\mathbb{Z}_{2^{\infty}} = \langle x_1, x_2, \ldots : x_1^2 = 1, x_{i+1}^2 = x_i, i \ge 2 \rangle$ be the Prüfer 2-group. Then $\operatorname{Aut}(\mathbb{Z}_{2^{\infty}}) = \{\alpha : x_i \longrightarrow x_i^{n_i}, n_{i+1} \equiv n_i \pmod{2^i}, i \ge 1\}$. Hence $[x_{i,i}\alpha] = 1$ for all $\alpha \in \operatorname{Aut}(\mathbb{Z}_{2^{\infty}})$ and $i \ge 1$, which implies that $\mathbb{Z}_{2^{\infty}}$ is an auto-Engel group. However, $\mathbb{Z}_{2^{\infty}}$ is not *n*-auto-Engel group for all $n \ge 1$ since $[x_{n+1,n}\alpha] = x_{n+1}^{(-2)^n} = x_1^{(-1)^n} \neq 1$ if α is the inverting automorphism of $\mathbb{Z}_{2^{\infty}}$.
 - (c) If $D_{2^n} = \langle x, y : x^{2^{n-1}} = y^2 = 1, x^y = x^{-1} \rangle$, is the dihedral group of order $2^n \ (n \ge 3)$, then

$$\operatorname{Aut}(D_{2^n}) = \left\{ \alpha_{ij} : \begin{array}{l} x \mapsto x^i \\ y \mapsto x^j y \end{array}, i \text{ is odd and } i, j \in \{1, \dots, 2^{n-1}\} \right\},$$

is the automorphism group of D_{2^n} . Since *i* is odd, we can see that $[x_{,n} \alpha_{ij}] = x^{(i-1)^n} = 1$ and $[y_{,n} \alpha_{ij}] = x^{-j(i-1)^{n-1}} = 1$. Also $[\alpha_{ij,n} x] = [\alpha_{ij,n} y] = 1$, from which it follows that $[x^k y_{,n} \alpha_{ij}] = [\alpha_{ij,n} x^k y] = 1$, for all $i, j, k \in \{1, \ldots, 2^{n-1}\}$ (*i* is odd). Therefore the dihedral group of order 2^n ($n \ge 3$) is an *n*-auto-Engel group but it is not an (n-1)-auto-Engel group. We note that D_8 is a 2-Engel group but it is not a 2-auto-Engel group.

The following theorem gives a description of abelian auto-Engel groups.

Theorem 2.2. Let G be an abelian group.

- (1) If G is an auto-Engel group, then G is a 2-group.
- (2) If G has finite 2-rank, then G is an auto-Engel group if and only if G is the direct product of cyclic or quasi-cyclic groups of different cardinalities. Moreover, if G is a finite auto-Engel group, then G is an mn-auto-Engel group, where m = r₂(G) is the 2-rank of G and n = log₂ exp(G).

Proof. (1) If α is the inverting automorphism of G and $x \in G$, then $[x_{,n} \alpha] = x^{(-2)^n}$. By the assumption, there exists $n = n(x, \alpha)$ such that $[x_{,n} \alpha] = 1$, which implies that x is a 2-element. Therefore G is a 2-group.

(2) If G has finite 2-rank, then by [18, 4.3.13], G is a direct product of finitely many cyclic or quasi-cyclic groups. If G has a homocyclic direct factor $\langle a \rangle \times \langle b \rangle$ and α is the automorphism of G, which sends a, b to ab^{-1} and a, respectively, then $[a,_3 \alpha] = a$ and hence $[a,_n \alpha] \neq 1$ for all $n \geq 1$, which is a contradiction. Similarly, G has no direct factor of type $\mathbb{Z}_{2^{\infty}} \times \mathbb{Z}_{2^{\infty}}$. Hence, G is a direct product of finitely many cyclic or quasi-cyclic groups with different cardinalities.

Conversely, suppose that G is a direct product of finitely many cyclic or quasicyclic groups with different cardinalities. Then $G = Z \times H$, where Z = 1 or

$$\begin{split} &Z = \left\langle x_1, x_2, \ldots : x_1^2 = 1, x_{i+1}^2 = x_i, i \geq 1 \right\rangle \text{ is the Prüfer 2-group, and } H \text{ is a finite abelian 2-group. First we show that } Z \text{ is a characteristic subgroup of } G. \text{ If } Z = 1, \\ \text{then there is nothing to prove. Hence, we assume that } Z \neq 1. \text{ Let } \exp(H) = 2^n \\ \text{and } \alpha \in \operatorname{Aut}(G). \text{ Then } \alpha(x_{i+n}) = x_{i+n}^{l_{i+n}}h_i \text{ for some } h_i \in H \text{ and integer } l_{i+n}, \text{ for all } \\ i \geq 1. \text{ Thus } \alpha(x_i) = \alpha(x_{i+n}^{2^n}) = x_{i+n}^{2^n l_{i+n}} \in Z, \text{ which implies that } \alpha(Z) \subseteq Z \text{ and } Z \text{ is a characteristic subgroup of } G. \text{ If } H = 1, \text{ then by Example 1(b), we are done. Now, } \\ \text{suppose that } H \neq 1 \text{ and let } K = \Omega_{n+1}(Z)H = \langle y_1 \rangle \times \cdots \times \langle y_m \rangle, \text{ where } |y_i| = 2^{n_i} \\ \text{ and } n_1 > \cdots > n_m. \text{ If } \alpha \in \operatorname{Aut}(G), \text{ then } \end{split}$$

$$\alpha(y_i) = y_1^{2^{n_1 - n_i} a_{i,1}} \dots y_{i-1}^{2^{n_{i-1} - n_i} a_{i,i-1}} y_i^{a_{i,i}} t_i,$$

where $a_{i,j}$ is integer, $a_{i,i}$ is odd and $t_i \in \langle y_{i+1}, \ldots, y_m \rangle$. Thus $|[y_1, \alpha]| < |y_1|$ and if $|[y_{j,j} \alpha]| < |y_j|$ for $j = 1, \ldots, i-1$, then $|[y_{i,i} \alpha]| < |y_i|$. Because

$$[y_{i,i}\alpha] = \prod_{j=1}^{i-1} [y_{j,i-1}]^{2^{n_j-n_i}a_{i,j}} [y_i^{a_{i,i}-1}t_{i,i-1}\alpha],$$

and we have $|[y_i^{a_{i,i}-1}t_{i,i-1}\alpha]| < |y_i|$ and for j < i,

$$\left| \left[y_{j,i-1} \alpha \right]^{2^{n_j - n_i} a_{i,j}} \right| \le \left| \left[y_{j,j} \alpha \right]^{2^{n_j - n_i} a_{i,j}} \right| < \left| y_j^{2^{n_j - n_i} a_{i,j}} \right| \le |y_i|$$

Thus $|[k, m\alpha]| < |y|$ for all $k \in K$, from which it follows that $[k, m\alpha] = 1$. Therefore G is an auto-Engel group.

In the following we shall obtain a sharp bound n = n(G) for a finite auto-Engel abelian group G to be an n-auto-Engel group.

Lemma 2.3. If $G = \mathbb{Z}_{2^n} \oplus \cdots \oplus \mathbb{Z}_2$, then G is (2n-1)-auto-Engel. Furthermore, G is not (2n-2)-auto-Engel.

Proof. If $\alpha \in Aut(G)$, then by using the heights and orders of elements of G, it follows that

$$\begin{aligned} \alpha(1,0,0,0,\ldots,0) &= (a_{1,1},a_{1,2},\ldots,a_{1,n}),\\ \alpha(0,1,0,0,\ldots,0) &= (2a_{2,1},a_{2,2},a_{2,3},\ldots,a_{2,n}),\\ \alpha(0,0,1,0,\ldots,0) &= (2^2a_{3,1},2a_{3,2},a_{3,3},\ldots,a_{3,n}),\\ &\vdots\\ \alpha(0,0,0,0,\ldots,1) &= (2^{n-1}a_{n,1},2^{n-2}a_{n,2},\ldots,2a_{n,n-1},a_{n,n}) \end{aligned}$$

for some integers $a_{i,j}$ $(1 \le i, j \le n)$, where $a_{i,i}$ is odd for i = 1, ..., n. Moreover, all automorphisms of G do arise in this manner. As an aside, this does allow one to compute that $|\operatorname{Aut}(G)| = 2^{\frac{1}{6}(n-1)n(2n+5)}$.

Now, assuming that for some $x \in G$ and $\alpha \in Aut(G)$ that

$$[x_{k}\alpha] = (2^{m_{k,1}}b_1, 2^{m_{k,2}}b_2, \dots, 2^{m_{k,n}}b_n)$$

we can compute

$$[x_{,k+1}\alpha] = (2^{m_{k,1}}b_1(a_{1,1}-1) + 2^{m_{k,2}+1}b_2a_{2,1} + 2^{m_{k,2}+2}b_3a_{3,1} + \dots + 2^{m_{k,n}+n-1}b_na_{n,1})$$

= $2^{m_{k,1}}b_1a_{1,1} + 2^{m_{k,2}}b_2(a_{2,2}-1) + 2^{m_{k,3}+1}b_3a_{3,2} + \dots + 2^{m_{k,n}+n-2}b_na_{n,2},$
 \vdots
= $2^{m_{k,1}}b_1a_{1,n} + 2^{m_{k,2}}b_2a_{2,n} + \dots + 2^{m_{k,n-1}}b_{n-1}a_{n-1,n} + 2^{m_{k,n}}b_n(a_{n,n}-1).$

Thus, it easily follows that

$$m_{k+1,1} \ge \min\{m_{k,1}+1, m_{k,2}+1, m_{k,3}+2, \dots, m_{k,n}+n-1\}$$

and for $j \ge 2$

$$m_{k+1,j} \ge \min\{m_{k,1}, \dots, m_{k,j-1}, m_{k,j}+1, m_{k,j+1}+1, \dots, m_{k,n}+n-j\}.$$

Therefore $m_{k,j} \ge h_{k,j}$ for all integers k and j = 1, ..., n, in which h is a function defined by

$$h_{0,j} = 0, \text{ for } j = 1, \dots, n,$$

$$h_{k+1,1} = \min\{h_{k,1} + 1, h_{k,2} + 1, \dots, h_{k,n} + n - 1\}, \text{ and for } j \ge 2$$

$$h_{k+1,j} = \min\{h_{k,1}, \dots, h_{k,j-1}, h_{k,j} + 1, h_{k,j+1} + 1, \dots, h_{k,n} + n - j\}.$$

Using mathematical induction it is straightforward to show that

$$h_{k,j} = \max\left\{ \left\lfloor \frac{k-j+2}{2} \right\rfloor, 0 \right\}$$

for all positive integers k and $j = 1, \ldots, n$. Hence,

$$m_{2n-1,j} \ge h_{2n-1,j} \ge \left\lfloor \frac{(2n-1)-j+2}{2} \right\rfloor \ge n-j+1,$$

which implies that $[x_{2n-1} \alpha] = (0, \dots, 0)$, as required.

Finally, let x = (1, 0, 0, ..., 0) and define the automorphism α of G by

$$\begin{aligned} \alpha(1,0,0,0,\ldots,0) &= (1,1,0,0,\ldots,0),\\ \alpha(0,1,0,0,\ldots,0) &= (2,1,0,0,\ldots,0),\\ \alpha(0,0,1,0,\ldots,0) &= (0,0,1,0,\ldots,0),\\ &\vdots \end{aligned}$$

$$\alpha(0, 0, 0, 0, \dots, 1) = (0, 0, 0, 0, \dots, 1).$$

A simple computation shows that

$$[(1,0,\ldots,0)_{2n-2}\alpha] = (2^{n-1},0,\ldots,0) \neq (0,0,\ldots,0),$$

from which the result follows.

Theorem 2.4. Let G be a finite abelian group which is the direct product of cyclic 2-groups having distinct orders so that $\exp(G) = 2^n$. Then G is (2n-1)-auto-Engel.

Proof. Since G is isomorphic to a direct factor of the group $\mathbb{Z}_{2^n} \oplus \cdots \oplus \mathbb{Z}_2$, the result follows by Lemma 2.3.

3. 2-Auto-Engel elements and 2-Auto-Engel groups

If G is a 1-auto-Engel group, then $[x, \alpha] = [\alpha, x] = 1$, for all $x \in G$ and $\alpha \in Aut(G)$. Hence Aut(G) = 1 and consequently $G \cong 1$ or \mathbb{Z}_2 . Observe that the class of 1-Engel groups coincides with the class of abelian groups.

It is an unsolved problem that whether the four subsets R(G), $\overline{R}(G)$, L(G) and $\overline{L}(G)$ are subgroups of G? (see [17]). The same problem also appears in the case of auto-Engel elements.

The properties of 2-Engel groups have been already studied (see for example [3, 10, 13]). In this section, we concentrate on the same properties for 2-auto-Engel groups.

Remark. Let G be a finite 2-auto-Engel abelian group. If α is the inverting automorphism of G, then $x^4 = [x, \alpha, \alpha] = 1$, for every $x \in G$. Hence $\exp(G)$ divides 4 so that G is the direct sum of cyclic groups of order 2 and 4, whence by Theorem 2.2, $G \cong 1, \mathbb{Z}_2, \mathbb{Z}_4$ or $\mathbb{Z}_4 \times \mathbb{Z}_2$. If $G = \langle x \rangle \times \langle y \rangle \cong \mathbb{Z}_4 \times \mathbb{Z}_2$ and α is the automorphism of G which sends x and y to xy and x^2y , respectively, then $[x, \alpha, \alpha] = x^2 \neq 1$, which is a contradiction. Thus $G \cong 1, \mathbb{Z}_2$ or \mathbb{Z}_4 .

The next lemma will be used frequently in the proof of our main theorems.

Lemma 3.1. Let x be a right 2-auto-Engel element and α , β and γ be arbitrary automorphisms of a group G. Then

- (a) x is a left 2-auto-Engel element;
- (b) $x^{\operatorname{Aut}(G)} = \langle x^{\alpha} : \alpha \in \operatorname{Aut}(G) \rangle$ is abelian and its elements are right (so left) 2-auto-Engel elements;
- (c) $[x, \alpha, \beta] = [x, \beta, \alpha]^{-1};$
- (d) $[x, [\alpha, \beta]] = [x, \alpha, \beta]^2;$
- (e) $[x, \alpha, \beta, \gamma]^2 = 1;$
- (f) $[x, [\alpha, \beta], \gamma] = 1.$

Proof. The proof is straightforward (see [15, Theorem 7.13]).

Theorem 3.2. The set of all right 2-auto-Engel elements of a group G forms a characteristic subgroup.

Proof. Let x and y be right 2-auto-Engel elements of a group G, α be any automorphism and φ_y be the inner automorphism induced by y. Then

$$\begin{split} [xy^{-1}, \alpha, \alpha] &= [[x, \alpha]^{y^{-1}}[y^{-1}, \alpha], \alpha] \\ &= [[x, \alpha][y, \alpha]^{-1}, \varphi_y \alpha \varphi_{y^{-1}}]^{y^{-1}} \\ &= [[x, \alpha][y, \alpha]^{-1}, [\varphi_{y^{-1}}, \alpha^{-1}]\alpha]^{y^{-1}} \\ &= ([[x, \alpha], [\varphi_{y^{-1}}, \alpha^{-1}]\alpha]^{[y, \alpha]^{-1}}[[y, \alpha]^{-1}, [\varphi_{y^{-1}}, \alpha^{-1}]\alpha])^{y^{-1}}. \end{split}$$

Now, we show that $[[x, \alpha], [\varphi_{y^{-1}}, \alpha^{-1}]\alpha] = 1$. By Lemma 3.1(c,f) and the fact that x is a right 2-auto-Engel element, we have

$$[[x,\alpha], [\varphi_{y^{-1}}, \alpha^{-1}]\alpha] = [[x,\alpha], [\varphi_{y^{-1}}, \alpha^{-1}]]^{\alpha} = [x, [\varphi_{y^{-1}}, \alpha^{-1}], \alpha]^{-\alpha} = 1.$$

Similarly $[[y, \alpha]^{-1}, [\varphi_{y^{-1}}, \alpha^{-1}]\alpha] = 1$ and hence $[xy^{-1}, \alpha, \alpha] = 1$. Also, one may easily see that the subgroup of right 2-auto-Engel elements is characteristic. This completes the proof.

Lemma 3.3. Let G be a 2-auto-Engel group. Then for every $x, y \in G$, $\alpha \in Aut(G)$ and $n \in \mathbb{Z}$ the following properties hold:

- (a) $[x, x^{\alpha}] = 1;$
- (a) $[x, x^n] = [1, \alpha]^n = [x^n, \alpha];$ (b) $[x, \alpha^n] = [x, \alpha]^n = [x^n, \alpha];$ (c) $[x^\alpha, y] = [x, y^\alpha];$ (d) $[\alpha, x, y] = [\alpha, y, x]^{-1}.$

Proof. (a) As x is a left 2-auto-Engel element of G, we get $[\alpha, x, x] = 1$ and so that $[x, x^{\alpha}] = 1.$

(b) Since G is a 2-auto-Engel group, $[x, \alpha^2] = [x, \alpha]^2$ for every $x \in G$ and $\alpha \in \operatorname{Aut}(G)$. On the other hand, as in the proof of Lemma 3.1(c), $[x, \alpha]^{-1} = [x, \alpha^{-1}]$ and by using induction, we get $[x, \alpha^n] = [x, \alpha]^n$ for every $n \in \mathbb{Z}$. Also, part (a) implies that $[x^{-1}, \alpha] = [x, \alpha]^{-1}$ and $[x, \alpha]^n = (x^{-1}\alpha(x))^n = x^{-n}\alpha(x^n) = [x^n, \alpha]$. (c) By part (a), $[xy^{-1}, (xy^{-1})^{\alpha}] = 1$. Therefore $xy^{-1}x^{\alpha}y^{-\alpha} = x^{\alpha}y^{-\alpha}xy^{-1}$. Clearly $x^{-\alpha}y^{-1}x^{\alpha}y = x^{-1}y^{-\alpha}xy^{\alpha}$. Thus $[x^{\alpha}, y] = [x, y^{\alpha}]$.

(d) Since G is a 2-auto-Engel (and so 2-Engel) group, we have $[x^{\alpha}, y, y] = 1$. Therefore by part (c), $[x, y^{\alpha}, y] = 1$ and similarly $[y, x^{\alpha}, x] = 1$. As the derived subgroup of a 2-Engel group is abelian, we have $[x^{-\alpha}, y]^x[x, y] = ([y^{-\alpha}, x]^y[y, x])^{-1}$ and hence $[\alpha, x, y] = [\alpha, y, x]^{-1}$.

Corollary 3.4. A group G is 2-auto-Engel if and only if G satisfies the equation $\alpha(x)\alpha^{-1}(x) = x^2$, for all $x \in G$ and $\alpha \in \operatorname{Aut}(G)$.

Proof. By the above lemma, 2-auto-Engel groups satisfy the identity $[x^2, \alpha] =$ $[x, \alpha^2]$, which is clearly equal to the equation $\alpha(x)\alpha^{-1}(x) = x^2$, for all $x \in G$ and $\alpha \in Aut(G)$. Conversely, suppose that G satisfies the latter identity which implies that $([x,\alpha]^x[x,\alpha])^{\alpha^{-1}} = ([x,\alpha][x,\alpha]^{\alpha})^{\alpha^{-1}}$. Hence $([x,\alpha]^{\alpha^{-1}})^x = [x,\alpha]$ and so $[x,\alpha,\alpha^{-1}\varphi_x] = 1$, where φ_x is the inner automorphism defined by x. If we replace the automorphism α by $\varphi_x \alpha^{-1}$, then we have $[[x, \alpha^{-1}][x, \varphi_x]^{\alpha^{-1}}, \alpha] = 1$. Hence, $[x, \alpha, \alpha] = 1$ and since a right 2-auto-Engel element is also a left one, G is a 2-auto-Engel group.

As we have proved in Lemma 3.3(a), the automorphisms of a 2-auto-Engel group G are all commuting automorphisms (see [4] for more details). Observe that the set $A(G) = \{ \alpha \in \operatorname{Aut}(G) : xx^{\alpha} = x^{\alpha}x, x \in G \}$ of commuting automorphisms coinsides the full automorphism group $\operatorname{Aut}(G)$ of G if and only if $[\alpha, x, x] = 1$, for every $x \in G$ and $\alpha \in \operatorname{Aut}(G)$. Also, $[G, \alpha] \leq C_G(\alpha)$ for all $\alpha \in \operatorname{Aut}(G)$, implies that G is a 2-auto-Engel group (Lemma 3.1(a)). Hence, our work may be considered as a special case of [4].

Recall that Levi [14] proved that a 2-Engel group is nilpotent of class at most 3 or equivalently $\gamma_3(G) \leq Z(G)$. Moreover, he proved that if G is a 2-Engel group, then $[G', G]^3 = 1$. Now, we prove the following theorem.

Theorem 3.5. Let G be a 2-auto-Engel group. Then the following statements hold.

- (a) $K_2(G)$, the second autocommutator subgroup of G, is central.
 - (b) $\operatorname{Aut}(G)^2\operatorname{Inn}(G)$ fixes $K_2(G)$ element-wise.
 - (c) $[K(G), G]^3 = 1.$
 - (d) If G has finite exponent, then $\exp(K(G)) = \exp(\operatorname{Aut}(G))$. Moreover, if every automorphism of G is central, then $\exp(\operatorname{Aut}(G))$ divides $\exp(Z(G))$.

Proof. (a) Let $x, y \in G$, $\alpha, \beta \in Aut(G)$ and φ_x be the inner automorphism induced by x. As G is a 2-auto-Engel group, by Lemma 3.1(f), $[y, [\varphi_x, \alpha], \beta] = 1$. Clearly, $[y, [\varphi_x, \alpha]] = [y, [x, \alpha]]$ and so $[x, \alpha, y, \beta] = 1$. Hence, by Lemma 3.1(c), $[x, \alpha, \beta, y] =$ 1. This shows that $K_2(G) \leq Z(G)$.

(b) By the above part, every inner automorphism of G fixes $K_2(G)$ elementwise. Also, by Lemma 3.1(e), for every $g \in K_2(G)$ and each $\gamma \in \text{Aut}(G)$, we have $[g, \gamma]^2 = 1$ and so $g^{\gamma^2} = g$.

(c) Suppose that $x, y \in G, \alpha \in Aut(G)$. Clearly,

 $[x,\alpha^{-1},y]^{\alpha}[\alpha,y^{-1},x]^{y}[y,x^{-1},\alpha]^{x}=1.$

By Lemma 3.1(c), $[x, \alpha^{-1}, y, \alpha] = [x, \alpha^{-1}, \alpha, y]^{-1} = 1$. Therefore by part (a), $[x, \alpha^{-1}, y][\alpha, y^{-1}, x][y, x^{-1}, \alpha] = 1$. It is easy to see that $[x, \alpha^{-1}, y] = [y, x^{-1}, \alpha] = [x, \alpha, y]^{-1}$. On the other hand, $[\alpha, y^{-1}, x] = [\alpha, x, y] = [x, \alpha, y]^{-1}$. Hence $[x, \alpha, y]^3 = 1$ and consequently $[K(G), G]^3 = 1$.

(d) From Lemma 3.3(b), it follows immediately that $\exp(\operatorname{Aut}(G))|\exp(K(G))$. Now, assume that $\exp(\operatorname{Aut}(G)) = n$ $(n \ge 2)$. By Lemma 3.3(b), the generators of K(G) and hence the generators of $K_2(G)$ have order dividing n. By the first part of the theorem, $K_2(G) \le Z(G)$ and hence $\exp(K_2(G))$ divides n. Now observe that $[[x, \alpha], [y, \beta]] \in K(G)' \le [K(G), \operatorname{Aut}(G)] = K_2(G)$. On the other hand, by Lemma 3.1(d), $[[x, \alpha], [y, \beta]] = [x, \alpha, [y, \beta]] = [x, \alpha, y, \beta]^2$. Therefore by Lemma 3.3(a),

$$\begin{split} ([x,\alpha][y,\beta])^n &= [[y,\beta],[x,\alpha]] \; [[y,\beta]^2,[x,\alpha]] \dots [[y,\beta]^{n-1},[x,\alpha]] \\ &= [x,\alpha,y,\beta]^{-n(n-1)} = 1. \end{split}$$

Hence every element of K(G) has order dividing n so that $\exp(K(G))$ divides $\exp(\operatorname{Aut}(G))$. In particular, if every automorphism of G is central, then $K(G) \leq Z(G)$ and hence $\exp(\operatorname{Aut}(G)) = \exp(K(G))$ divides $\exp(Z(G))$.

Clearly, if G is a 2-auto-Engel group such that $\operatorname{Aut}(G) = \operatorname{Aut}(G)^2 \operatorname{Inn}(G)$, then $K_3(G) = 1$.

The following corollary is an immediate consequence of Theorem 3.6.

Corollary 3.6. Let G be a 2-auto-Engel group such that $3 \nmid |G|$. Then

- (a) $K(G) \leq Z(G)$ and hence the group G is nilpotent of class at most 2;
- (b) $\operatorname{Aut}_c(G) = \operatorname{Aut}(G)$ so that $\exp(\operatorname{Aut}(G))$ divides $\exp(Z(G))$;
- (c) $G' \leq L(G)$, where $L(G) = \{g \in G : [g, \alpha] = 1, \alpha \in Aut(G)\}$ is the absolute center of G.

The above corollary may be considered as a partial answer to the last question of [6]. In fact, the structure of a 2-auto-Engel group may give some information about the structure of its automorphism group.

For the next lemma, consider the following subgroups of Aut(G).

$$C_{\operatorname{Aut}(G)}(K(G)) = \{ \alpha \in \operatorname{Aut}(G) : [x, \alpha] = 1, x \in K(G) \}$$

and

$$\operatorname{Var}(G) = \{ \alpha \in \operatorname{Aut}(G) : [x, \alpha] \in L(G), x \in G \},\$$

which is called the *autocentral automorphism group* of G (see [16] for more detail).

Lemma 3.7. Let G be a 2-auto-Engel group. Then $\operatorname{Aut}(G)' \leq C_{\operatorname{Aut}(G)}(K(G)) \cap \operatorname{Var}(G)$. Moreover, if K(G) = Z(G), then $\operatorname{Aut}(G)'$ is isomorphic to a subgroup of $\operatorname{Hom}(G/Z(G), L(G))$.

Proof. Let x be an arbitrary element of G and $\alpha, \beta, \gamma \in \operatorname{Aut}(G)$. By Lemma 3.1(d,e), we have $[x, \alpha, [\beta, \gamma]] = 1$. Hence, $\operatorname{Aut}(G)'$ fixes K(G) element-wise. Also, Lemma 3.1(f) implies that $\operatorname{Aut}(G)' \leq \operatorname{Var}(G)$. Finally, if K(G) = Z(G), then by [16, Proposition 2], $\operatorname{Aut}(G)'$ is isomorphic to a subgroup of $\operatorname{Hom}(G/Z(G), L(G))$, as required.

Theorem 3.8. Let G be a 2-auto-Engel group. Then Aut(G) is nilpotent of class at most 2.

Proof. Lemma 3.1(d,f) implies that $[x, [\alpha, \beta, \gamma]] = [x, [\alpha, \beta], \gamma]^2 = 1$, for all $x \in G$ and $\alpha, \beta, \gamma \in \text{Aut}(G)$. Therefore $[\alpha, \beta, \gamma] = id_G$ and hence Aut(G) is nilpotent of class at most 2.

Kappe [13] proved that G is a 2-Engel group if and only if every maximal abelian subgroup of G is normal. We prove that if G is a 2-auto-Engel group, then every maximal abelian subgroup M of G is characteristic. We mention that the converse is not true in general and the cyclic group of order 9 is a counterexample.

Theorem 3.9. Let G be a 2-auto-Engel group. Then every maximal abelian subgroup of G is characteristic.

Proof. Let M be a maximal abelian subgroup of the non-abelian group G. Clearly $M = C_G(M)$. Now, we show that for every $\alpha \in \operatorname{Aut}(G)$, the centralizer of α in $G, C_G(\alpha) = \{g \in G : [g, \alpha] = 1\}$ is a characteristic subgroup of G. Let β be an arbitrary automorphism of G and $c \in C_G(\alpha)$. Clearly,

$$[\beta(c), \alpha]^{\beta^{-1}} = [c, \alpha[\alpha, \beta^{-1}]] = [c, [\alpha, \beta^{-1}]] = [c, \alpha, \beta^{-1}]^2 = 1.$$

Therefore, $\beta(c) \in C_G(\alpha)$. Hence $C_G(\alpha)$ is a characteristic subgroup of G. Now, let φ_x be the inner automorphism induced by x. Then $M = C_G(M) = \bigcap_{x \in M} C_G(x) = \bigcap_{x \in M} C_G(\varphi_x)$. Therefore M is a characteristic subgroup of G. \Box

4. The structure of 2-auto-Engel 2-groups

In this section, we discuss some results about 2-auto-Engel 2-groups. First, we consider non-abelian 2-auto-Engel 2-groups, which are not purely non-abelian.

Theorem 4.1. Let G be a finite non-abelian 2-auto-Engel 2-group, which is not purely non-abelian. Then $G \cong H \times \mathbb{Z}_4$ such that H is a purely non-abelian 2-auto-Engel 2-group with the following properties:

- (a) $L(H) = Z(H) = H' = K(H) = \Phi(H).$
- (b) $\exp(Z(H)) = \exp(\operatorname{Aut}(H)) = \exp(H)/2 = 2.$
- (c) H/N is elementary abelian for each normal subgroup N of H such that [H:N] = 4. Equivalently, every normal second maximal subgroup of H is the intersection of two maximal subgroups.

Moreover, a group G with the given properties is a 2-auto-Engel group.

Proof. Suppose G is a finite non-abelian 2-auto-Engel 2-group, which is not purely non-abelian. Hence $G = H \times A$ for some non-trivial abelian group A. By the remark in section 3, H is a purely non-abelian 2-auto-Engel 2-group and $A = \langle a \rangle$ is a cyclic group of order 2 or 4. Also, by [2], for each automorphism φ of G, there exist automorphisms $\alpha \in \operatorname{Aut}(H)$ and $\beta \in \operatorname{Aut}(A)$ and homomorphisms $\gamma \in \operatorname{Hom}(H, A)$ and $\delta \in \operatorname{Hom}(A, Z(H))$ such that $\varphi(h, a^i) = (h^{\alpha} a^{i\delta}, a^{i\beta} h^{\gamma})$. Hence

$$[(h, a^i), \varphi] = ([h, \alpha]a^{i\delta}, [a^i, \beta]h^{\gamma})$$

so that

$$\begin{split} 1 &= [(h, a^i), \varphi, \varphi] = ([[h, \alpha]a^{i\delta}, \alpha]([a^i, \beta]h^{\gamma})^{\delta}, [[a^i, \beta]h^{\gamma}, \beta]([h, \alpha]a^{i\delta})^{\gamma}) \\ &= ([a^{i\delta}, \alpha]([a^i, \beta]h^{\gamma})^{\delta}, [h^{\gamma}, \beta]([h, \alpha]a^{i\delta})^{\gamma}). \end{split}$$

Now, assume that $\beta = id$ or the inverting automorphism. If $\beta = id$, then

$$1 = [(h, a^i), \varphi, \varphi] = ([a^{i\delta}, \alpha]h^{\gamma\delta}, ([h, \alpha]a^{i\delta})^{\gamma}).$$

If $\alpha = id$, then $h^{\gamma\delta} = a^{i\delta\gamma} = 1$. If |a| = 2 and $h^{\gamma} = a^{j}$, then $a^{j\delta} = 1$, and by assuming $\delta \neq 1$ we get j = 2 and so $h^{\gamma} = 1$. Hence $\gamma = 1$, which a contradiction. Thus we should have |a| = 4.

Since $a^{\delta} \in \text{Ker}\gamma$ and γ varies over all homomorphisms in $\text{Hom}(H, \langle a^2 \rangle)$, it follows that $a^{\delta} \in \Phi(H)$. In particular, $\Omega_2(Z(H)) \subseteq L(H)$. Hence

$$\Omega_2(Z(H)) \subseteq \Phi(H) \cap L(H)$$

On the other hand, $[H, \alpha]^{\gamma} = 1$ for each α and γ , which implies that

$$K(H) \subseteq \bigcap_{\gamma} \operatorname{Ker}(\gamma) \subseteq \Phi(H).$$

Hence $K(H) \subseteq \Phi(H)$.

If β is the inverting automorphism, then

$$[(h, a^i), \varphi, \varphi] = ([a^{i\delta}, \alpha](a^{2i}h^{\gamma})^{\delta}, h^{-2\gamma}([h, \alpha]a^{i\delta})^{\gamma}),$$

which implies that $h^{2\gamma} = a^{2\delta} = 1$. Hence $\operatorname{Im} \gamma \subseteq \langle a^2 \rangle$ and either $\gamma = 1$ or $\operatorname{Ker} \gamma$ is a maximal subgroup of H so that $\bigcap \operatorname{Ker} \gamma = \Phi(H)$ (for each normal subgroup N of H of index 4, H/N should be non-cyclic so that $\Phi(H) \subseteq \bigcap_{N \leq H, [H:N]=4} N$). Also, Z(H) is an elementary abelian 2-group for $(a^{\delta})^2 = 1$ that is $\exp(Z(H)) = 2$. This also shows that

$$Z(H) = L(H) \subseteq \Phi(H).$$

Hence the first assertion follows.

Conversely, it is evident that a finite group G with the above properties is also a 2-auto-Engel group. This completes the proof.

The following propositions gives criterions for recognition of some non-abelian 2-auto-Engel groups.

Proposition 4.2. Let G be a group whose center and automorphisms group are elementary abelian 2-groups. Then G is a 2-auto-Engel group of nilpotency class 2.

Proof. Since Aut(G) is abelian, we have Aut_c(G) = $C_{Aut(G)}(Inn(G)) = Aut(G)$, where Aut_c(G) is the group of central automorphisms of G. Hence for every $x \in G$ and every $\alpha \in Aut(G)$, $[x, \alpha] \in Z(G)$. As Aut(G) and Z(G) are elementary abelian 2-groups, we have $[x, \alpha, \alpha] = [x, \alpha]^{-2} = 1$. Therefore G is a 2-auto-Engel group. Moreover, since Inn(G) is abelian, G is nilpotent of class 2 and the proof is complete.

Proposition 4.3. Let G be a purely non-abelian 2-group such that $G' = \Phi(G)$ and $\operatorname{Aut}(G)$ is abelian. Then G is a 2-auto-Engel group.

Proof. Since $\operatorname{Aut}(G)$ is abelian, $\operatorname{Aut}(G) = \operatorname{Aut}_c(G)$. Hence, by a result of Adney and Yen [1], there is one-to-one correspondence

$$\begin{array}{ccc} \theta : \operatorname{Aut}(G) & \longrightarrow & \operatorname{Hom}\left(\frac{G}{G'}, Z(G)\right) \\ \alpha & \longmapsto & \overline{\alpha}, \end{array}$$

where $(gG')^{\overline{\alpha}} = g^{-1}g^{\alpha}$ for all $g \in G$. Now since $G' = \Phi(G)$, we know that G/G' is an elementary abelian 2-group. Hence, for each $\alpha \in \operatorname{Aut}(G)$, the image of $\overline{\alpha}$ must be an elementary abelian 2-group, as well. This follows that $\operatorname{Aut}(G)$ is an elementary abelian 2-group for $Z(G) \subseteq G'$ and hence

$$g^{\alpha^2} = g(gG')^{2\overline{\alpha}}(gG')^{\overline{\alpha}^2} = g$$

for all $g \in G$ and $\alpha \in \operatorname{Aut}(G)$.

Now, $[g, \alpha, \alpha] = [(gG')^{\overline{\alpha}}, \alpha]$. Let $z = (gG')^{\overline{\alpha}}$. Then $g = (g^{\alpha})^{\alpha} = (xz)^{\alpha} = xzz^{\alpha}$, which implies that $z^{\alpha} = z^{-1} = z$ as z has order ≤ 2 being an image of $\overline{\alpha}$. Therefore, $[g, \alpha, \alpha] = [z, \alpha] = 1$, as required,

We conclude this section by giving some examples of purely non-abelian 2-auto-Engel groups.

Example 2. The following family of 2-groups is constructed in [12]. Let G(n) $(n \ge 3)$ be the finite 2-group with the following presentation:

$$G(n) = \langle a_1, \dots, a_n, b : a_1^2 = a_2^4 = \dots = a_n^4 = 1, a_{n-1}^2 = b^2,$$
$$[a_1, b] = 1, [a_n, b] = a_1, [a_{i-1}, b] = a_i^2,$$
$$[a_j, a_k] = 1, 3 \le i \le n, 1 \le j < k \le n \rangle.$$

The group G(n) is of order 2^{2n} with exponent 4 whose center and automorphism groups are isomorphic to \mathbb{Z}_2^n and $\mathbb{Z}_2^{n^2}$, respectively. Therefore, by Proposition 4.2, G(n) is a purely non-abelian 2-auto-Engel group for each $n \geq 3$.

Note that $G(3) \cong (\mathbb{Z}_4 \rtimes \mathbb{Z}_4) \rtimes \mathbb{Z}_4$ is the group (64, 68) in the GAP [7] small groups library. There is yet another group of order 64, which is a non-abelian 2-auto-Engel group, and has the following presentation (see [12]).

$$\langle a, b, c, d : a^2 = b^4 = c^4 = d^2 = [a, b] = [a, c] = [a, d] = [b, c] = [c^2, d] = 1,$$

 $[b, d] = c^2, [c, d] = a \rangle.$

In the next example, we construct yet another family of infinitely many nonabelian 2-auto-Engel 2-groups, which includes the above group (The group (64, 69) of GAP small groups library which is isomorphic with $(\mathbb{Z}_4 \times \mathbb{Z}_4 \times \mathbb{Z}_2) \rtimes \mathbb{Z}_2)$ and has shorter presentation than the one given in [12].

Example 3. Let
$$G_n$$
 $(n \ge 2)$ be the finite 2-group with the following presentation:
 $G_n = \langle x, x_1, \dots, x_n : x^4 = x_i^4 = [x_i, x_j] = x^2 x_1^2 \dots x_n^2 = [x, x_n]^2 = 1, 1 \le i, j \le n,$
 $[x, x_i] = x_{i+1}^2, 1 \le i < n \rangle.$

Then, by Theorem 4.5, G_n is a 2-auto-Engle group.

The proof of the following lemma is straightforward and we omit its proof.

Lemma 4.4. Consider the above group G_n $(n \ge 2)$, then (1) $|G_n| = 2^{2(n+1)}$;

- (2) every element of G_n can be uniquely written in the form $x^i x_1^{i_1} \dots x_n^{i_n} [x, x_n]^j$, where i, j = 0, 1 and $i_1, \ldots, i_n \in \{0, 1, 2, 3\}$;
- (3) $G'_n = \langle x_2^2, \dots, x_n^2, [x, x_n] \rangle \cong \mathbb{Z}_2^n;$
- (4) $Z(G_n) = \Phi(G_n) = \Omega_1(G_n) = \overline{G'_n} \times \langle x_1^2 \rangle \cong \mathbb{Z}_2^{n+1};$ (5) $G_n/G'_n \cong \mathbb{Z}_4 \times \mathbb{Z}_2^n$ and $G_n/Z(G_n) \cong \mathbb{Z}_2^{n+1}.$

Theorem 4.5. The automorphism group of G_n $(n \ge 2)$ is an elementary abelian 2-aroup of order $2^{(n+1)^2}$.

Proof. Clearly, G_n is a purely non-abelian group and $H := \langle x_1, \ldots, x_n, [x, x_n] \rangle \cong$ $\mathbb{Z}_4^n \times \mathbb{Z}_2$ is the unique (characteristic) abelian maximal subgroup of G_n . We use the method of [12] to obtain the structure of $\operatorname{Aut}(G_n)$. First we construct two descending sequences of characteristic subgroups of G_n as follows:

$$\begin{split} K_0 &= H, \quad K_i/K_{i-1}^2 = Z(G_n/K_{i-1}^2) \quad (1 \le i \le n), \\ L_0 &= H, \quad L_i = \{h \in H : h^2 \in [G_n, L_{i-1}]\} \quad (1 \le i \le n) \end{split}$$

A simple calculation shows that

$$K_i = \left\langle x_1, \dots, x_{n-i}, x_{n-i+1}^2, \dots, x_n^2, [x, x_n] \right\rangle,$$
$$L_i = \left\langle x_1^2, \dots, x_i^2, x_{i+1}, \dots, x_n, [x, x_n] \right\rangle.$$

Obviously,

$$K_{n-i} \cap L_{i-1} = \left\langle x_1^2, \dots, x_{i-1}^2, x_i, x_{i+1}^2, \dots, x_n^2, [x, x_n] \right\rangle$$
$$= \left\langle x_i, Z(G_n) \right\rangle.$$

This shows that $x_i^{-1}\alpha(x_i) \in Z(G_n)$, for all $\alpha \in \operatorname{Aut}(G_n)$ and $1 \leq i \leq n$. Now, observe that $G_n = H\langle x \rangle$ and $\alpha(x) = x x_1^{i_1} \dots x_n^{i_n} [x, x_n]^j$, where j = 0, 1 and $i_1, \ldots, i_n \in \{0, 1, 2, 3\}$. Hence

$$\alpha(x^2) = x^2 x_1^{2i_1} x_2^{2(i_2 - i_1)} \dots x_n^{2(i_n - i_{n-1})} [x, x_n]^{-i_n}.$$

Clearly, $\alpha(x_i^2) = x_i^2$ for $i = 1, \ldots, n$, from which it follows that

$$\alpha(x)^2 x_1^2 \cdots x_n^2 = 1.$$

Thus

$$x_1^{2i_1}x_2^{2(i_2-i_1)}\dots x_n^{2(i_n-i_{n-1})}[x,x_n]^{-i_n} = 0,$$

which implies that i_1, \ldots, i_n are even. Therefore $x^{-1}\alpha(x) \in Z(G_n)$ and consequently every automorphism of G_n is central. Also, it is not difficult to see that $L(G_n) = Z(G_n)$ and $\exp(\operatorname{Aut}(G_n)) = 2$. Hence, G_n is a 2-auto-Engel group. More-over, $|\operatorname{Aut}(G_n)| = |\operatorname{Hom}(G_n/G'_n, Z(G_n))| = 2^{(n+1)^2}$, as required.

Example 4. The following group of [11] gives an instance of a group satisfying the conditions of Proposition 4.3 and that it is not of the type described in Proposition 4.2. Let

$$\begin{split} G &= \langle x_1, x_2, x_3, x_4, x_5 : x_1^4 = x_2^4 = x_3^4 = x_4^4 = x_5^2 = 1, \\ & [x_1, x_2] = x_1^2, [x_1, x_3] = x_3^2, [x_1, x_4] = 1, [x_1, x_5] = x_1^2, \\ & [x_2, x_3] = x_2^2, [x_2, x_4] = 1, [x_2, x_5] = x_4^2, \\ & [x_3, x_4] = x_4^2, [x_3, x_5] = z_4^2, [x_4, x_5] = 1 \rangle. \end{split}$$

A simple verification shows that G is a purely non-abelian group of order 2^9 , Aut(G) is elementary abelian of order 2^{20} , $G' = \Phi(G)$ is elementary abelian of order 2^4 and Z(G) is a group of order 2^5 and exponent 4. Hence, by Proposition 4.3, G is a 2-auto-Engel group.

Acknowledgment. The authors would like to thank the referee whose suggestions improved substantially the results of this paper.

References

- [1] J. E. Adney and T. Yen, Automorphisms of p-group, Illinois J. Math. 9(1) (1965), 137–143.
- [2] J. N. S. Bidwell, M. J. Curran and D. J. McCaughan, Automorphisms of direct products of finite groups, Arch. Math. 86 (2006), 481–489.
- [3] W. Burnside, On groups in which every two conjugate operations are permutable, Proc. London Math. Soc. 35 (1902), 28–37.
- [4] M. Deaconescu, G. Silberberg and G. L. Walls, On commuting automorphisms of groups, Arch. Math. 79 (2002), 423–429.
- [5] M. Deaconescu and G. L. Walls, Cyclic groups as autocommutator groups, Comm. Algebra 35 (2007), 215–219.
- [6] M. Farrokhi D. G. and M. R. R. Moghaddam, On the center of automorphism group of a group, Submitted.
- [7] The GAP Group, GAP-Groups, Algorithms and Programming, Version 4.4.12, 2008, (http://www.gap-system.org/).
- [8] P. V. Hegarty, The absolute center of a group, J. Algebra 169 (1994), 929–935.
- [9] H. Heineken, A class of three-Engel groups, J. Algebra 17 (1971), 341–345.
- [10] C. Hopkins, Finite groups in which conjugate operations are commutative, Amer. J. Math. 51 (1929), 35–41.
- [11] V. K. Jain, R. K. Rai and M. K. Yadav, On finite p-groups with abelian automorphism group, arXiv:1304.1974v1.
- [12] A. R. Jamali, Some new non-abelian 2-groups with abelian automorphism groups, J. Group Theory 5 (2002), 53–57.
- [13] W. P. Kappe, Die a-norm einer gruppe, Illinois J. Math. 5 (1961), 187–197.
- [14] F. W. Levi, Groups in which the commutator operation satisfies certain algebraic conditions, J. Indian Math. Soc. 6 (1942), 87–97.
- [15] M. R. R. Moghaddam, F. Parvaneh and M. Naghshineh, The lower autocentral series of abelian groups, Bull. Korean Math. Soc. 48 (2011), 79–83.
- [16] M. R. R. Moghaddam and H. Safa, Some properties of autocentral automorphisms of a group, *Ricerche Mat.* 59 (2010), 257–264.
- [17] D. J. S. Robinson, Finiteness Conditions and Generalized Soluble Groups, Part 2. Springer-Verlag, New York, 1972.
- [18] D. J. S. Robinson, A Course in the Theory of Groups, Second Ed. Springer-Verlag, New York, 1995.

FACULTY OF MATHEMATICAL SCIENCES AND CENTRE OF EXCELLENCE IN ANALYSIS ON ALGE-BRAIC STRUCTURES, FERDOWSI UNIVERSITY OF MASHHAD, MASHHAD, IRAN.

E-mail address: mrrm5@yahoo.ca

E-mail address: m.farrokhi.d.g@gmail.com

E-mail address: hesam.safa@gmail.com