SOME PROPERTIES OF 2-AUTO-ENGEL GROUPS

MOHAMMAD REZA R. MOGHADDAM, M. FARROKHI D. G., AND HESAM SAFA

ABSTRACT. Given a group G, an element x € G and automorphism a €
Aut(G), the nth autocommutator [z,, «] is defined recursively by [z,a] =
7 2% and [z,, o] = [[2,n—1a],a] for all n > 1. The group G is said to be
n-auto-Engel if [z,, a] = [a,n ] =1, for all z € G and all @ € Aut(G), where
[a, 2] = [z,a]”!. We study the structure of 2-auto-Engel groups and show
that 2-auto-Engel groups indeed satisfy the equation a(z)a™1(x) = 22, for all
z € G and a € Aut(G). Also, we give a precise description of all abelian 2-
auto-Engel groups of finite 2-rank as well as 2-auto-Engel 2-groups, which are
not purely non-abelian, and construct an infinite family of purely non-abelian

2-auto-Engel 2-groups.

1. INTRODUCTION

Let 1 and 3 be the elements of a given group G, then z7? = I2_11'1I2 and

[z1,22] = xflx”{” denote the conjugate of z1 by x9 and the commutator of 1 and
X9, respectively. As in Hegarty [8], the autocommutator of an element z € G and
automoprhism o € Aut(G) is defined by [z,a] = 27 '2% The same as for the
commutator subgroup, one may define the autocommutator subgroup of G in an
analogous way as follows:

K(G)=([z,a] :x € G,a € Aut(G)) .

The notion of autocommutator subgroups have been already studied in [5, 8, 15].

For each element € G and automorphisms aj,...,a, € Aut(G), we define the
autocommutator of x, aq, ..., a, of weight n 4+ 1 (n > 1), recursively by
[z, a1,...,an] = [[x,1,.. ., an_1], ap].

Clearly the (n + 1)st term of the lower central series of G, can be considered as
Mm+1(G) = ([z,00,...,a) 1z € G, a1, ...,a, € Inn(Q)) .
So we may define the nth autocommutator subgroup of G, as
K, (G)={[z,a1,02,...,an] : ¢ € G,aq,...,an € Aut(G)) .

One notes that, the nth autocommutator subgroup is a characteristic subgroup of
G containing v,+1(G), for all n > 1. The following series of subgroups

G =Ko(G) =2 K(G) = K1(G) 2 K2(G) = -+ 2 Ky (G) = -+,
is called the lower autocentral series of G (see [15] for more details).

Let = be an element of G and o € Aut(G). Then the autocommutator [x,, ]
(n > 1) is defined inductively by [z,1 o] = [z, ] and [z,, o] = [[z,n,—1 @], a], for
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n > 2. The element x is called a right auto-Engel element, if for every a € Aut(G),
there exists a natural number n = n(z,«) such that [z,,a] = 1. If n can be
chosen independent of «, then x is called a right n-auto-FEngel element or simply a
bounded right auto-Engel element. We denote the sets of right auto-Engel elements
and bounded right auto-Engel elements of G' by AR(G) and AR(G), respectively.

An element z is called a left auto-Engel element, if for every o € Aut(G), there
exists a natural number n = n(z, ) such that [«,, ] = 1. Note that, the automor-
phism « appears on the left and [, z] = [z,a]~!. If n can be chosen independent
of «, then z is called a left n-auto-Engel element or simply a bounded left auto-
Engel element. We denote the sets of left auto-Engel elements and bounded left
auto-Engel elements of G by AL(G) and AL(G), respectively.

Clearly, if o runs over the set of all inner automorphisms of G, then a right or
left auto-Engel element is a right or left Engel element, respectively [17].

The properties of Engel elements and Engel groups are studied by many authors,
see for instance [9, 13]. Kappe [13] proved that the set of all right 2-Engel elements
of a group forms a characteristic subgroup. Also, Levi [14] has shown that a 2-Engel
group is nilpotent of class at most 3. Moreover, it is known that for any 2-Engel
group G with finite exponent, we have exp(G’) = exp(G/Z(G)) (= exp(Inn(Q))).

2. AUuTO-ENGEL ELEMENTS AND n-AUTO-ENGEL GROUPS

For a given group G and automorphisms a and 3 of G, we set %8 = (2)8, for
all z € G. Using the above notation, we have the following identities.

(a) [zy.a] = [z,a]” [y, ],

(b) [z,a™] = ([z,a]71)"

(¢) [z7" o] = ([z,a] 1"

(d) [xva ] = [ €, ][ ]ﬁ = [m,ﬂ][m,a][x,a,ﬂ];
( ) [1‘,0&]’6 = [Iﬁvaﬁ]v

e
(6) [z.07", B]%[a, 87, 2)%[B,27 1, 0" = 1.

The following relation holds between right and left auto-Engel elements.

Proposition 2.1. In any group G the inverse of a right n-auto-Engel element is a
left (n+1)-auto-Engel element, that is AR(G)~! C AL(G) and AR(G)~! C AL(G).

Proof. Let = be a right n-auto-Engel element and « be any automorphism of G.
Then by the above identities, [x%,, 3] = [z, 60‘71]0‘ = 1. So z% is also a right
n-auto-Engel element and hence a right n-Engel element of G. Therefore

-1

1= [xam x—l]grl _ [[.”L‘a,.%‘_l],nf1 x—l]x — [[x[x,a]7x_1]m71 x_l]x
= [[[:E,Oz], x_l}mfl 1'_1]171 = [[ILOZ],” x_l]gf
=[lz,0)* a7l = lova Y2l

[

Hence 71 is a left (n+ 1)-auto-Engel element of G. This argument also shows that

AR(G)~! C AL(G). O

For a group G, if G = AR(G) then Proposition 2.1 implies that G = AL(G),
while the converse of the latter statement is not true in general. For example,
consider the cyclic group Zg of order 6. Clearly, Z¢ = AL(Zg). On the other hand, if
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a is the inverting automorphism of Zg, then one can easily see that [z,, a] = x*, for
each n > 1. Therefore AR(Z¢) C Zg. Hence, the following definition is meaningful.

Definition. A group G is called an n-auto-Engel group if [x,, o] = [a,, 2] = 1, for
all z € G and o € Aut(G). Also, G is called an auto-Engel group if G = AR(G).

By the above discussion, the cyclic group Zg is not an auto-Engel group. Now,
we give some examples of auto-Engel groups.

Example 1. (a) If Zyn = (x: 2" =1) is the cyclic group of order 2" and o
is an automorphism of Zgn, given by « :  — z" (r odd), then it is easy
to see that [v¥,, a] = #F0=D" =1 for each k € {1,...,2"}. Thus Zyn is
an n-auto-Engel group.

(b) Let Zpe = (w1,a2,...:23 = 1,02 =x;,1 >2) be the Priifer 2-group.
Then Aut(Za~) = {a : z; — z;",n;41 = n; (mod 2°),4 > 1}. Hence
[€i,s ] = 1 for all & € Aut(Zs~) and i > 1, which implies that Zow is an
auto-Engel group. However, Zss is not m-auto-Engel group for all n > 1
since [Zp41,n @) = 955;21) = ngl) ~# 1if a is the inverting automorphism
of Zgoc .

(c) If Dan = <x, yoa? =y =12Y = m_1>, is the dihedral group of order
2" (n > 3), then

$I—>Jii
yr—aly

Aut(Dgn) = {aij : ,iis odd and 4,5 € {1, .. .,2”_1}} ,

is the automorphism group of Dyn. Since ¢ is odd, we can see that [x,, o;;] =
20D" = 1 and [y, ay;] = 277D = 1. Also [t 2] = [0t m y] = 1,
from which it follows that [zFy,, a;j] = [Qijm zFy] = 1, for all i,j,k €
{1,...,2771} (i is odd). Therefore the dihedral group of order 2" (n > 3)
is an n-auto-Engel group but it is not an (n — 1)-auto-Engel group. We
note that Dg is a 2-Engel group but it is not a 2-auto-Engel group.

The following theorem gives a description of abelian auto-Engel groups.

Theorem 2.2. Let G be an abelian group.

(1) If G is an auto-Engel group, then G is a 2-group.

(2) If G has finite 2-rank, then G is an auto-Engel group if and only if G is
the direct product of cyclic or quasi-cyclic groups of different cardinalities.
Moreover, if G is a finite auto-Engel group, then G is an mn-auto-Engel
group, where m = ro(Q) is the 2-rank of G and n = logy exp(G).

Proof. (1) If a is the inverting automorphism of G and x € G, then [z,, o] = (72",
By the assumption, there exists n = n(z, @) such that [z,, a] = 1, which implies
that x is a 2-element. Therefore G is a 2-group.

(2) If G has finite 2-rank, then by [18, 4.3.13], G is a direct product of finitely
many cyclic or quasi-cyclic groups. If G has a homocyclic direct factor (a) x (b)
and « is the automorphism of G, which sends a, b to ab~! and a, respectively, then
[a,3 ] = a and hence [a,, a] # 1 for all n > 1, which is a contradiction. Similarly,
G has no direct factor of type Zos X Zox. Hence, G is a direct product of finitely
many cyclic or quasi-cyclic groups with different cardinalities.

Conversely, suppose that G is a direct product of finitely many cyclic or qua-
sicyclic groups with different cardinalities. Then G = Z x H, where Z = 1 or
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Z = (w1,20,...: 27 = 1,22y = x;,i > 1) is the Priifer 2-group, and H is a finite
abelian 2-group. First we show that Z is a characteristic subgroup of G. If Z =1,
then there is nothing to prove. Hence, we assume that Z # 1. Let exp(H) = 2"

and o € Aut(G). Then a(z;1,) = xifg h; for some h; € H and integer l; ., for all
i > 1. Thus a(z;) = a(z?],) = xf:;*" € Z, which implies that a(Z) C Z and Z is
a characteristic subgroup of G. If H = 1, then by Example 1(b), we are done. Now,
suppose that H # 1 and let K = Q,41(Z)H = (y1) X -+ X (ym), where |y;| = 2™

and ny > -+ > Ny, If a € Aut(G), then

2" T, 2M=1 T A,
a(yi) =y ¢ Ly ‘ 13/;1 tis
where a; ; is integer, a;; is odd and t; € (Yi+1,...,Ym). Thus |[y1,a]| < |y1| and if
lly;.; o] <ly;| for j =1,...,i—1, then |[y;,; ]| < |y;|. Because
i—1
ni=nig. ot aii—1
[yivi ] = H[yj7i71]2 DOy T i al,
j=1

—1

and we have [[y;""" t;,i—1 ]| < |y;| and for j < i,

275 "M, 2™ "My 2" " Miay
[Yji—1 @] " W< y; < lyil-

< ‘[yju' a

Thus |[k,m ]| < |y| for all k € K, from which it follows that [k, @] = 1. Therefore
G is an auto-Engel group. O

In the following we shall obtain a sharp bound n = n(G) for a finite auto-Engel
abelian group G to be an n-auto-Engel group.

Lemma 2.3. If G = Zon @ --- ® Lo, then G is (2n — 1)-auto-Engel. Furthermore,
G is not (2n — 2)-auto-Engel.

Proof. If a € Aut(@), then by using the heights and orders of elements of G, it
follows that

Oé(l, 0, O, O, e ,O) = (al)l, 61,1727 e ,(117n),

a(O, 1, 0, O7 . ,O) = (2&271, a2,2,023,. .. 70,27”),

@(0,0,1,0,...,0) = (2%a3.1,2a3.2,a33, - -, a3.n),

n—1 n—2
a(0,0,0,0,...,1) = (2" an1,2" “an2,-- ., 20n,n-1,Gnn)

for some integers a; ; (1 < 4,5 < n), where a;; is odd for ¢ = 1,...,n. Moreover,
all automorphisms of G do arise in this manner. As an aside, this does allow one
to compute that |Aut(G)| = 25 (—Dn(@n+5),

Now, assuming that for some z € G and a € Aut(G) that

[Sﬂ,k a} = (ka‘lbl, ka‘2b2, . ,ka’"bn)
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we can compute
Tikt1 a} = (ka*lbl (a171 - ].) + ka’2+1b2a271 + ka’2+2b3a371 + -+ 2mk’"+n71bnan71,

= 2" byag 1 + 27 2by(az, — 1) + 2" bgag s + - 4+ 275 T2, ,,

= 2mk’lblal,n + 2mk'2b2a2,n +--+ 2m}c’n71bn—1an—1,n + 2mk’nbn(an,n - 1)

Thus, it easily follows that

Migt11 > min{mg 1 +1,meo+1,mes+2,...,mgn+n—1}
and for j > 2
Mit1,; > min{mg1,..., Mk j—1, Mk + 1, mgjp1 +1,...,meg, +n— 5}
Therefore my, ; > hy ; for all integers k and j = 1,...,n, in which h is a function
defined by

ho’j :0, fOI‘jZ 1,...7n,
hi+1,1 =min{hg1 + 1, kg2 +1,..., gy +n — 1}, and for j > 2
his1,; =min{hg1,..., e j—1,he; + 1 hejp1 + 1,0 R +1 — 5}

Using mathematical induction it is straightforward to show that

—_i49
hi,j zmax{{k;—’—J ,0}

for all positive integers k and j = 1,...,n. Hence,
2n—1)—j5+2 .
Maon—1,5 = hon—1,; > {()QJJ >n—j+1,
which implies that [z,2,-1 @] = (0,...,0), as required.

Finally, let © = (1,0,0,...,0) and define the automorphism « of G by

«(1,0,0,0,...,0) = (1,1,0,0,...,0),
(0,1,0,0,...,0) = (2,1,0,0,...,0),
«(0,0,1,0,...,0) = (0,0,1,0,...,0),

«(0,0,0,0,...,1) =(0,0,0,0,...,1).
A simple computation shows that
[(1507"'50)72n—2a] = (2”‘71507"'50) # (0,0,...,O),

from which the result follows. O

Theorem 2.4. Let G be a finite abelian group which is the direct product of cyclic
2-groups having distinct orders so that exp(G) = 2"™. Then G is (2n—1)-auto-Engel.

Proof. Since G is isomorphic to a direct factor of the group Zon & --- @ Zo, the
result follows by Lemma 2.3. (]
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3. 2-AUTO-ENGEL ELEMENTS AND 2-AUTO-ENGEL GROUPS

If G is a l-auto-Engel group, then [z,a] = [a,z] = 1, for all z € G and «a €
Aut(G). Hence Aut(G) =1 and consequently G = 1 or Zy. Observe that the class
of 1-Engel groups coincides with the class of abelian groups.

It is an unsolved problem that whether the four subsets R(G), R(G), L(G) and
L(G) are subgroups of G? (see [17]). The same problem also appears in the case
of auto-Engel elements.

The properties of 2-Engel groups have been already studied (see for example
[3, 10, 13]). In this section, we concentrate on the same properties for 2-auto-Engel
groups.

Remark. Let G be a finite 2-auto-Engel abelian group. If « is the inverting auto-
morphism of G, then 2 = [z, a, o] = 1, for every z € G. Hence exp(G) divides 4 so
that G is the direct sum of cyclic groups of order 2 and 4, whence by Theorem 2.2,
G 1,725,740 Ly X ZLo. If G = (x) x (y) = Zy X Zy and « is the automorphism of
G which sends x and y to xy and z?y, respectively, then [z, a, a] = 22 # 1, which
is a contradiction. Thus G = 1,Zs or Z4.

The next lemma will be used frequently in the proof of our main theorems.
Lemma 3.1. Let x be a right 2-auto-Engel element and o, B and v be arbitrary

automorphisms of a group G. Then

(a) x is a left 2-auto-Engel element;
(b) 22 = (22 : o € Aut(Q)) is abelian and its elements are right (so left)
2-auto-Engel elements;

() [, 0, 8] = [z,8,0] "
() [z, [o, 8] = [z, 0, B2
(©) w0, 3,712 = 1;
() [z, ], Bl,7) = 1.
Proof. The proof is straightforward (see [15, Theorem 7.13]). O

Theorem 3.2. The set of all right 2-auto-Engel elements of a group G forms a
characteristic subgroup.

Proof. Let x and y be right 2-auto-Engel elements of a group G, «a be any auto-
morphism and ¢, be the inner automorphism induced by y. Then

—1

—1

]
= [[z, [y, 0] 7", pyapy 1]
]

17 [Wy*laa_l]a]y
[l 0, [py-1. 0™ ]V (g, 0] ™, [y 1,0 a7

Now, we show that [[z,a], [p,-1,a !a] = 1. By Lemma 3.1(c,f) and the fact
that x is a right 2-auto-Engel element, we have

HZ‘,O&], [Wy*laa_l]a] = [[33,04], [@y*lva_l]]a = [.23, [@y*%a_l]’ a]_a =1

Similarly [[y,a]™!, [py-1,a a] = 1 and hence [zy~*, o, 0] = 1. Also, one may

easily see that the subgroup of right 2-auto-Engel elements is characteristic. This
completes the proof. [
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The following lemma is needed in proving our next result (Theorem 3.5, below).

Lemma 3.3. Let G be a 2-auto-Engel group. Then for every z,y € G, a € Aut(Q)
and n € Z the following properties hold:

(a) [z,2°] = 1;
(b) [z,a"] = [z,a]" = [z",a];
(C) [xa, ]: [xvya];

() [, 2,y] = [0y, 2]
Proof. (a) As z is a left 2-auto-Engel element of G, we get [, z, ] = 1 and so that
[z, 2%] = 1.

(b) Since G is a 2-auto-Engel group, [z,a?] = [x,a]? for every 2 € G and
a € Aut(G). On the other hand, as in the proof of Lemma 3.1(c), [z,a] ™! = [z, a™!]
and by using induction, we get [x,a"] = [z,«a]™ for every n € Z. Also, part (a)
implies that [z71,a] = [z,a]7! and [z,a]" = (z7'a(z))" = 27 "a(z™) = [27, .

(c) By part (a), [zy~!, (zy~1)*] = 1. Therefore xy lz®y=* = z%y “zy~ L

Clearly 2=y~ ta%y = =1y~ %wy®. Thus [z%,y] = [z,y"].

(d) Since G is a 2-auto-Engel (and so 2-Engel) group, we have [z*,y,y] = 1.
Therefore by part (c), [z,y%,y] = 1 and similarly [y,z% 2] = 1. As the derived
subgroup of a 2-Engel group is abelian, we have [z~ y|*[x,y] = ([y~%, 2]¥[y, z]) ~*
and hence [o, 7,y] = [a, y, 2] L. O

Corollary 3.4. A group G is 2-auto-Engel if and only if G satisfies the equation
a(z)a™(z) = 22, for all z € G and o € Aut(G).

Proof. By the above lemma, 2-auto-Engel groups satisfy the identity [2%,a] =
[z,a?], which is clearly equal to the equation a(z)a™(x) = 22, for all z € G
and « € Aut(G). Conversely, suppose that G satisfies the latter identity which
implies that ([z,a]®[z,a])® " = ([z,a][z,a])* . Hence ([z,a]* )® = [z,a] and
so [z,a,a7tp,] = 1, where ¢, is the inner automorphism defined by z. If we
replace the automorphism a by @,a~!, then we have [z, ][z, p.]* ,a] = 1.
Hence, [x,a,a] = 1 and since a right 2-auto-Engel element is also a left one, G is a
2-auto-Engel group. O

As we have proved in Lemma 3.3(a), the automorphisms of a 2-auto-Engel group
G are all commuting automorphisms (see [4] for more details). Observe that the set
A(G) = {a € Aut(G) : zz® = 2%,z € G} of commuting automorphisms coinsides
the full automorphism group Aut(G) of G if and only if [o,z,z] = 1, for every
z € G and o € Aut(G). Also, [G,a] < Cg(a) for all @ € Aut(G), implies that G
is a 2-auto-Engel group (Lemma 3.1(a)). Hence, our work may be considered as a
special case of [4].

Recall that Levi [14] proved that a 2-Engel group is nilpotent of class at most 3
or equivalently v3(G) < Z(G). Moreover, he proved that if G is a 2-Engel group,
then [G’, G]? = 1. Now, we prove the following theorem.

Theorem 3.5. Let G be a 2-auto-Engel group. Then the following statements hold.
(a) K3(G), the second autocommutator subgroup of G, is central.
(b) Aut(G )QInn( ) fizes Ko(G) element-wise.
() [K(G), Gl = 1.
(d) If G has finite exponent, then exp(K(G)) = exp(Aut(G)). Moreover, if
every automorphism of G is central, then exp(Aut(QG)) divides exp(Z(G)).
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Proof. (a) Let z,y € G, o, 8 € Aut(G) and ¢, be the inner automorphism induced
by z. As G is a 2-auto-Engel group, by Lemma 3.1(f), [y, [¢a, a], 5] = 1. Clearly,
[y, [pz, @]] = [y, [z, a]] and so [z, o, y, 8] = 1. Hence, by Lemma 3.1(c), [z, o, 3,y] =
1. This shows that K>(G) < Z(G).

(b) By the above part, every inner automorphism of G fixes K3(G) element-
wise. Also, by Lemma 3.1(e), for every g € K5(G) and each v € Aut(G), we have
[9.7)? =1 and s0 g7 = g.

(c) Suppose that 2,y € G, a € Aut(G). Clearly,

[z, 0™y *eny 2]V [y, a7 o)t = 1.

By Lemma 3.1(c), [z,a"!,y,a] = [z,a7!,a,y]7t = 1. Therefore by part (a),
]

[z, a7, yl[a,y~ 1, 2]y, 271, a] = 1. Tt is easy to see that [x,a™!,y] = [y,27 1, a] =
3

[z,c,y]71. On the other hand, [,y !, 2] = [, z,y] = [x, o, y] L. Hence [z, o, 9]
1 and consequently [K(G),G]? = 1.

(d) From Lemma 3.3(b), it follows immediately that exp(Aut(G))|exp(K(G)).
Now, assume that exp(Aut(G)) =n (n > 2). By Lemma 3.3(b), the generators of
K (G) and hence the generators of K5(G) have order dividing n. By the first part
of the theorem, K3(G) < Z(G) and hence exp(K2(G)) divides n. Now observe that
[z, ], [y, 0]] € K(G) < [K(G),Aut(G)] = K2(G). On the other hand, by Lemma
3.1(d), [[x,al, [y, 8] = [z, o, [y, B]] = [x, a,y, B])?. Therefore by Lemma 3.3(a),

([z, olly, B1)" = [ly, B, [z, o]] [[y, B, [z, o)) ... [y, B]" ", [, o]
=[z,a,y,0 """V = 1.

Hence every element of K(G) has order dividing n so that exp(K(G)) divides
exp(Aut(G)). In particular, if every automorphism of G is central, then K(G) <

Z(G) and hence exp(Aut(G)) = exp(K(G)) divides exp(Z(G)). O
Clearly, if G is a 2-auto-Engel group such that Aut(G) = Aut(G)%Inn(G), then
K;3(G) =1.

The following corollary is an immediate consequence of Theorem 3.6.

Corollary 3.6. Let G be a 2-auto-Engel group such that 31|G|. Then

(a) K(G) < Z(G) and hence the group G is nilpotent of class at most 2;

(b) Aut.(G) = Aut(G) so that exp(Aut(G)) divides exp(Z(G));

(¢) G’ < L(G), where L(G) ={g € G : [g,a] = 1,a € Aut(G)} is the absolute
center of G.

The above corollary may be considered as a partial answer to the last question
of [6]. In fact, the structure of a 2-auto-Engel group may give some information
about the structure of its automorphism group.

For the next lemma, consider the following subgroups of Aut(G).

Caur(e)(K(G)) = {a € Aut(G) : [z, 0] = 1,2 € K(G)}
and
Var(G) = {a € Aut(G) : [z,a] € L(G),z € G},
which is called the autocentral automorphism group of G (see [16] for more detail).
Lemma 3.7. Let G be a 2-auto-Engel group. Then Aut(G) < Cpuya)(K(G)) N

Var(G). Moreover, if K(G) = Z(G), then Aut(G)’ is isomorphic to a subgroup of
Hom(G/Z(G), L(G)).
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Proof. Let x be an arbitrary element of G and «,3,7 € Aut(G). By Lemma
3.1(d,e), we have [z, o, [B,7]] = 1. Hence, Aut(G)’ fixes K(G) element-wise. Also,
Lemma 3.1(f) implies that Aut(G)’ < Var(G). Finally, if K(G) = Z(G), then by
[16, Proposition 2], Aut(G)’ is isomorphic to a subgroup of Hom(G/Z(G), L(G)),
as required. O

Theorem 3.8. Let G be a 2-auto-Engel group. Then Aut(G) is nilpotent of class
at most 2.

Proof. Lemma 3.1(d,f) implies that [z, [a, 3,7]] = [z,[o, 8],7]?> = 1, for all z € G
and a, 8,y € Aut(G). Therefore [, 3,7] = idg and hence Aut(G) is nilpotent of
class at most 2. (]

Kappe [13] proved that G is a 2-Engel group if and only if every maximal abelian
subgroup of G is normal. We prove that if G is a 2-auto-Engel group, then every
maximal abelian subgroup M of G is characteristic. We mention that the converse
is not true in general and the cyclic group of order 9 is a counterexample.

Theorem 3.9. Let G be a 2-auto-Engel group. Then every mazximal abelian sub-
group of G is characteristic.

Proof. Let M be a maximal abelian subgroup of the non-abelian group G. Clearly
M = Cg(M). Now, we show that for every o € Aut(G), the centralizer of « in
G, Cg(a) = {g € G : [g,a] = 1} is a characteristic subgroup of G. Let § be an
arbitrary automorphism of G and ¢ € Cg(a). Clearly,

—1
[B(c), a]ﬁ = le, O‘[O‘aﬁ_lﬂ = le, [avﬁ_l]] =l a, 5_1}2 =1

Therefore, 8(c) € Cg(a). Hence Cg(w) is a characteristic subgroup of G. Now, let

¢, be the inner automorphism induced by 2. Then M = Cq(M) = (), Calx) =

Muearr Ca(@z). Therefore M is a characteristic subgroup of G. O

4. THE STRUCTURE OF 2-AUTO-ENGEL 2-GROUPS

In this section, we discuss some results about 2-auto-Engel 2-groups. First, we
consider non-abelian 2-auto-Engel 2-groups, which are not purely non-abelian.

Theorem 4.1. Let G be a finite non-abelian 2-auto-Engel 2-group, which is not
purely non-abelian. Then G = H X Z4 such that H is a purely non-abelian 2-auto-
Engel 2-group with the following properties:
(a) LH)=Z(H)=H' =K(H) =%(H).
(b) exp(Z(H)) = exp(Aut(H)) = exp(H)/2 = 2.
(¢) H/N is elementary abelian for each normal subgroup N of H such that
[H : N] = 4. Equivalently, every normal second mazimal subgroup of H is
the intersection of two mazximal subgroups.

Moreover, a group G with the given properties is a 2-auto-Engel group.

Proof. Suppose G is a finite non-abelian 2-auto-Engel 2-group, which is not purely
non-abelian. Hence G = H x A for some non-trivial abelian group A. By the remark
in section 3, H is a purely non-abelian 2-auto-Engel 2-group and A = (a) is a cyclic
group of order 2 or 4. Also, by [2], for each automorphism ¢ of G, there exist
automorphisms « € Aut(H) and 5 € Aut(A) and homomorphisms v € Hom(H, A)
and ¢ € Hom(A, Z(H)) such that ¢(h,a’) = (h*a®®,a’®h?). Hence

[(h,a%),¢] = ([h,ala®, [a’, B")
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so that
1= [(h,a"), ¢, ¢] = ([[h,a]a”, a](la’, B]h7)°, [la’, B]R", B]([h, a]a’)")
= (la”, o](la’, BIA7)°, [h7, B)([h, ]a’)7).
Now, assume that 3 = id or the inverting automorphism. If 8 = id, then
1= [(h,a"), 0,0 = ([a”,a]k*°, ([, a]a™)").

If @ = id, then h7° = @Y = 1. If |a| = 2 and kY = o/, then a/° = 1, and by
assuming § # 1 we get j = 2 and so h” = 1. Hence v = 1, which a contradiction.
Thus we should have |a| = 4.

Since a’ € Kery and + varies over all homomorphisms in Hom(H, (a?)), it follows
that a® € ®(H). In particular, Qy(Z(H)) C L(H). Hence

Q2 (Z(H)) CO®(H)NL(H).
On the other hand, [H, «]” =1 for each « and , which implies that

K(H) C [ Ker(y) € ®(H).

Hence K(H) C ®(H).
If 8 is the inverting automorphism, then

[(h,a"), 0,0] = ([0, a)(@®h7)°, k> ([, a]a™)"),

which implies that h?Y = a?® = 1. Hence Imy C <a2> and either v = 1 or Kervy is
a maximal subgroup of H so that (| Kery = ®(H) (for each normal subgroup N of
H of index 4, H/N should be non-cyclic so that ®(H) € (\yqp, (.n)=4 V) Also,
Z(H) is an elementary abelian 2-group for (a?)? = 1 that is exp(Z(H)) = 2. This
also shows that

Z(H)=L(H)C ®(H).

Hence the first assertion follows.
Conversely, it is evident that a finite group G with the above properties is also
a 2-auto-Engel group. This completes the proof. ([

The following propositions gives criterions for recognition of some non-abelian
2-auto-Engel groups.

Proposition 4.2. Let G be a group whose center and automorphisms group are
elementary abelian 2-groups. Then G is a 2-auto-Engel group of nilpotency class 2.

Proof. Since Aut(G) is abelian, we have Aut.(G) = Cauy ) (Inn(G)) = Aut(G),
where Aut.(G) is the group of central automorphisms of G. Hence for every x €
G and every a € Aut(G), [z,a] € Z(G). As Aut(G) and Z(G) are elementary

abelian 2-groups, we have [z, @, a] = [r,a]72 = 1. Therefore G is a 2-auto-Engel
group. Moreover, since Inn(G) is abelian, G is nilpotent of class 2 and the proof is
complete. O

Proposition 4.3. Let G be a purely non-abelian 2-group such that G' = ®(G) and
Aut(G) is abelian. Then G is a 2-auto-Engel group.
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Proof. Since Aut(G) is abelian, Aut(G) = Aut.(G). Hence, by a result of Adney
and Yen [1], there is one-to-one correspondence

0:Aut(G) — Hom (&, Z(G))

a —  a,

where (gG’)¥ = g~1g® for all g € G. Now since G’ = ®(G), we know that G/G’
is an elementary abelian 2-group. Hence, for each o € Aut(G), the image of @
must be an elementary abelian 2-group, as well. This follows that Aut(G) is an
elementary abelian 2-group for Z(G) C G’ and hence

2 — —2
ga :g(gG/)Za(gG/)a =g
for all g € G and a € Aut(G).
Now, [g,,a] = [(¢gG")%, a]. Let z = (9G')*. Then g = (¢*)* = (22)* = x22°,
which implies that 2 = 27! = z as z has order < 2 being an image of &@. Therefore,

[9,,a] = [z,a] =1, as required, O

We conclude this section by giving some examples of purely non-abelian 2-auto-
Engel groups.

Example 2. The following family of 2-groups is constructed in [12]. Let G(n)
(n > 3) be the finite 2-group with the following presentation:
G(n) = (a1,...,an,b:at =a3=---=a}) =1,a>_, =V?,

[ala b] = 17 [anyb] =ay, [ai—la b] = a?,

[aj,ar] =1,3<i<n,1<j<k<n).
The group G(n) is of order 22" with exponent 4 whose center and automorphism
groups are isomorphic to Z5 and 2327 respectively. Therefore, by Proposition 4.2,
G(n) is a purely non-abelian 2-auto-Engel group for each n > 3.

Note that G(3) & (Z4 X Z4) X Z4 is the group (64, 68) in the GAP [7] small groups
library. There is yet another group of order 64, which is a non-abelian 2-auto-Engel
group, and has the following presentation (see [12]).

(a,b,c,d: a® =b* =c* = d* = [a,b] = [a,¢] = [a,d] = [b,c] = [*,d] =1,
[b,d] = ¢, [c,d] = a).

In the next example, we construct yet another family of infinitely many non-

abelian 2-auto-Engel 2-groups, which includes the above group (The group (64, 69)

of GAP small groups library which is isomorphic with (Z4 x Z4 X Zs) % Zg) and
has shorter presentation than the one given in [12].

Example 3. Let G,, (n > 2) be the finite 2-group with the following presentation:

Gn = (x,01,... 0y : 2* =2} = [;,0;] = 2223 .. .22 = [z,2,])° = 1,1 < 4,5 <n,
[2,2;) = 27,,1 <i<n).
Then, by Theorem 4.5, G, is a 2-auto-Engle group.
The proof of the following lemma is straightforward and we omit its proof.

Lemma 4.4. Consider the above group G,, (n > 2), then
(1) |Gn| =22 +1);
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(2) every element of Gy, can be uniquely written in the form 'z ... xir [z, z,)7,
where i,5 = 0,1 and iy,...,i, € {0,1,2,3};
(3) G = (13,22, [z, 20]) = 75
(4) Z(Gp) = ®(Gn) = Q(Gn) = G, x (23) =2 ZyT;
(5) Gn/G! =27y x 73 and G,/ Z(G,) = Z5H.
Theorem 4.5. The automorphism group of G,, (n > 2) is an elementary abelian
2-group of order 2(n+1)’

Proof. Clearly, G,, is a purely non-abelian group and H := (z1,..., %y, [, T,]) =
ZY§ % Zso is the unique (characteristic) abelian maximal subgroup of G,,. We use
the method of [12] to obtain the structure of Aut(G,,). First we construct two
descending sequences of characteristic subgroups of G, as follows:

Ko=H, Ki/K§—1 = Z(Gn/KZZ—ﬂ (I<i<n),
Lo=H, Li={h€ H:h*€[Gn,Li—1]} (1<i<n).

A simple calculation shows that

K; = <x1, . ,xn_i,x%_Hl, Tt [x,x”]> ,

L;= <x%, X Ty T, [x7xn]> )
Obviously,

K, ,NLi_1= <x%, e 7%2—1’11"%24-1, . ,xi, [z,zn]>
= (2i,2(Gn)) -
This shows that x; 'a(z;) € Z(G,), for all a € Aut(G,) and 1 < i < n. Now,
observe that G, = H (z) and «o(z) = zai' ...zl [z, z,])?, where j = 0,1 and
i1,...,10n € {0,1,2,3}. Hence
a(z?) = xQx?ilzg(iz_il) e xi(i"%"*l) [z, 2,] """
Clearly, a(x?) = 22 for i = 1,...,n, from which it follows that
afx)x? 22 = 1.
Thus
z?ilxg(h_il) .. .xi(i"fi"*l)[x, z,] 7" =0,

which implies that iy,...,i, are even. Therefore x la(x) € Z(G,) and conse-

quently every automorphism of G,, is central. Also, it is not difficult to see that
L(G,) = Z(G,) and exp(Aut(G,)) = 2. Hence, G,, is a 2-auto-Engel group. More-
over, |Aut(G,)| = [Hom (G, /G, Z(Gy))| = 21 as required. O

Example 4. The following group of [11] gives an instance of a group satisfying the
conditions of Proposition 4.3 and that it is not of the type described in Proposition
4.2. Let

G = (x1,22,23,Tq, Ts : x‘ll = x% = xg = xi = mg =1,
[21, x2] :»"U%a[fl,fﬂ?a] =
[x2,$3] = JJ%, [l‘g,l‘;;] =1

[$3,$4] = xzzla [$3,$5] = sz [IE4,.'E5] = 1>
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A simple verification shows that G is a purely non-abelian group of order 2%, Aut(G)
is elementary abelian of order 22, G’ = ®(G) is elementary abelian of order 2* and
Z(G) is a group of order 2° and exponent 4. Hence, by Proposition 4.3, G is a
2-auto-Engel group.

Acknowledgment. The authors would like to thank the referee whose suggestions
improved substantially the results of this paper.
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