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Abstract. Given a group G, an element x ∈ G and automorphism α ∈
Aut(G), the nth autocommutator [x,n α] is defined recursively by [x, α] =

x−1xα and [x,n α] = [[x,n−1 α], α] for all n > 1. The group G is said to be

n-auto-Engel if [x,n α] = [α,n x] = 1, for all x ∈ G and all α ∈ Aut(G), where
[α, x] = [x, α]−1. We study the structure of 2-auto-Engel groups and show

that 2-auto-Engel groups indeed satisfy the equation α(x)α−1(x) = x2, for all
x ∈ G and α ∈ Aut(G). Also, we give a precise description of all abelian 2-

auto-Engel groups of finite 2-rank as well as 2-auto-Engel 2-groups, which are

not purely non-abelian, and construct an infinite family of purely non-abelian
2-auto-Engel 2-groups.

1. Introduction

Let x1 and x2 be the elements of a given group G, then xx2
1 = x−1

2 x1x2 and
[x1, x2] = x−1

1 xx2
1 denote the conjugate of x1 by x2 and the commutator of x1 and

x2, respectively. As in Hegarty [8], the autocommutator of an element x ∈ G and
automoprhism α ∈ Aut(G) is defined by [x, α] = x−1xα. The same as for the
commutator subgroup, one may define the autocommutator subgroup of G in an
analogous way as follows:

K(G) = 〈[x, α] : x ∈ G,α ∈ Aut(G)〉 .
The notion of autocommutator subgroups have been already studied in [5, 8, 15].
For each element x ∈ G and automorphisms α1, . . . , αn ∈ Aut(G), we define the
autocommutator of x, α1, . . . , αn of weight n+ 1 (n ≥ 1), recursively by

[x, α1, . . . , αn] = [[x, α1, . . . , αn−1], αn].

Clearly the (n+ 1)st term of the lower central series of G, can be considered as

γn+1(G) = 〈[x, α1, . . . , αn] : x ∈ G,α1, . . . , αn ∈ Inn(G)〉 .
So we may define the nth autocommutator subgroup of G, as

Kn(G) = 〈[x, α1, α2, . . . , αn] : x ∈ G,α1, . . . , αn ∈ Aut(G)〉 .
One notes that, the nth autocommutator subgroup is a characteristic subgroup of
G containing γn+1(G), for all n ≥ 1. The following series of subgroups

G = K0(G) ≥ K(G) = K1(G) ≥ K2(G) ≥ · · · ≥ Kn(G) ≥ · · · ,
is called the lower autocentral series of G (see [15] for more details).

Let x be an element of G and α ∈ Aut(G). Then the autocommutator [x,n α]
(n ≥ 1) is defined inductively by [x,1 α] = [x, α] and [x,n α] = [[x,n−1 α], α], for
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n ≥ 2. The element x is called a right auto-Engel element, if for every α ∈ Aut(G),
there exists a natural number n = n(x, α) such that [x,n α] = 1. If n can be
chosen independent of α, then x is called a right n-auto-Engel element or simply a
bounded right auto-Engel element. We denote the sets of right auto-Engel elements
and bounded right auto-Engel elements of G by AR(G) and AR(G), respectively.

An element x is called a left auto-Engel element, if for every α ∈ Aut(G), there
exists a natural number n = n(x, α) such that [α,n x] = 1. Note that, the automor-
phism α appears on the left and [α, x] = [x, α]−1. If n can be chosen independent
of α, then x is called a left n-auto-Engel element or simply a bounded left auto-
Engel element. We denote the sets of left auto-Engel elements and bounded left
auto-Engel elements of G by AL(G) and AL(G), respectively.

Clearly, if α runs over the set of all inner automorphisms of G, then a right or
left auto-Engel element is a right or left Engel element, respectively [17].

The properties of Engel elements and Engel groups are studied by many authors,
see for instance [9, 13]. Kappe [13] proved that the set of all right 2-Engel elements
of a group forms a characteristic subgroup. Also, Levi [14] has shown that a 2-Engel
group is nilpotent of class at most 3. Moreover, it is known that for any 2-Engel
group G with finite exponent, we have exp(G′) = exp(G/Z(G)) (= exp(Inn(G))).

2. Auto-Engel elements and n-auto-Engel groups

For a given group G and automorphisms α and β of G, we set xαβ = (xα)β , for
all x ∈ G. Using the above notation, we have the following identities.

(a) [xy, α] = [x, α]y [y, α];
(b) [x, α−1] = ([x, α]−1)α

−1
;

(c) [x−1, α] = ([x, α]−1)x
−1

;
(d) [x, αβ] = [x, β][x, α]β = [x, β][x, α][x, α, β];
(e) [x, α]β = [xβ , αβ ],
(f) [x, α−1, β]α[α, β−1, x]β [β, x−1, α]x = 1.

The following relation holds between right and left auto-Engel elements.

Proposition 2.1. In any group G the inverse of a right n-auto-Engel element is a
left (n+1)-auto-Engel element, that is AR(G)−1 ⊆ AL(G) and AR(G)−1 ⊆ AL(G).

Proof. Let x be a right n-auto-Engel element and α be any automorphism of G.
Then by the above identities, [xα,n β] = [x,n βα

−1
]α = 1. So xα is also a right

n-auto-Engel element and hence a right n-Engel element of G. Therefore

1 = [xα,n x−1]x
−1

= [[xα, x−1],n−1 x
−1]x

−1
= [[x[x, α], x−1],n−1 x

−1]x
−1

= [[[x, α], x−1],n−1 x
−1]x

−1
= [[x, α],n x−1]x

−1

= [[x, α]x
−1
,n x
−1] = [[α, x−1],n x−1]

= [α,n+1 x
−1].

Hence x−1 is a left (n+1)-auto-Engel element of G. This argument also shows that
AR(G)−1 ⊆ AL(G). �

For a group G, if G = AR(G) then Proposition 2.1 implies that G = AL(G),
while the converse of the latter statement is not true in general. For example,
consider the cyclic group Z6 of order 6. Clearly, Z6 = AL(Z6). On the other hand, if
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α is the inverting automorphism of Z6, then one can easily see that [x,n α] = x4, for
each n ≥ 1. Therefore AR(Z6) ⊂ Z6. Hence, the following definition is meaningful.

Definition. A group G is called an n-auto-Engel group if [x,n α] = [α,n x] = 1, for
all x ∈ G and α ∈ Aut(G). Also, G is called an auto-Engel group if G = AR(G).

By the above discussion, the cyclic group Z6 is not an auto-Engel group. Now,
we give some examples of auto-Engel groups.

Example 1. (a) If Z2n =
〈
x : x2n

= 1
〉

is the cyclic group of order 2n and α
is an automorphism of Z2n , given by α : x 7−→ xr (r odd), then it is easy
to see that [xk,n α] = xk(r−1)n

= 1 for each k ∈ {1, . . . , 2n}. Thus Z2n is
an n-auto-Engel group.

(b) Let Z2∞ =
〈
x1, x2, . . . : x2

1 = 1, x2
i+1 = xi, i ≥ 2

〉
be the Prüfer 2-group.

Then Aut(Z2∞) = {α : xi −→ xni
i , ni+1 ≡ ni (mod 2i), i ≥ 1}. Hence

[xi,i α] = 1 for all α ∈ Aut(Z2∞) and i ≥ 1, which implies that Z2∞ is an
auto-Engel group. However, Z2∞ is not n-auto-Engel group for all n ≥ 1
since [xn+1,n α] = x

(−2)n

n+1 = x
(−1)n

1 6= 1 if α is the inverting automorphism
of Z2∞ .

(c) If D2n =
〈
x, y : x2n−1

= y2 = 1, xy = x−1
〉

, is the dihedral group of order
2n (n ≥ 3), then

Aut(D2n) =
{
αij :

x 7→ xi

y 7→ xjy
, i is odd and i, j ∈ {1, . . . , 2n−1}

}
,

is the automorphism group ofD2n . Since i is odd, we can see that [x,n αij ] =
x(i−1)n

= 1 and [y,n αij ] = x−j(i−1)n−1
= 1. Also [αij ,n x] = [αij ,n y] = 1,

from which it follows that [xky,n αij ] = [αij ,n xky] = 1, for all i, j, k ∈
{1, . . . , 2n−1} (i is odd). Therefore the dihedral group of order 2n (n ≥ 3)
is an n-auto-Engel group but it is not an (n − 1)-auto-Engel group. We
note that D8 is a 2-Engel group but it is not a 2-auto-Engel group.

The following theorem gives a description of abelian auto-Engel groups.

Theorem 2.2. Let G be an abelian group.
(1) If G is an auto-Engel group, then G is a 2-group.
(2) If G has finite 2-rank, then G is an auto-Engel group if and only if G is

the direct product of cyclic or quasi-cyclic groups of different cardinalities.
Moreover, if G is a finite auto-Engel group, then G is an mn-auto-Engel
group, where m = r2(G) is the 2-rank of G and n = log2 exp(G).

Proof. (1) If α is the inverting automorphism of G and x ∈ G, then [x,n α] = x(−2)n

.
By the assumption, there exists n = n(x, α) such that [x,n α] = 1, which implies
that x is a 2-element. Therefore G is a 2-group.

(2) If G has finite 2-rank, then by [18, 4.3.13], G is a direct product of finitely
many cyclic or quasi-cyclic groups. If G has a homocyclic direct factor 〈a〉 × 〈b〉
and α is the automorphism of G, which sends a, b to ab−1 and a, respectively, then
[a,3 α] = a and hence [a,n α] 6= 1 for all n ≥ 1, which is a contradiction. Similarly,
G has no direct factor of type Z2∞ × Z2∞ . Hence, G is a direct product of finitely
many cyclic or quasi-cyclic groups with different cardinalities.

Conversely, suppose that G is a direct product of finitely many cyclic or qua-
sicyclic groups with different cardinalities. Then G = Z × H, where Z = 1 or
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Z =
〈
x1, x2, . . . : x2

1 = 1, x2
i+1 = xi, i ≥ 1

〉
is the Prüfer 2-group, and H is a finite

abelian 2-group. First we show that Z is a characteristic subgroup of G. If Z = 1,
then there is nothing to prove. Hence, we assume that Z 6= 1. Let exp(H) = 2n

and α ∈ Aut(G). Then α(xi+n) = x
li+n

i+n hi for some hi ∈ H and integer li+n, for all
i ≥ 1. Thus α(xi) = α(x2n

i+n) = x
2nli+n

i+n ∈ Z, which implies that α(Z) ⊆ Z and Z is
a characteristic subgroup of G. If H = 1, then by Example 1(b), we are done. Now,
suppose that H 6= 1 and let K = Ωn+1(Z)H = 〈y1〉 × · · · × 〈ym〉, where |yi| = 2ni

and n1 > · · · > nm. If α ∈ Aut(G), then

α(yi) = y
2n1−niai,1
1 . . . y

2ni−1−niai,i−1
i−1 y

ai,i

i ti,

where ai,j is integer, ai,i is odd and ti ∈ 〈yi+1, . . . , ym〉. Thus |[y1, α]| < |y1| and if
|[yj ,j α]| < |yj | for j = 1, . . . , i− 1, then |[yi,i α]| < |yi|. Because

[yi,i α] =
i−1∏
j=1

[yj ,i−1 ]2
nj−niai,j [yai,i−1

i ti,i−1 α],

and we have |[yai,i−1
i ti,i−1 α]| < |yi| and for j < i,∣∣∣[yj ,i−1 α]2

nj−niai,j

∣∣∣ ≤ ∣∣∣[yj ,j α]2
nj−niai,j

∣∣∣ < ∣∣∣y2nj−niai,j

j

∣∣∣ ≤ |yi|.
Thus |[k,m α]| < |y| for all k ∈ K, from which it follows that [k,mn α] = 1. Therefore
G is an auto-Engel group. �

In the following we shall obtain a sharp bound n = n(G) for a finite auto-Engel
abelian group G to be an n-auto-Engel group.

Lemma 2.3. If G = Z2n ⊕ · · · ⊕ Z2, then G is (2n− 1)-auto-Engel. Furthermore,
G is not (2n− 2)-auto-Engel.

Proof. If α ∈ Aut(G), then by using the heights and orders of elements of G, it
follows that

α(1, 0, 0, 0, . . . , 0) = (a1,1, a1,2, . . . , a1,n),

α(0, 1, 0, 0, . . . , 0) = (2a2,1, a2,2, a2,3, . . . , a2,n),

α(0, 0, 1, 0, . . . , 0) = (22a3,1, 2a3,2, a3,3, . . . , a3,n),
...

α(0, 0, 0, 0, . . . , 1) = (2n−1an,1, 2n−2an,2, . . . , 2an,n−1, an,n)

for some integers ai,j (1 ≤ i, j ≤ n), where ai,i is odd for i = 1, . . . , n. Moreover,
all automorphisms of G do arise in this manner. As an aside, this does allow one
to compute that |Aut(G)| = 2

1
6 (n−1)n(2n+5).

Now, assuming that for some x ∈ G and α ∈ Aut(G) that

[x,k α] = (2mk,1b1, 2mk,2b2, . . . , 2mk,nbn)
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we can compute

[x,k+1 α] = (2mk,1b1(a1,1 − 1) + 2mk,2+1b2a2,1 + 2mk,2+2b3a3,1 + · · ·+ 2mk,n+n−1bnan,1,

= 2mk,1b1a1,1 + 2mk,2b2(a2,2 − 1) + 2mk,3+1b3a3,2 + · · ·+ 2mk,n+n−2bnan,2,

...

= 2mk,1b1a1,n + 2mk,2b2a2,n + · · ·+ 2mk,n−1bn−1an−1,n + 2mk,nbn(an,n − 1).

Thus, it easily follows that

mk+1,1 ≥ min{mk,1 + 1,mk,2 + 1,mk,3 + 2, . . . ,mk,n + n− 1}

and for j ≥ 2

mk+1,j ≥ min{mk,1, . . . ,mk,j−1,mk,j + 1,mk,j+1 + 1, . . . ,mk,n + n− j}.

Therefore mk,j ≥ hk,j for all integers k and j = 1, . . . , n, in which h is a function
defined by

h0,j = 0, for j = 1, . . . , n,

hk+1,1 = min{hk,1 + 1, hk,2 + 1, . . . , hk,n + n− 1}, and for j ≥ 2

hk+1,j = min{hk,1, . . . , hk,j−1, hk,j + 1, hk,j+1 + 1, . . . , hk,n + n− j}.

Using mathematical induction it is straightforward to show that

hk,j = max
{⌊

k − j + 2
2

⌋
, 0
}

for all positive integers k and j = 1, . . . , n. Hence,

m2n−1,j ≥ h2n−1,j ≥
⌊

(2n− 1)− j + 2
2

⌋
≥ n− j + 1,

which implies that [x,2n−1 α] = (0, . . . , 0), as required.
Finally, let x = (1, 0, 0, . . . , 0) and define the automorphism α of G by

α(1, 0, 0, 0, . . . , 0) = (1, 1, 0, 0, . . . , 0),

α(0, 1, 0, 0, . . . , 0) = (2, 1, 0, 0, . . . , 0),

α(0, 0, 1, 0, . . . , 0) = (0, 0, 1, 0, . . . , 0),
...

α(0, 0, 0, 0, . . . , 1) = (0, 0, 0, 0, . . . , 1).

A simple computation shows that

[(1, 0, . . . , 0),2n−2 α] = (2n−1, 0, . . . , 0) 6= (0, 0, . . . , 0),

from which the result follows. �

Theorem 2.4. Let G be a finite abelian group which is the direct product of cyclic
2-groups having distinct orders so that exp(G) = 2n. Then G is (2n−1)-auto-Engel.

Proof. Since G is isomorphic to a direct factor of the group Z2n ⊕ · · · ⊕ Z2, the
result follows by Lemma 2.3. �
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3. 2-auto-Engel elements and 2-auto-Engel groups

If G is a 1-auto-Engel group, then [x, α] = [α, x] = 1, for all x ∈ G and α ∈
Aut(G). Hence Aut(G) = 1 and consequently G ∼= 1 or Z2. Observe that the class
of 1-Engel groups coincides with the class of abelian groups.

It is an unsolved problem that whether the four subsets R(G), R(G), L(G) and
L(G) are subgroups of G? (see [17]). The same problem also appears in the case
of auto-Engel elements.

The properties of 2-Engel groups have been already studied (see for example
[3, 10, 13]). In this section, we concentrate on the same properties for 2-auto-Engel
groups.

Remark. Let G be a finite 2-auto-Engel abelian group. If α is the inverting auto-
morphism of G, then x4 = [x, α, α] = 1, for every x ∈ G. Hence exp(G) divides 4 so
that G is the direct sum of cyclic groups of order 2 and 4, whence by Theorem 2.2,
G ∼= 1,Z2,Z4 or Z4×Z2. If G = 〈x〉× 〈y〉 ∼= Z4×Z2 and α is the automorphism of
G which sends x and y to xy and x2y, respectively, then [x, α, α] = x2 6= 1, which
is a contradiction. Thus G ∼= 1,Z2 or Z4.

The next lemma will be used frequently in the proof of our main theorems.

Lemma 3.1. Let x be a right 2-auto-Engel element and α, β and γ be arbitrary
automorphisms of a group G. Then

(a) x is a left 2-auto-Engel element;
(b) xAut(G) = 〈xα : α ∈ Aut(G)〉 is abelian and its elements are right (so left)

2-auto-Engel elements;
(c) [x, α, β] = [x, β, α]−1;
(d) [x, [α, β]] = [x, α, β]2;
(e) [x, α, β, γ]2 = 1;
(f) [x, [α, β], γ] = 1.

Proof. The proof is straightforward (see [15, Theorem 7.13]). �

Theorem 3.2. The set of all right 2-auto-Engel elements of a group G forms a
characteristic subgroup.

Proof. Let x and y be right 2-auto-Engel elements of a group G, α be any auto-
morphism and ϕy be the inner automorphism induced by y. Then

[xy−1, α, α] = [[x, α]y
−1

[y−1, α], α]

= [[x, α][y, α]−1, ϕyαϕy−1 ]y
−1

= [[x, α][y, α]−1, [ϕy−1 , α−1]α]y
−1

= ([[x, α], [ϕy−1 , α−1]α][y,α]−1
[[y, α]−1, [ϕy−1 , α−1]α])y

−1
.

Now, we show that [[x, α], [ϕy−1 , α−1]α] = 1. By Lemma 3.1(c,f) and the fact
that x is a right 2-auto-Engel element, we have

[[x, α], [ϕy−1 , α−1]α] = [[x, α], [ϕy−1 , α−1]]α = [x, [ϕy−1 , α−1], α]−α = 1.

Similarly [[y, α]−1, [ϕy−1 , α−1]α] = 1 and hence [xy−1, α, α] = 1. Also, one may
easily see that the subgroup of right 2-auto-Engel elements is characteristic. This
completes the proof. �
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The following lemma is needed in proving our next result (Theorem 3.5, below).

Lemma 3.3. Let G be a 2-auto-Engel group. Then for every x, y ∈ G, α ∈ Aut(G)
and n ∈ Z the following properties hold:

(a) [x, xα] = 1;
(b) [x, αn] = [x, α]n = [xn, α];
(c) [xα, y] = [x, yα];
(d) [α, x, y] = [α, y, x]−1.

Proof. (a) As x is a left 2-auto-Engel element of G, we get [α, x, x] = 1 and so that
[x, xα] = 1.

(b) Since G is a 2-auto-Engel group, [x, α2] = [x, α]2 for every x ∈ G and
α ∈ Aut(G). On the other hand, as in the proof of Lemma 3.1(c), [x, α]−1 = [x, α−1]
and by using induction, we get [x, αn] = [x, α]n for every n ∈ Z. Also, part (a)
implies that [x−1, α] = [x, α]−1 and [x, α]n = (x−1α(x))n = x−nα(xn) = [xn, α].

(c) By part (a), [xy−1, (xy−1)α] = 1. Therefore xy−1xαy−α = xαy−αxy−1.
Clearly x−αy−1xαy = x−1y−αxyα. Thus [xα, y] = [x, yα].

(d) Since G is a 2-auto-Engel (and so 2-Engel) group, we have [xα, y, y] = 1.
Therefore by part (c), [x, yα, y] = 1 and similarly [y, xα, x] = 1. As the derived
subgroup of a 2-Engel group is abelian, we have [x−α, y]x[x, y] = ([y−α, x]y[y, x])−1

and hence [α, x, y] = [α, y, x]−1. �

Corollary 3.4. A group G is 2-auto-Engel if and only if G satisfies the equation
α(x)α−1(x) = x2, for all x ∈ G and α ∈ Aut(G).

Proof. By the above lemma, 2-auto-Engel groups satisfy the identity [x2, α] =
[x, α2], which is clearly equal to the equation α(x)α−1(x) = x2, for all x ∈ G
and α ∈ Aut(G). Conversely, suppose that G satisfies the latter identity which
implies that ([x, α]x[x, α])α

−1
= ([x, α][x, α]α)α

−1
. Hence ([x, α]α

−1
)x = [x, α] and

so [x, α, α−1ϕx] = 1, where ϕx is the inner automorphism defined by x. If we
replace the automorphism α by ϕxα

−1, then we have [[x, α−1][x, ϕx]α
−1
, α] = 1.

Hence, [x, α, α] = 1 and since a right 2-auto-Engel element is also a left one, G is a
2-auto-Engel group. �

As we have proved in Lemma 3.3(a), the automorphisms of a 2-auto-Engel group
G are all commuting automorphisms (see [4] for more details). Observe that the set
A(G) = {α ∈ Aut(G) : xxα = xαx, x ∈ G} of commuting automorphisms coinsides
the full automorphism group Aut(G) of G if and only if [α, x, x] = 1, for every
x ∈ G and α ∈ Aut(G). Also, [G,α] ≤ CG(α) for all α ∈ Aut(G), implies that G
is a 2-auto-Engel group (Lemma 3.1(a)). Hence, our work may be considered as a
special case of [4].

Recall that Levi [14] proved that a 2-Engel group is nilpotent of class at most 3
or equivalently γ3(G) ≤ Z(G). Moreover, he proved that if G is a 2-Engel group,
then [G′, G]3 = 1. Now, we prove the following theorem.

Theorem 3.5. Let G be a 2-auto-Engel group. Then the following statements hold.
(a) K2(G), the second autocommutator subgroup of G, is central.
(b) Aut(G)2Inn(G) fixes K2(G) element-wise.
(c) [K(G), G]3 = 1.
(d) If G has finite exponent, then exp(K(G)) = exp(Aut(G)). Moreover, if

every automorphism of G is central, then exp(Aut(G)) divides exp(Z(G)).
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Proof. (a) Let x, y ∈ G, α, β ∈ Aut(G) and ϕx be the inner automorphism induced
by x. As G is a 2-auto-Engel group, by Lemma 3.1(f), [y, [ϕx, α], β] = 1. Clearly,
[y, [ϕx, α]] = [y, [x, α]] and so [x, α, y, β] = 1. Hence, by Lemma 3.1(c), [x, α, β, y] =
1. This shows that K2(G) ≤ Z(G).

(b) By the above part, every inner automorphism of G fixes K2(G) element-
wise. Also, by Lemma 3.1(e), for every g ∈ K2(G) and each γ ∈ Aut(G), we have
[g, γ]2 = 1 and so gγ

2
= g.

(c) Suppose that x, y ∈ G, α ∈ Aut(G). Clearly,

[x, α−1, y]α[α, y−1, x]y[y, x−1, α]x = 1.

By Lemma 3.1(c), [x, α−1, y, α] = [x, α−1, α, y]−1 = 1. Therefore by part (a),
[x, α−1, y][α, y−1, x][y, x−1, α] = 1. It is easy to see that [x, α−1, y] = [y, x−1, α] =
[x, α, y]−1. On the other hand, [α, y−1, x] = [α, x, y] = [x, α, y]−1. Hence [x, α, y]3 =
1 and consequently [K(G), G]3 = 1.

(d) From Lemma 3.3(b), it follows immediately that exp(Aut(G))| exp(K(G)).
Now, assume that exp(Aut(G)) = n (n ≥ 2). By Lemma 3.3(b), the generators of
K(G) and hence the generators of K2(G) have order dividing n. By the first part
of the theorem, K2(G) ≤ Z(G) and hence exp(K2(G)) divides n. Now observe that
[[x, α], [y, β]] ∈ K(G)′ ≤ [K(G),Aut(G)] = K2(G). On the other hand, by Lemma
3.1(d), [[x, α], [y, β]] = [x, α, [y, β]] = [x, α, y, β]2. Therefore by Lemma 3.3(a),

([x, α][y, β])n = [[y, β], [x, α]] [[y, β]2, [x, α]] . . . [[y, β]n−1, [x, α]]

= [x, α, y, β]−n(n−1) = 1.

Hence every element of K(G) has order dividing n so that exp(K(G)) divides
exp(Aut(G)). In particular, if every automorphism of G is central, then K(G) ≤
Z(G) and hence exp(Aut(G)) = exp(K(G)) divides exp(Z(G)). �

Clearly, if G is a 2-auto-Engel group such that Aut(G) = Aut(G)2Inn(G), then
K3(G) = 1.

The following corollary is an immediate consequence of Theorem 3.6.

Corollary 3.6. Let G be a 2-auto-Engel group such that 3 - |G|. Then
(a) K(G) ≤ Z(G) and hence the group G is nilpotent of class at most 2;
(b) Autc(G) = Aut(G) so that exp(Aut(G)) divides exp(Z(G));
(c) G′ ≤ L(G), where L(G) = {g ∈ G : [g, α] = 1, α ∈ Aut(G)} is the absolute

center of G.

The above corollary may be considered as a partial answer to the last question
of [6]. In fact, the structure of a 2-auto-Engel group may give some information
about the structure of its automorphism group.

For the next lemma, consider the following subgroups of Aut(G).

CAut(G)(K(G)) = {α ∈ Aut(G) : [x, α] = 1, x ∈ K(G)}
and

Var(G) = {α ∈ Aut(G) : [x, α] ∈ L(G), x ∈ G},
which is called the autocentral automorphism group of G (see [16] for more detail).

Lemma 3.7. Let G be a 2-auto-Engel group. Then Aut(G)′ ≤ CAut(G)(K(G)) ∩
Var(G). Moreover, if K(G) = Z(G), then Aut(G)′ is isomorphic to a subgroup of
Hom(G/Z(G), L(G)).
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Proof. Let x be an arbitrary element of G and α, β, γ ∈ Aut(G). By Lemma
3.1(d,e), we have [x, α, [β, γ]] = 1. Hence, Aut(G)′ fixes K(G) element-wise. Also,
Lemma 3.1(f) implies that Aut(G)′ ≤ Var(G). Finally, if K(G) = Z(G), then by
[16, Proposition 2], Aut(G)′ is isomorphic to a subgroup of Hom(G/Z(G), L(G)),
as required. �

Theorem 3.8. Let G be a 2-auto-Engel group. Then Aut(G) is nilpotent of class
at most 2.

Proof. Lemma 3.1(d,f) implies that [x, [α, β, γ]] = [x, [α, β], γ]2 = 1, for all x ∈ G
and α, β, γ ∈ Aut(G). Therefore [α, β, γ] = idG and hence Aut(G) is nilpotent of
class at most 2. �

Kappe [13] proved that G is a 2-Engel group if and only if every maximal abelian
subgroup of G is normal. We prove that if G is a 2-auto-Engel group, then every
maximal abelian subgroup M of G is characteristic. We mention that the converse
is not true in general and the cyclic group of order 9 is a counterexample.

Theorem 3.9. Let G be a 2-auto-Engel group. Then every maximal abelian sub-
group of G is characteristic.

Proof. Let M be a maximal abelian subgroup of the non-abelian group G. Clearly
M = CG(M). Now, we show that for every α ∈ Aut(G), the centralizer of α in
G, CG(α) = {g ∈ G : [g, α] = 1} is a characteristic subgroup of G. Let β be an
arbitrary automorphism of G and c ∈ CG(α). Clearly,

[β(c), α]β
−1

= [c, α[α, β−1]] = [c, [α, β−1]] = [c, α, β−1]2 = 1.

Therefore, β(c) ∈ CG(α). Hence CG(α) is a characteristic subgroup of G. Now, let
ϕx be the inner automorphism induced by x. Then M = CG(M) =

⋂
x∈M CG(x) =⋂

x∈M CG(ϕx). Therefore M is a characteristic subgroup of G. �

4. The structure of 2-auto-Engel 2-groups

In this section, we discuss some results about 2-auto-Engel 2-groups. First, we
consider non-abelian 2-auto-Engel 2-groups, which are not purely non-abelian.

Theorem 4.1. Let G be a finite non-abelian 2-auto-Engel 2-group, which is not
purely non-abelian. Then G ∼= H × Z4 such that H is a purely non-abelian 2-auto-
Engel 2-group with the following properties:

(a) L(H) = Z(H) = H ′ = K(H) = Φ(H).
(b) exp(Z(H)) = exp(Aut(H)) = exp(H)/2 = 2.
(c) H/N is elementary abelian for each normal subgroup N of H such that

[H : N ] = 4. Equivalently, every normal second maximal subgroup of H is
the intersection of two maximal subgroups.

Moreover, a group G with the given properties is a 2-auto-Engel group.

Proof. Suppose G is a finite non-abelian 2-auto-Engel 2-group, which is not purely
non-abelian. Hence G = H×A for some non-trivial abelian group A. By the remark
in section 3, H is a purely non-abelian 2-auto-Engel 2-group and A = 〈a〉 is a cyclic
group of order 2 or 4. Also, by [2], for each automorphism ϕ of G, there exist
automorphisms α ∈ Aut(H) and β ∈ Aut(A) and homomorphisms γ ∈ Hom(H,A)
and δ ∈ Hom(A,Z(H)) such that ϕ(h, ai) = (hαaiδ, aiβhγ). Hence

[(h, ai), ϕ] = ([h, α]aiδ, [ai, β]hγ)
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so that

1 = [(h, ai), ϕ, ϕ] = ([[h, α]aiδ, α]([ai, β]hγ)δ, [[ai, β]hγ , β]([h, α]aiδ)γ)

= ([aiδ, α]([ai, β]hγ)δ, [hγ , β]([h, α]aiδ)γ).

Now, assume that β = id or the inverting automorphism. If β = id, then

1 = [(h, ai), ϕ, ϕ] = ([aiδ, α]hγδ, ([h, α]aiδ)γ).

If α = id, then hγδ = aiδγ = 1. If |a| = 2 and hγ = aj , then ajδ = 1, and by
assuming δ 6= 1 we get j = 2 and so hγ = 1. Hence γ = 1, which a contradiction.
Thus we should have |a| = 4.

Since aδ ∈ Kerγ and γ varies over all homomorphisms in Hom(H,
〈
a2
〉
), it follows

that aδ ∈ Φ(H). In particular, Ω2(Z(H)) ⊆ L(H). Hence

Ω2(Z(H)) ⊆ Φ(H) ∩ L(H).

On the other hand, [H,α]γ = 1 for each α and γ, which implies that

K(H) ⊆
⋂
γ

Ker(γ) ⊆ Φ(H).

Hence K(H) ⊆ Φ(H).
If β is the inverting automorphism, then

[(h, ai), ϕ, ϕ] = ([aiδ, α](a2ihγ)δ, h−2γ([h, α]aiδ)γ),

which implies that h2γ = a2δ = 1. Hence Imγ ⊆
〈
a2
〉

and either γ = 1 or Kerγ is
a maximal subgroup of H so that

⋂
Kerγ = Φ(H) (for each normal subgroup N of

H of index 4, H/N should be non-cyclic so that Φ(H) ⊆
⋂
NEH,[H:N ]=4N). Also,

Z(H) is an elementary abelian 2-group for (aδ)2 = 1 that is exp(Z(H)) = 2. This
also shows that

Z(H) = L(H) ⊆ Φ(H).

Hence the first assertion follows.
Conversely, it is evident that a finite group G with the above properties is also

a 2-auto-Engel group. This completes the proof. �

The following propositions gives criterions for recognition of some non-abelian
2-auto-Engel groups.

Proposition 4.2. Let G be a group whose center and automorphisms group are
elementary abelian 2-groups. Then G is a 2-auto-Engel group of nilpotency class 2.

Proof. Since Aut(G) is abelian, we have Autc(G) = CAut(G)(Inn(G)) = Aut(G),
where Autc(G) is the group of central automorphisms of G. Hence for every x ∈
G and every α ∈ Aut(G), [x, α] ∈ Z(G). As Aut(G) and Z(G) are elementary
abelian 2-groups, we have [x, α, α] = [x, α]−2 = 1. Therefore G is a 2-auto-Engel
group. Moreover, since Inn(G) is abelian, G is nilpotent of class 2 and the proof is
complete. �

Proposition 4.3. Let G be a purely non-abelian 2-group such that G′ = Φ(G) and
Aut(G) is abelian. Then G is a 2-auto-Engel group.
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Proof. Since Aut(G) is abelian, Aut(G) = Autc(G). Hence, by a result of Adney
and Yen [1], there is one-to-one correspondence

θ : Aut(G) −→ Hom
(
G
G′ , Z(G)

)
α 7−→ α,

where (gG′)α = g−1gα for all g ∈ G. Now since G′ = Φ(G), we know that G/G′

is an elementary abelian 2-group. Hence, for each α ∈ Aut(G), the image of α
must be an elementary abelian 2-group, as well. This follows that Aut(G) is an
elementary abelian 2-group for Z(G) ⊆ G′ and hence

gα
2

= g(gG′)2α(gG′)α
2

= g

for all g ∈ G and α ∈ Aut(G).
Now, [g, α, α] = [(gG′)α, α]. Let z = (gG′)α. Then g = (gα)α = (xz)α = xzzα,

which implies that zα = z−1 = z as z has order ≤ 2 being an image of α. Therefore,
[g, α, α] = [z, α] = 1, as required, �

We conclude this section by giving some examples of purely non-abelian 2-auto-
Engel groups.

Example 2. The following family of 2-groups is constructed in [12]. Let G(n)
(n ≥ 3) be the finite 2-group with the following presentation:

G(n) = 〈a1, . . . , an, b : a2
1 = a4

2 = · · · = a4
n = 1, a2

n−1 = b2,

[a1, b] = 1, [an, b] = a1, [ai−1, b] = a2
i ,

[aj , ak] = 1, 3 ≤ i ≤ n, 1 ≤ j < k ≤ n〉.

The group G(n) is of order 22n with exponent 4 whose center and automorphism
groups are isomorphic to Zn2 and Zn2

2 , respectively. Therefore, by Proposition 4.2,
G(n) is a purely non-abelian 2-auto-Engel group for each n ≥ 3.

Note that G(3) ∼= (Z4oZ4)oZ4 is the group (64, 68) in the GAP [7] small groups
library. There is yet another group of order 64, which is a non-abelian 2-auto-Engel
group, and has the following presentation (see [12]).

〈a, b, c, d : a2 = b4 = c4 = d2 = [a, b] = [a, c] = [a, d] = [b, c] = [c2, d] = 1,

[b, d] = c2, [c, d] = a〉.

In the next example, we construct yet another family of infinitely many non-
abelian 2-auto-Engel 2-groups, which includes the above group (The group (64, 69)
of GAP small groups library which is isomorphic with (Z4 × Z4 × Z2) o Z2) and
has shorter presentation than the one given in [12].

Example 3. Let Gn (n ≥ 2) be the finite 2-group with the following presentation:

Gn = 〈x, x1, . . . , xn : x4 = x4
i = [xi, xj ] = x2x2

1 . . . x
2
n = [x, xn]2 = 1, 1 ≤ i, j ≤ n,

[x, xi] = x2
i+1, 1 ≤ i < n〉.

Then, by Theorem 4.5, Gn is a 2-auto-Engle group.

The proof of the following lemma is straightforward and we omit its proof.

Lemma 4.4. Consider the above group Gn (n ≥ 2), then
(1) |Gn| = 22(n+1);
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(2) every element of Gn can be uniquely written in the form xixi11 . . . xinn [x, xn]j,
where i, j = 0, 1 and i1, . . . , in ∈ {0, 1, 2, 3};

(3) G′n =
〈
x2

2, . . . , x
2
n, [x, xn]

〉 ∼= Zn2 ;
(4) Z(Gn) = Φ(Gn) = Ω1(Gn) = G′n ×

〈
x2

1

〉 ∼= Zn+1
2 ;

(5) Gn/G
′
n
∼= Z4 × Zn2 and Gn/Z(Gn) ∼= Zn+1

2 .

Theorem 4.5. The automorphism group of Gn (n ≥ 2) is an elementary abelian
2-group of order 2(n+1)2 .

Proof. Clearly, Gn is a purely non-abelian group and H := 〈x1, . . . , xn, [x, xn]〉 ∼=
Zn4 × Z2 is the unique (characteristic) abelian maximal subgroup of Gn. We use
the method of [12] to obtain the structure of Aut(Gn). First we construct two
descending sequences of characteristic subgroups of Gn as follows:

K0 = H, Ki/K
2
i−1 = Z(Gn/K2

i−1) (1 ≤ i ≤ n),

L0 = H, Li = {h ∈ H : h2 ∈ [Gn, Li−1]} (1 ≤ i ≤ n).

A simple calculation shows that

Ki =
〈
x1, . . . , xn−i, x

2
n−i+1, . . . , x

2
n, [x, xn]

〉
,

Li =
〈
x2

1, . . . , x
2
i , xi+1, . . . , xn, [x, xn]

〉
.

Obviously,

Kn−i ∩ Li−1 =
〈
x2

1, . . . , x
2
i−1, xi, x

2
i+1, . . . , x

2
n, [x, xn]

〉
= 〈xi, Z(Gn)〉 .

This shows that x−1
i α(xi) ∈ Z(Gn), for all α ∈ Aut(Gn) and 1 ≤ i ≤ n. Now,

observe that Gn = H 〈x〉 and α(x) = xxi11 . . . xinn [x, xn]j , where j = 0, 1 and
i1, . . . , in ∈ {0, 1, 2, 3}. Hence

α(x2) = x2x2i1
1 x

2(i2−i1)
2 . . . x2(in−in−1)

n [x, xn]−in .

Clearly, α(x2
i ) = x2

i for i = 1, . . . , n, from which it follows that

α(x)2x2
1 · · ·x2

n = 1.

Thus
x2i1

1 x
2(i2−i1)
2 . . . x2(in−in−1)

n [x, xn]−in = 0,

which implies that i1, . . . , in are even. Therefore x−1α(x) ∈ Z(Gn) and conse-
quently every automorphism of Gn is central. Also, it is not difficult to see that
L(Gn) = Z(Gn) and exp(Aut(Gn)) = 2. Hence, Gn is a 2-auto-Engel group. More-
over, |Aut(Gn)| = |Hom(Gn/G′n, Z(Gn))| = 2(n+1)2 , as required. �

Example 4. The following group of [11] gives an instance of a group satisfying the
conditions of Proposition 4.3 and that it is not of the type described in Proposition
4.2. Let

G = 〈x1, x2, x3, x4, x5 : x4
1 = x4

2 = x4
3 = x4

4 = x2
5 = 1,

[x1, x2] = x2
1, [x1, x3] = x2

3, [x1, x4] = 1, [x1, x5] = x2
1,

[x2, x3] = x2
2, [x2, x4] = 1, [x2, x5] = x2

4,

[x3, x4] = x2
4, [x3, x5] = z2

4 , [x4, x5] = 1〉.
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A simple verification shows that G is a purely non-abelian group of order 29, Aut(G)
is elementary abelian of order 220, G′ = Φ(G) is elementary abelian of order 24 and
Z(G) is a group of order 25 and exponent 4. Hence, by Proposition 4.3, G is a
2-auto-Engel group.

Acknowledgment. The authors would like to thank the referee whose suggestions
improved substantially the results of this paper.
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