ProGAN
StyleGAN
StyleGAN2
StylegGAN2-ADA

(NVIDIA)



slides shamelessly and mindlessly stolen from

https://towardsdatascience.com/progan-how-nvidia-generated-

Images-of-unprecedented-quality-51c98ec2cbd?,

https://towardsdatascience.com/explained-a-style-based-
generator-architecture-for-gans-generating-and-tuning-
realistic-6¢b2be0f431,

https://towardsdatascience.com/stylegan2-ace6d3da405d,

and the original papers
nttps://arxiv.org/abs/1710.10196
nttps://arxiv.org/abs/1812.04948
nttps://arxiv.org/abs/1912.04958
nttps://arxiv.org/abs/2006.06676



https://towardsdatascience.com/progan-how-nvidia-generated-images-of-unprecedented-quality-51c98ec2cbd2
https://towardsdatascience.com/progan-how-nvidia-generated-images-of-unprecedented-quality-51c98ec2cbd2
https://towardsdatascience.com/explained-a-style-based-generator-architecture-for-gans-generating-and-tuning-realistic-6cb2be0f431
https://towardsdatascience.com/explained-a-style-based-generator-architecture-for-gans-generating-and-tuning-realistic-6cb2be0f431
https://towardsdatascience.com/explained-a-style-based-generator-architecture-for-gans-generating-and-tuning-realistic-6cb2be0f431
https://towardsdatascience.com/stylegan2-ace6d3da405d
https://arxiv.org/abs/1710.10196
https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1912.04958
https://arxiv.org/abs/2006.06676

Why StyleGAN in
particular?

e The talk presents a dozen or so engineering tricks
employed by the creators of the very successful
generative model StyleGAN (Karras et al, NVIDIA).

e |n themselves, probably not too many of these tricks
would deserve extra attention from us when looking at the
broader picture of deep learning methods.

e But together they give a diverse cross-section of useful
techniques that we can employ when working with image
data, and especially when generating image data.















Not just faces









Negative cherry-picking
(StyleGAN1)












GAN reminder

Z

Random code Generator neural network

l Discriminator neural network

G X

Real sample

| |

X' — D D

Generated sample

D(x) Dx) Loss

Pr( real | fake ) Pr(real | real )




Feature map reminder

I

Image

‘\\\"‘
R “
43\\

//’ -
— \\{571 . L 64x7x7
28 x 28 32x14x 14 64 x 14 x 14
32 x 28 x 28 . 128 x10

o adding = 1 ] 3136 x 128
padding = 1, P g=1, Max pooling
kernel = 3x3, Max pooling kernel =_3X3’ Kernel =2x2,  Fjatten

stride = 1 Kernel = 2x2, St”df =1 Stride = 2
+ Stride = 2
RelU RelU

This image explains recognition, but feature maps
for generators are fundamentally the same:
(height x width x channels) sized 3D arrays.



ProGAN
(progressive

growing of GANSs)
2017 November



&~ N

4x4
X' X
Training time: 0 days
4x4 resolution
Zz = random code
Generator
e X = real image
qp % Discriminator
57 x' = generated image

The pdf is not animated, see the animation here.


https://cdn-images-1.medium.com/max/1600/1*tUhgr3m54Qc80GU2BkaOiQ.gif

Generator ‘BB
H||||9|||||9||m_...9 JHL
4x4 | \8x8 | | o
16x16 \, \,

%
k/2 x k/2 I
kx k @ — X

N

" Upscale 2x

No learnable weights, uses nearest neighbor algorithm

B Dense Layer

Used in input layer only (1 0()
~ Convolutional Layer

Filters are 3x3, stride = 1, padding = 'same'

[J Leaky ReLU 4

Activation function

z = random code

~ Pixelnorm
An alternative to batch normalization

! To-RGB Layer

A 1x1 convolutional layer that outputs 3 channels

x' = generated image
a = extent to which last layer is "faded in"




Leaky RelLU activation function




Pixel Normalization

Instead of using batch normalization, as is commonly done, the authors used
pixel normalization. This “pixelnorm” layer has no trainable weights. It
normalizes the feature vector in each pixel to unit length, and is applied after
the convolutional layers in the generator. This is done to prevent signal

magnitudes from spiraling out of control during training.

J

ly
VETCyali +e

The values of each pixel (x, y) across C channels are normalized to a fixed length. Here, a is the input tensor, b is
the output tensor, and € is a small value to prevent dividing by zero.




Generator ‘BB
H||||9|||||9||m_...9 JHL
4x4 | \8x8 | | o
16x16 \, \,

%
k/2 x k/2 I
kx k @ — X

N

" Upscale 2x

No learnable weights, uses nearest neighbor algorithm

B Dense Layer

Used in input layer only (1 0()
~ Convolutional Layer

Filters are 3x3, stride = 1, padding = 'same'

[J Leaky ReLU 4

Activation function

z = random code

~ Pixelnorm
An alternative to batch normalization

! To-RGB Layer

A 1x1 convolutional layer that outputs 3 channels

x' = generated image
a = extent to which last layer is "faded in"




Fade In



Generator ‘BB
H||||9|||||9||m_...9 JHL
4x4 | \8x8 | | o
16x16 \, \,

%
k/2 x k/2 I
kx k @ — X

N

" Upscale 2x

No learnable weights, uses nearest neighbor algorithm

B Dense Layer

Used in input layer only (1 0()
~ Convolutional Layer

Filters are 3x3, stride = 1, padding = 'same'

[J Leaky ReLU 4

Activation function

z = random code

~ Pixelnorm
An alternative to batch normalization

! To-RGB Layer

A 1x1 convolutional layer that outputs 3 channels

x' = generated image
a = extent to which last layer is "faded in"




Discriminator

X = input image

o o = controls "fading in" of top layer
h\'g
B - - - e" II%D(X)
/N
4x4
8x8
16x16
k/2 x k/2
 (1-x)
B Dense Layer ™ From-RGB Layer
Used for output layers only A 1x1 convolutional layer
@ Minibatch Standard Deviation Layer [ Downscale 2x
No learnable parameters Uses average pooling, no learned parameters
[JLeaky ReLU = Convolutional Layer
Activation function Filters are 3x3, stride = 1, padding = 'same'



Minibatch standard
deviation

The detalls don’t matter much, but the core idea is this:
We'd like to avoid the generator creating beautiful but
identical pictures. (See mode collapse.)

S0 we score how diverse our generated minibatch is,
based on a higher layer activation map of the
discriminator.

We add this score as another loss term.



Gradient regularization
Lossg = —D(x')
GP = ([vD(az’ + (1 - a)2))], — 1)
Lossp = —D(z)+ D(2') + A« GP

e Don’t mind the particular formula (WGAN-GP, Gulrajani et
al), here is the intuition:

e Usually our optimizer calculates gradients of the loss with
respect to the neural weights, so we don’t have to deal with
gradients explicitly.

 This time we calculate gradients of the loss with respect to
the input.

 We use this to quantify how smooth the input-output
mapping of our network is.

 The optimizer then calculates the gradients of this
smoothness metric with respect to neural weights, as usual.



StyleGAN
2018 December



22.1N0S

destination

pardoo s9[A1S as1e0))




Source A

¢ 92IN0S WOIJ SI[AIS ASIROD) ¢ 92IN0S WoIJ SA[AIS o%vaz g woij aur




Intermediate latent
space W



(a) Distribution of (b) Mapping from (¢) Mapping from
features 1n training set Z to features WV to features



Random vector
(Latent Code)

Normalize

Mapping
Network

FC

FC

FC

512X1

FC

FC

FC

FC

FC

Synthesis
Network

4x4

1024x1024

512X1




Adaptive Instance
Normalization




Batch normalization reminder

Ensure the output statistics of alayer are fixed.




Style transfer




AdalN for style transfer

t = AdaIn(f(c),f(s))

f(s))




Latent
Code

512X1

AdalN in StyleGAN

Normalize

v

FC

|

FC

|

FC

|

FC

1

FC

1

FC

1

FC

|

pr— g— p— [— p— pe— g— [—

FC

bt R? e d L L G

v

512X1

Synthesis
Network

|

4x4

| Upsample |

Ada

IN

| Conv

3x3 |

I

AdalN

8x8

Y

v

'

16%16

1024x1024

n channels
Oo
c
dE g3
W hTz | l
A Learned affine " Normalize channel
transformation _(by its mean and variance)
Q
| D
2xn . . \ p
| Ys,i , Scale and bias
Yb,i ~ channel
X; — /,I.(X i.)
AdaIN(x;,y) = ys.i + ¥b.is
(J’(X,j)




Latent
Code

Normalize

512X1

3| |3/13[18[1E[18[13S3| <

512X1

Noise Input

Noise

Synthesis
Network
A 4x4 < B <
Upsample B
—A—> Learned per-
channel scale
| AdIaIN |
Conv 3x3
-A—> @‘ B |«
AdalN
8x8
Y
A—> 1024x1024 < B [«







Random vector
(Latent Code)

Generator

512X1

[\N:mnlize
Mapping

lnetwork f A style ASIN
1

Synthesis network g

Const 4x4x512

" B

Noise

FC Coova3 1| | = [€ - mmmmmmmmmmmmmmmmm s m e en el Training---------
+ AR Ad:lN :
F.C 4x4
FC l
a2 |_Upsample |
53 Conv 3x3 . Pr(?GAN
= e B Discriminator
s A5 AdaIN
1
Conv 3x3
A AdaIN - _
l 8x8 N i
x X Loss
<
N
! . |
1024x1024 — L
Real Sample

—>» Downscaling

N

(e.g. WGAN-GP)

»



Truncation trick in W

(it’s shrinking, really)






StyleGAN2
2019 December

(very briefly)



Getting rid of progressive
growing: Multi-Scale Gradients

B ax1conv
. (4 x 4) ConvT

. (3x 3) Conv

_ MinibatchStd
. (4 x4) Conv
. (2 x 2) Upsample . Fully Connected

Combine Function

8x8xc2

4x4xcl III
g'

latent vector

gjun

. (2 x 2) Average Pool (downsample)

16 x 16 xc3

Real Images downsampled to various resolutions
16 x 16 8x8 4x4

highest
resolution
samples

6x16 xc3'
8x8xc2' Critic-loss
EEe III 4x4xcl function
I dk-2 d<-! dx

16 x 16

8x8

4x4




Adaptive Discriminator
Augmentation,

2020 June

(super briefly)



Latents Reals  Latents
¥ ¥
G {’ G
7 37 1
Aug Aug Aug
I I I
D - D

/) (@)

()

e

C

D loss

)




Pixel blitting Color transformations

x-flip Brightness
(¢]
90. Contrast
rotations
Integer Luma
translation flip
Hue
rotation
Isotropic a
scaling A
Saturation
Arbitrary
rotation
Anisotropic Additive
scaling RGB noise

Fractional q a a
translation A - a : Cutout



Homework:
latent space arithmetics

https://colab.research.google.com/drive/
10xRHEfaZvgC CkbSFctTzjrCLrh JsHE



https://colab.research.google.com/drive/1OxRHEfaZvqC_CkbSFctTzjrCLrh_JsHE
https://colab.research.google.com/drive/1OxRHEfaZvqC_CkbSFctTzjrCLrh_JsHE

