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Why StyleGAN in
particular?

e The talk presents a dozen or so engineering tricks
employed by the creators of the very successful
generative model StyleGAN (Karras et al, NVIDIA).

e |n themselves, probably not too many of these tricks
would deserve extra attention from us when looking at the
broader picture of deep learning methods.

e But together they give a diverse cross-section of useful
techniques that we can employ when working with image
data, and especially when generating image data.















Not just faces









Negative cherry-picking
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Feature map reminder
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This image explains recognition, but feature maps
for generators are fundamentally the same:
(height x width x channels) sized 3D arrays.
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The pdf is not animated, see the animation here.
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Leaky RelLU activation function




Pixel Normalization

Instead of using batch normalization, as is commonly done, the authors used
pixel normalization. This “pixelnorm” layer has no trainable weights. It
normalizes the feature vector in each pixel to unit length, and is applied after
the convolutional layers in the generator. This is done to prevent signal

magnitudes from spiraling out of control during training.
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The values of each pixel (x, y) across C channels are normalized to a fixed length. Here, a is the input tensor, b is
the output tensor, and € is a small value to prevent dividing by zero.
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Fade In
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Discriminator

X = input image

o o = controls "fading in" of top layer
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Minibatch standard
deviation

The detalls don’t matter much, but the core idea is this:
We'd like to avoid the generator creating beautiful but
identical pictures. (See mode collapse.)

S0 we score how diverse our generated minibatch is,
based on a higher layer activation map of the
discriminator.

We add this score as another loss term.



Gradient regularization
Lossg = —D(x')
GP = ([vD(az’ + (1 - a)2))], — 1)
Lossp = —D(z)+ D(2') + A« GP

e Don’t mind the particular formula (WGAN-GP, Gulrajani et
al), here is the intuition:

e Usually our optimizer calculates gradients of the loss with
respect to the neural weights, so we don’t have to deal with
gradients explicitly.

 This time we calculate gradients of the loss with respect to
the input.

 We use this to quantify how smooth the input-output
mapping of our network is.

 The optimizer then calculates the gradients of this
smoothness metric with respect to neural weights, as usual.
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Intermediate latent
space W



(a) Distribution of (b) Mapping from (¢) Mapping from
features 1n training set Z to features WV to features
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Adaptive Instance
Normalization




Batch normalization reminder

Ensure the output statistics of alayer are fixed.




Style transfer




AdalN for style transfer

t = AdaIn(f(c),f(s))

f(s))
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Truncation trick in W

(it’s shrinking, really)






StyleGAN2
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(very briefly)



Getting rid of progressive
growing: Multi-Scale Gradients
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Adaptive Discriminator
Augmentation,

2020 June

(super briefly)
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Pixel blitting Color transformations

x-flip Brightness
(¢]
90. Contrast
rotations
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rotation
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scaling RGB noise

Fractional q a a
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Homework:
latent space arithmetics

https://colab.research.google.com/drive/
10xRHEfaZvgC CkbSFctTzjrCLrh JsHE



https://colab.research.google.com/drive/1OxRHEfaZvqC_CkbSFctTzjrCLrh_JsHE
https://colab.research.google.com/drive/1OxRHEfaZvqC_CkbSFctTzjrCLrh_JsHE

