Rényi Institute has concluded contract negotiations with the European Community, the project started on September 1, 2005.
Our main fields of research are:- Packing and covering
- Graph drawing
- Affine invariant structures and inequalities
- Theory of algorithms
Short Term Positions
If you are interested in a visiting position, please contact Gábor Fejes Tóth. We expect applications from experienced researchers of the above fields. Employment conditions are those of Marie Curie Fellowships: the minimum length of employment is 2 months. Allowances (living, mobility, travel) are paid according to Marie Curie rates.
Conferences and Workshops Organized Within the Project
- Algorithmic and Combinatorial Geometry, June 15 - 19, 2009
- Workshop in honour of the 70th birthday of Károly Böröczky February 27, 2009
- Workshop on Combinatorial Geometry, February 6, 2009
- Discrete and Convex Geometry Workshop, July 4 - 6, 2008
- Intuitive geometry, June 30 - July 4, 2008
- Geometry Fest June 11-15, 2007
- Tudományos ülésszak Fejes Tóth László tiszteletére Nov 9, 2005
Articles, Preprints Related to the Project
- Gábor Fejes Tóth: A Note on Covering by Convex Bodies preprint
- Imre Bárány, Attila Pór, Pavel Valtr: Paths with no small angles pdf
- Gábor Fejes Tóth: Best Partial Covering of a Convex Domain by Congruent Circles of a Given Total Area pdf
- K.J. Böröczky, B. Csikós: A new version of L. Fejes Tóth's Moment Theorem. pdf Studia Sci. Hung., accepted.
- K.J. Böröczky; R. Schneider: Mean width of circumscribed random polytopes. pdf, Canadian Math. Bull., accepted.
- K.J. Böröczky, L. M. Hoffmann, D. Hug: Expectation of mean projections of inscribed random polytopes. pdf, Periodica Hungarica, accepted.
- K.J. Böröczky; R. Schneider: Stable determination of convex bodies from sections. pdf, Studia Sci. Math. Hung., accepted.
- K. Böröczky, Jr.: Parkettázások, elhelyezések és fedések a hiperbolikus térben. pdf (in Hungarian), Matematikai Lapok, accepted.
- K. Böröczky, Jr.; G. Wintsche: Extremal mean width when covering the one-skeleton. pdf . Bull. London Math. Soc., accepted.
- K.J. Böröczky; R. Schneider: A characterization of the duality mapping for convex bodies. pdf, GAFA, 18 (2008), 657-667.
- K. Böröczky; K.J. Böröczky; C. Schütt; G. Wintsche: Convex bodies of minimal volume, surface area and mean width with respect to thin shells. pdf Canadian Journal of Mathematics, 60 (2008), 3-32.
- K.J. Böröczky; Salvador S. Gomez; P. Tick: Volume approximation of smooth convex bodies by three-polytopes of restricted number of edges. pdf , Monats. Math., 153 (2008), 23-48.
- K. Böröczky; K. Böröczky, Jr.: Polytopes of minimal volume with respect to a shell - another characterization of the octahedron and the icosahedron pdf . Disc. Comp. Geom., 38 (2007), 231-241.
- K. Böröczky, Jr., I.Z. Ruzsa: Note on an inequality of Wegner. pdf . Disc. Comp. Geom., 37 (2007), 245-249.
- K.J. Böröczky; J. Pach; G. Tóth: Planar crossing numbers of graphs embeddable in another surface. pdf International Journal of Foundations of Computer Science, 17 (2006), 1005-1017.
Management reports
- Most recent (submitted 2008)