
This article was originally published in a journal published by
Elsevier, and the attached copy is provided by Elsevier for the

author’s benefit and for the benefit of the author’s institution, for
non-commercial research and educational use including without

limitation use in instruction at your institution, sending it to specific
colleagues that you know, and providing a copy to your institution’s

administrator.

All other uses, reproduction and distribution, including without
limitation commercial reprints, selling or licensing copies or access,

or posting on open internet sites, your personal or institution’s
website or repository, are prohibited. For exceptions, permission

may be sought for such use through Elsevier’s permissions site at:

http://www.elsevier.com/locate/permissionusematerial

http://www.elsevier.com/locate/permissionusematerial


Aut
ho

r's
   

pe
rs

on
al

   
co

py

Topology and its Applications 154 (2007) 2434–2448

www.elsevier.com/locate/topol

Countably compact hyperspaces and Frolík sums

István Juhász a,1, Jerry E. Vaughan b,∗

a Alfréd Rényi Institute of Mathematics, P.O. Box 127, 1364 Budapest, Hungary
b Department of Mathematics and Statistics, University of North Carolina at Greensboro, Greensboro, NC 27402, USA

Received 26 January 2007; accepted 30 March 2007

Abstract

Let H 0(X) (H(X)) denote the set of all (nonempty) closed subsets of X endowed with the Vietoris topology. A basic problem
concerning H(X) is to characterize those X for which H(X) is countably compact. We conjecture that u-compactness of X for
some u ∈ ω∗ (or equivalently: all powers of X are countably compact) may be such a characterization. We give some results that
point into this direction.

We define the property R(κ): for every family {Zα : α < κ} of closed subsets of X separated by pairwise disjoint open sets and

any family {kα : α < κ} of natural numbers, the product
∏

α<κ Z
kα
α is countably compact, and prove that if H(X) is countably

compact for a T2-space X then X satisfies R(κ) for all κ . A space has R(1) iff all its finite powers are countably compact, so this
generalizes a theorem of J. Ginsburg: if X is T2 and H(X) is countably compact, then so is Xn for all n < ω. We also prove that,
for κ < t, if the T3 space X satisfies a weak form of R(κ), the orbit of every point in X is dense, and X contains κ pairwise disjoint
open sets, then Xκ is countably compact. This generalizes the following theorem of J. Cao, T. Nogura, and A. Tomita: if X is T3,
homogeneous, and H(X) is countably compact, then so is Xω.

Then we study the Frolík sum (also called “one-point countable-compactification”) F(Xα : α < κ) of a family {Xα : α < κ}. We
use the Frolík sum to produce countably compact spaces with additional properties (like first countability) whose hyperspaces are
not countably compact. We also prove that any product

∏
α<κ H 0(Xα) embeds into H(F(Xα : α < κ)).
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1. Introduction

For a topological space X, let H(X) denote the set of all nonempty closed subsets of X with the Vietoris topology.
A subbase for the Vietoris topology consists of sets of the form U+,U− where U is open in X and

U+ = {
C ∈ H(X): C ⊂ U

}
and U− = {

C ∈ H(X): C ∩ U �= ∅}
.
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Thus a base for the Vietoris topology on H(X) consists of all sets of the form

〈U0, . . . ,Un〉 =
{
C ∈ H(X): C ⊂

⋃
i�n

Ui and C ∩ Ui �= ∅ for all i � n

}
,

where the Ui are open subsets of X. The space H(X) is called the hyperspace of X (for example, see [22,24,6]).
Some authors (e.g., Kuratowski [22]) include the empty set as a member of their hyperspace. We let H 0(X) denote

the set of all closed subsets of X with the Vietoris topology. Thus H 0(X) = H(X) ∪ {∅} and the empty set is an
isolated point in H 0(X).

Other common notation for the hyperspaces are 2X , exp(X), and CL(X). In this paper we do not assume any
separation axioms except where specifically stated.

The results in this paper derived from the question: What relations exist between the countable compactness of
X and H(X)? This question was studied by J. Ginsburg [11, p. 199] who proved the following two theorems: (1) if
X is u-compact (for any u ∈ ω∗) then H(X) is u-compact, hence countably compact, and (2) if H(X) is countably
compact, then every finite power of X is countably compact. Ginsburg also proved the converse of (1) assuming T2,
however, no separation axioms are needed: if (yn) is a sequence in X then ({yn}) is a sequence in H(X), and any
point y ∈ C = u-limit ({yn}) is easily seen to be a u-limit of (yn). Thus for all spaces X, X is u-compact if and only
if H(X) is u-compact.

One question we considered, but could not fully answer, asks “if H(X) is countably compact must X be u-compact
for some u?” By a theorem of Ginsburg and Saks [12, Theorem 2.6], this is equivalent to asking whether Xκ is
countably compact for all κ . We obtain some partial information on this question by proving that if H(X) is countably
compact, then the product of any finite powers of closed subspaces of X that are separated by disjoint open sets is
countably compact (Theorem 2.18). This generalizes the result (2) of Ginsburg.

Cao, Nogura and Tomita considered a specific question of Ginsburg: What relations exist between the countable
compactness of Xω and H(X) [11, 3.2]? They prove that if X is regular, homogeneous and H(X) is countably
compact, then Xω is countably compact [3, 3.1]. Motivated by their paper, we extend this result (see Theorem 2.23)
and other results concerning products.

In the first part of Section 2, leading up to Theorem 2.18, we consider products of totally countably compact spaces.
We prove that the product of less than n (where n is the Novak number of ω∗) totally countably compact spaces is
countably compact (see Theorem 2.5). This generalizes several known results.

In Section 3 we study a construction first used by Z. Frolík [10], and later by others, which we call the Frolík sum
(see 3.1). We show that there is a close relationship between the countable compactness of the product of a family of
spaces and that of the hyperspace of their Frolík sum. Among other results, we prove that for any family of T2 spaces
{Xα: α < κ}, the product

∏
α<κ H(Xα) can be embedded as a closed subspace in the hyperspace of the Frolík sum of

the family. This generalizes to all “countable compactness type” properties the following result of Cao, Nogura, and
Tomita:

Theorem 1.1. (See [3].) If the hyperspace of the Frolík sum of a family of T2 spaces {Xα: α < κ} is countably compact,
then so is the product

∏
α<κ Xα .

We recall a few terms used in this paper. A space is called good provided it is a countably compact, locally
countable, T3-space (hence first countable) [20]. For a family of spaces {Xα: α < κ}, ⊕

α<κ Xα denotes the disjoint
topological sum of the family (see [6, 2.2]). The set of natural numbers is denoted by ω, and the cardinality of the
continuum is denoted by c. The cardinality of a set X is denoted by |X|. A sequence s in a set X is a function
s :ω → X, which we also denote by (sn).

2. Clustering families of sequences

Recall that for an ultrafilter u ∈ ω∗ = βω \ ω and a sequence s :ω → X in a topological space X, a point x ∈ X is
called a u-limit of s (denoted x = u lim s) provided s−1(U) ∈ u for every neighborhood U of x. A space X is called
u-compact provided every sequence in X has a u-limit in X. If X is T2 then a sequence can have at most one u-limit
point (see [2]). Clearly, any accumulation point of a sequence s is the u-limit of s for some u ∈ ω∗.
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Definition 2.1. Let S = {sα: α < κ} be a family of sequences (more formally, for each α < κ there is a space Xα such
that sα :ω → Xα). We say that S is clustering provided there exists u ∈ ω∗ such that sα has a u-limit in Xα for all
α < κ .

For what we called clustering, it may be reasonable to use a term like “simultaneously u-clustering”, but we prefer
the shorter term.

Clustering of a family of sequences arises naturally in the study of limits of sequences in products. Let s :ω →∏
α<κ Xα be a sequence in a product of spaces, and let sα = πα ◦ s for all α < κ , where the πα denote the usual projec-

tion maps (thus sα :ω → Xα). Then the family S = {sα: α < κ} is clustering if and only if the original sequence s has
a cluster point, or equivalently a u-limit in the product for some u ∈ ω∗. Hence a product space

∏
α<κ Xα is countably

compact if and only if every family of sequences S = {sα: α < κ} such that sα :ω → Xα is clustering. Moreover,
a space X is u-compact for some u ∈ ω∗ if and only if the family S = Xω of all sequences in X clusters. With this in
mind me make the following definition.

Definition 2.2. A space X satisfies property Q(κ) provided every family S = {sα: α < κ} of sequences in X is
clustering.

Since a space X satisfies property Q(κ) if and only if Xκ is countably compact, it is not entirely necessary to
introduce Definition 2.2. However, Q(κ) is defined on X, rather than Xκ , which is useful. Moreover, we shall define
and use below a property wR(κ), which is a natural weakening of Q(κ).

Definition 2.3. A tower (of height κ) on ω∗ is a strictly decreasing family of clopen sets {Wα: α < κ} such that
T = ⋂{Wα: α < κ} is nowhere dense in ω∗. The set T is then called a t-set on ω∗ (or more precisely a t(κ)-set).
The cardinal t is the smallest height of a tower in ω∗ (see [4] or [27]). The cardinal n is defined to be the smallest
cardinality of a family of nowhere dense subsets of ω∗ which covers ω∗ [1].

Definition 2.4. A space is called sequentially compact (respectively, totally countably compact (cf. [28, Section 7]))
provided every sequence in X has a subsequence that is convergent (respectively, is contained in a compact set).

R. Frič and P. Vojtáš [7, p. 103] and independently P. Nyikos, J. Pelant and P. Simon (unpublished) proved that
the product of fewer than n sequentially compact spaces is countably compact. Using essentially the same proof, we
extend this to

Theorem 2.5. Let κ < n and let S = {sα: α < κ} with sα :ω → Xα be a family of sequences such that Xα is totally
countably compact for all α < κ . Then S = {sα: α < κ} is clustering.

Proof. For each α < κ put

Dα = {
D ∈ [ω]ω: sα(D) is contained in a compact subset of Xα

}
.

Then by totally countably compact, D∗
α = {D∗: D ∈ Dα} is a π -base for ω∗; hence

⋃
D∗

α is an open dense subset
of ω∗. By definition of n there exists u ∈ ⋂{⋃D∗

α: α < κ}. Let α < κ , we show that sα has a u-limit in Xα . Since
u ∈ ⋃

D∗
α we may pick D ∈Dα such that D ∈ u. By definition of Dα , there exists a compact set K ⊂ Xα such that

sα(D) ⊂ K ⊂ Xα . If sα has no u-limit in K , then by compactness, there exist finitely many open sets {Ui : i < n}
covering K such that s−1

α (Ui) /∈ u for each i < n. Put U = ⋃{Ui : i < n}. Then s−1
α (U) /∈ u and sα(D) ⊂ K ⊂ U .

This implies D ⊂ s−1
α (U) /∈ u which contradicts that D ∈ u. �

By what we said above, the following corollary is actually an equivalent reformulation of Theorem 2.5.

Corollary 2.6. If κ < n, then the product of any family {Xα: α < κ} of totally countably compact spaces is countably
compact.

Since t < n [16, 4.11], the previous corollary also improves the following result.
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Corollary 2.7. (See [28, Theorem 3.3(C)].) If {Xα: α < t} is a family of totally countably compact spaces then∏
α<t Xα is countably compact.

Corollary 2.8. If |X|ω < n and X is totally countably compact, then X is u-compact for some u ∈ ω∗.

We also obtain a short proof of the following known result:

Corollary 2.9. (See [28, Proposition 3.5].) [t = c] If X is totally countably compact with |X| � c then X is u-compact
for some u ∈ ω∗ (hence H(X) is u-compact and therefore countably compact).

Proof. Since t < n, the result follows from Corollary 2.8 (and Ginsburg’s result mentioned in Section 1). �
Example 2.10. The strict inequality “<” in Theorem 2.5 and Corollary 2.6 cannot be improved to “�”, moreover the
assumption t = c cannot be dropped in Corollary 2.9.

Proof. In [23] it was proved that if T is a t-set in ω∗, then the associated Franklin–Rajagopalan space X(T ) is
sequentially compact but not u-compact for any u ∈ T (more precisely: the identity sequence on ω has no u-limit in
X(T ) for any u ∈ T ). There are models of S. Hechler (see [23] and [15]) in which there exists a family F =F0 ∪F1
of towers, with F0 = {Tα: α < ω2} a family of t(ω1)-sets, and F1 = {Sα: α < ω1} a family of t(ω2)-sets such that ω∗
is covered by F . In these models, we have t = ω1 < n = ω2 � c, and {X(Tα): α < ω2} ∪ {X(Sα): α < ω1} is a family
of n-many sequentially compact spaces whose product is not countably compact. Regarding Corollary 2.9, the Frolík
sum X = F(X(T ): T ∈F) of these spaces (for the definition of Frolík sum see 3.1) is sequentially compact, satisfies
|X| = n = ω2 � c, and X is not u-compact for any u ∈ ω∗. �

We now make use of the notion of clustering families of sequences to obtain a suitable weakening of property
Q(κ). We start by considering certain special types of families of sequences in a space.

Definition 2.11. A family S = {Sα: α < κ} of finite sets of sequences in X is said to be dispersed in X if there exists a
family U = {Uα: α < κ} of pairwise disjoint open sets such that clX(s(ω)) ⊂ Uα whenever s ∈ Sα and α < κ. We say
that S is dispersed by U . If each Sα consists of a single sequence sα , we say the family of sequences S = {sα: α < κ}
is dispersed.

Now we give our main definitions in this section.

Definition 2.12. Let κ be a (finite or infinite) cardinal number. A space X is said to satisfy property R(κ) (respectively,
wR(κ)) provided for every dispersed family S = {Sα: α < κ} of finite sets of sequences in X (respectively, S =
{sα: α < κ} of sequences in X), the family

⋃
S (respectively, S) is clustering.

The assumption in the above definition of R(κ) (or wR(κ)) can be weakened slightly to a mod finite condition:

Lemma 2.13. A space X satisfies R(κ) if and only if for every family S = {Sα: α < κ} of finite sets of sequences in
X, if there exists a family {Uα: α < κ} of pairwise disjoint open sets such that

(1) Fα = {n ∈ ω: s(n) /∈ Uα for some s ∈ Sα} is finite for all α < κ , and
(2) clX({s(n): n ∈ ω \ Fα}) ⊂ Uα whenever s ∈ Sα and α < κ ,

then
⋃
S clusters in X.

Proof. Let S = {Sα: α < κ} be a family of finite sets of sequences in X and {Uα: α < κ} a pairwise disjoint family
of open sets that satisfies (1) and (2), i.e., S is dispersed mod finite in U . For each s ∈ Sα let mα ∈ ω \ Fα , and define

s̃(n) =
{

s(mα) if n ∈ Fα,

s(n) if n ∈ ω \ Fα.
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Then the family {{s̃: s ∈ Sα}: α < κ} is dispersed in U ; so by R(κ) there is u ∈ ω∗ such that every sequence s̃ has a
u-limit. Since s̃ and s differ only on a finite set, every s has a u-limit. The converse is trivial. �

Recalling again that a family of sequences clusters if and only if the appropriate sequence in the product of the
target spaces does, we obtain the following alternative (and perhaps more attractive) characterizations of the properties
wR(κ) and R(κ).

Proposition 2.14. Property wR(κ) (respectively, R(κ)) is equivalent to the following: For every family {Zα: α < κ}
of closed subsets of X separated by pairwise disjoint open sets (and any family {kα: α < κ} of natural numbers), the
product

∏
α<κ Zα (respectively,

∏
α<κ Z

kα
α ) is countably compact.

Clearly R(κ) implies wR(κ). Although we only need property wR(κ) below, property R(κ) turns out to be a
formally stronger consequence of the hyperspace being countably compact. We also note that wR(1) is equivalent to
countable compactness, and R(1) is equivalent to Q(< ω), that is to all finite powers being countably compact.

If there is no pairwise disjoint family of open sets in X of cardinality κ , or using the notation from [18, 1.22]:
ĉ(X) � κ , we trivially have that X satisfies property R(κ). Thus in general, unlike for property Q(κ), property R(κ)

does not imply R(λ) or even wR(λ) for λ < κ .
However, if our space X satisfies wR(κ) nontrivially, that is, it does have κ-many pairwise disjoint open sets (in

short: ĉ(X) > κ) we will show that wR demonstrates much monotone behavior. We first present a very simple lemma.

Lemma 2.15. Let X be T1, λ < κ and assume that X has wR(κ). If {sβ : β < λ} is a family of sequences in X,
dispersed in a family {Uβ : β < λ} and {Wα: α < κ} are nonempty open sets such that {Uβ : β < λ} ∪ {Wα: α < κ} is
pairwise disjoint, then {sβ : β < λ} clusters.

Proof. For each α < κ , let tα be a constant sequence with constant value in Wα . Then {sβ : β < λ} ∪ {tα: α < κ} is a
dispersed family of sequences, hence it clusters (if κ is finite, we select m = κ − λ many Wα so that we have κ-many
dispersed sequences to present to wR(κ)). Therefore {sβ : β < λ} clusters. �

We recall that a T2 space X is called strongly Hausdorff provided from every infinite subset A ⊂ X we can choose
a sequence {an: n ∈ ω} such that the an have pairwise disjoint neighborhoods in X [14], [17, 0.20].

Theorem 2.16.

(i) If X is strongly Hausdorff and has wR(κ) non-trivially for some κ , then X is countably compact (i.e., has
wR(1)).

(ii) If λ < κ � ω and the Urysohn space X has wR(κ) then X has wR(λ).

(iii) If κ is infinite, λ < cf(κ) and X is T3 satisfying both wR(κ) and κ < ĉ(X) then X has wR(λ).

Proof. For (i), we only give the proof for infinite κ and leave the finite case to the reader. Start by fixing a disjoint
family W of open sets with |W| = κ.

If X is not countably compact, let s :ω → X be a one-to-one sequence whose range is a closed discrete set in X.
By strongly Hausdorff, there are two disjoint open sets U and V such that∣∣U ∩ s(ω)

∣∣ = ∣∣V ∩ s(ω)
∣∣ = ω.

Consider W0 = {W ∈W : U ∩ W = ∅}. If |W0| = κ and we set A = {n ∈ ω: s(n) ∈ U} then we may apply Lem-
ma 2.15 to U, s � A and W0 and conclude that s � A is clustering, which is a contradiction. If, however, |W0| < κ

then

W1 = {U ∩ W : W ∈W \W0}
has cardinality κ , so we may apply Lemma 2.15 to V, s � B and W1, where B = {n ∈ ω: s(n) ∈ V }, to get the same
kind of contradiction.



Aut
ho

r's
   

pe
rs

on
al

   
co

py

I. Juhász, J.E. Vaughan / Topology and its Applications 154 (2007) 2434–2448 2439

(ii) Let {si : i < λ} be a family of sequences in X dispersed in {Ui : i < λ}. If the range of any si has compact closure,
then u lim si exists in X for all u ∈ ω∗; hence we may delete si from consideration towards proving that {si : i < λ}
clusters. Since Urysohn implies strongly Hausdorff, by (i) we may assume that s0 has at least two cluster points, say
p and q . By Urysohn, there are open sets U,V ⊂ U0 such that p ∈ U,q ∈ V and U ∩ V = ∅. Since V is infinite and
Hausdorff, there exists a family {Wn: n ∈ ω} of pairwise disjoint open subsets of V . Let A = {n ∈ ω: s0(n) ∈ U}.
Then {si � A: i < λ} is dispersed in U = {U0 \ V } ∪ {Ui : 0 < i < λ}. Also, each Wn is disjoint from the sets in U . By
Lemma 2.15 {si � A: i < λ} clusters; hence {si : i < λ} clusters.

(iii) Let {si : i < λ} be a family of sequences in X dispersed in {Ui : i < λ} and W be a family of κ-many pairwise
disjoint nonempty open sets in X. If κ-many W ∈W miss

⋃{Ui : i < λ}, then we are done by Lemma 2.15. Thus
we assume that W ∩ (

⋃{Ui : i < λ}) �= ∅ for all W ∈ W . By λ < cf(κ) then there exists α < λ such that |{W ∈
W: W ∩ Uα �= ∅}| = κ .

As above, by (i) we may assume that sα has two distinct cluster points p and q . Then there exist disjoint open sets
U,V ⊂ Uα such that p ∈ U,q ∈ V . At least one of U and Uα \ U intersects κ-many elements of W . Assume first that
Uα \U does. By T3, there exists an open set T so that p ∈ T ⊂ T ⊂ U . Let A = s−1(T ) then A is infinite and we have
sα(A) ⊂ T ⊂ T ⊂ U . By our choice of T and A, {sβ � A: β < λ} is dispersed by

U = {U} ∪ {Uβ : β < λ,β �= α}.
Moreover, U ∪ {W ∩ (Uα \ U): W ∈W} is a pairwise disjoint family of size κ . Thus by Lemma 2.15 {sβ � A: β < λ}
is clustering; so {sβ : β < λ} is clustering.

If Uα \ U does not intersect κ-many W ∈W , then U ⊂ Uα \ V does, and we may proceed similarly as above. �
Now we come to the main theorem of this section but before that we need a lemma.

Lemma 2.17. Let X be a T2-space, and let C be a cluster point of the sequence (Cn) in the hyperspace H(X). If k is
a natural number and U is open in X such that |Cn ∩ U | � k for all n ∈ ω, then |C ∩ U | � k as well.

Proof. If the lemma fails, then we may pick k+1 distinct points x0, . . . , xk in C ∩U . There exists a family of pairwise
disjoint open sets {Vi : i � k} such that xi ∈ Vi ⊂ U for all i � k. Then V = ⋂

i�k V −
i , is a neighborhood of C in

H(X); so there exists n < ω such that Cn ∈ V . But then Cn ∩ Vi �= ∅ for all i � k; so |Cn ∩ U | � k + 1, which is a
contradiction. �
Theorem 2.18. If X is T2 and H(X) is countably compact, then X has property R(κ) for all cardinals κ .

Proof. Let S = {Sα: α < κ} be a family of finite sets of sequences (say Sα = {si
α: i < nα} for α < κ) and U =

{Uα: α < κ} a family of pairwise disjoint open sets such that S is dispersed in U . We must find u ∈ ω∗ such that every
sequence in

⋃
S has a u-limit in X.

For each n < ω let Cn = clX{si
α(n): α < κ, i < nα}. Since the Uα are pairwise disjoint we clearly have

Cn ∩ Uα = {
si
α(n): i < nα

}
.

Since (Cn) is a sequence in H(X), by hypothesis there exists u ∈ ω∗ and C ∈ H(X) such that C = u limCn. We show
that this u works. Let α < κ and let s be a sequence in Sα .

Claim. s has a u-limit in C ∩ Uα .

Suppose otherwise. Since |Sα| = nα , by Lemma 2.17, |C ∩ Uα| � nα is finite; say C ∩ Uα = {xi : i < m}. By our
assumption there exist open sets Vi such that xi ∈ Vi ⊂ Uα and s−1(Vi) /∈ u for all i < m. Let W = X \ (

⋃
i<nα

si
α(ω)).

Then W is open in X and C ⊂ W ∪ V0 ∪ · · · ∪ Vm−1, i.e., V = (W ∪ V0 ∪ · · · ∪ Vm−1)
+ is a neighborhood of C in

H(X), so B = {n ∈ ω: Cn ∈ V } ∈ u. But if Cn ⊂ ⋃{Vi : i < m} ∪ W then Cn ∩ Uα ⊂ ⋃{Vi : i < m}. Thus n ∈ B

implies s(n) ∈ ⋃{Vi : i < m}, hence

B ⊂
⋃{

s−1(Vi): i < m
}

which is a contradiction since B ∈ u and the larger set is not. This completes the proof. �
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In view of Proposition 2.14 this result may be reformulated as follows.

Corollary 2.19. Assume that X is T2 and H(X) is countably compact. Then for any family {Zα: α < κ} of closed
subsets of X that can be separated by disjoint open sets and for any family {kα: α < κ} of natural numbers the product∏

α<κ Z
kα
α is countably compact.

Corollary 2.20. (See Ginsburg [11].) If X is T2 and H(X) is countably compact, then Xn is countably compact for
all n < ω.

Note that Theorem 1.1 follows from this corollary as well. We may use Corollary 2.19 to give the following useful
condition for H(X) not being countably compact.

Corollary 2.21. Let X be a T2 space in which there are a family of pairwise disjoint open sets {Gu: u ∈ ω∗} and a
family of closed sets {Zu: u ∈ ω∗} such that Zu ⊂ Gu and Zu is not u-compact whenever u ∈ ω∗. Then X fails to have
property wR(2c), hence H(X) is not countably compact.

Proof. The hypothesis implies that
∏{Zu: u ∈ ω∗} is not countably compact. �

We will use Corollary 2.21 in proving Corollary 3.7.
Our following theorem generalizes [3, Theorem 3.1] (see Corollary 2.24). For any topological space X we shall

use Aut(X) to denote the set of all autohomeomorphisms of X.

Definition 2.22. We say that a space X is weakly homogeneous provided for any nonempty open set U ⊂ X and any
point x ∈ X there exists h ∈ Aut(X) such that h(x) ∈ U .

The compact T2-space ω∗ is weakly homogeneous, but not homogeneous. To see this, recall that the orbit of a
point x in a topological space X is defined to be {h(x): h ∈ Aut(X)}. Thus a space is weakly homogeneous if and
only if the orbit of every point is dense. It is shown in [30, Corollary 3.20] that the orbit of every point in ω∗ is
dense; so ω∗ is weakly homogeneous. It is a well-known theorem of Z. Frolík that ω∗ is not homogeneous (see [30,
Corollary 3.46]).

Theorem 2.23. If κ < t and X is a weakly homogeneous T3-space satisfying both property wR(κ) and ĉ(X) > κ then
X has Q(κ) (i.e., Xκ is countably compact).

Proof. Let S = {sα: α < κ} be a family of sequences in X. We need to show that S is clustering. Let {Uα: α < κ}
be a family of pairwise disjoint nonempty open sets in X. By T3, for each α < κ there exists a nonempty open set Vα

such that Vα ⊂ clX(Vα) ⊂ Uα . By transfinite recursion we construct infinite sets Aα ⊂ ω and autohomeomorphisms
hα ∈ Aut(X) for α < κ such that the following inductive hypotheses hold:

(1) α < β implies Aβ ⊂∗ Aα ,
(2) n ∈ Aα implies hα(sα(n)) ∈ Vα .

At step γ , pick an infinite set B ⊂ ω such that B ⊂∗ Aα for all α < γ . Let x be a cluster point of sγ � B (this exists
because X is countably compact by Theorem 2.16(i)), and let hγ ∈ Aut(X) be chosen so that hγ (x) ∈ Vγ . Finally, let
Aγ = {n ∈ B: hγ (s(n)) ∈ Vγ }. Then Aγ is infinite because hγ (x) is a cluster point of hγ ◦ sγ � B , and Vγ is open.
This completes the induction.

Since κ < t, there exists an infinite set A ⊂ ω such that A ⊂∗ Aα for all α < κ . Let φ :ω → A be any one–one and
onto function. Define

rα = hα ◦ sα ◦ φ.

Then {rα: α < κ} is dispersed mod finite in {Uα: α < κ} . By Lemma 2.13, there exists u ∈ ω∗ such that rα has a u-
limit in X for all α < κ . To complete the proof we show that if x = u lim rα then h−1

α (x) = φ(u) lim sα . By continuity,
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h−1
α (x) = u limh−1 ◦ rα = u lim sα ◦φ. Since φ is one–one and onto, it follows that h−1

α (x) = φ(u) lim sα. This shows
that S = {sα: α < κ} is clustering, and that completes the proof. �
Corollary 2.24. (See Cao et al. [3].) If X is a homogeneous T3 space such that the hyperspace H(X) is countably
compact, then Xω is countably compact.

Proof. It is known that every infinite T2-space has an infinite family of pairwise disjoint open sets. Hence if X is
infinite then it satisfies both wR(ω) and ĉ(X) > ω, moreover ω < t. �

We conclude this section by considering the following question: If X is countably compact and T4, is then its
hyperspace H(X) countably compact? Consistently, the answer to this question is known to be negative, as is shown
by the following example of van Douwen.

Example 2.25. (See Van Douwen [5].) Under Martin’s Axiom (MA) there exists a countably compact T4-space X

such that X2 is not countably compact (hence neither is H(X)).

In his (unpublished) dissertation [25, Chapter 5] Oleg Pavlov constructed another countably compact T4-space
X such that X2 is not countably compact using the continuum hypothesis (CH). In fact, as we shall show, Pavlov’s
construction works under the (much weaker) assumption that there exists an HFD. (Note that in the model obtained by
adding ω1 Cohen reals to an arbitrary ground model there are HFD’s, see [19, 4.7], [21, 2.3].) Also, Pavlov’s example
is unpublished and rather involved because his space was constructed to have other properties which go beyond those
stated in Example 2.25 (his space X satisfies the properties that Xω is normal and the free topological group F(X) is
not). Our construction follows that of Pavlov. First we recall the definition of an HFD (see [13] or [19]).

Definition 2.26. A set X ⊂ 2λ (λ > ω) is called an HFD provided for every countably infinite A ⊂ X there is a
countable b ⊂ λ such that A (i.e., A � (λ \ b)) is dense in 2λ\b .

Theorem 2.27. If there exists an HFD of size κ , then there exists a countably compact T4-space X such that X2 has
a closed discrete subset of cardinality κ ; hence X2 (and so H(X)) is very much not countably compact.

Proof. Let Z ⊂ 2ω1 be an HFD (it is known that if there is an HFD of any size κ � ω then there is one of the same size
κ in 2ω1 , see [19, 2.8(ii)]). We need to choose Z in a special way: First, note that {f ∈ Z: f is eventually constant} is
clearly finite. Any subset of an HFD is an HFD, so we may assume that no f ∈ Z is eventually constant. We may also
assume that z(0) = 0 for all z ∈ Z.

We then consider the “mirror” of Z, namely the set Z + 1 = {z + 1: z ∈ Z}, where addition is co-ordinatewise
modulo 2. Then Z + 1 is easily seen to be an HFD as well [19, 2.8], contains no function that is eventually constant,
and z(0) = 1 for all z ∈ Z + 1. Clearly, then Z ∩ (Z + 1) = ∅.

Let

Σ = {
f ∈ 2ω1 : f is eventually constant with constant value 0

}
be the usual Σ -product in 2ω1 . It is well known that Σ is countably compact, T4 and dense in 2ω1 . Also, we have

Σ ∩ Z = ∅ = Σ ∩ (Z + 1).

For the underlying set of our example, put X = Σ ∪Z ∪ (Z + 1). The topology on X is obtained from the subspace
topology in 2ω1 by declaring all points in Z ∪ (Z + 1) isolated. Since Σ retains its subspace topology from 2ω1 , it
remains countably compact and T4, but is closed in X with this finer topology.

X is countably compact: Let A ⊂ X be countably infinite. It suffices to consider three cases: A ⊂ Σ , A ⊂ Z and
A ⊂ (Z + 1). If A ⊂ Σ then A has a limit point in Σ since Σ is countably compact. Suppose A ⊂ Z. By [19, 2.12]
we may pick α < ω1 so that α has the property that A � α is infinite and α ∈ J (A). By [19, 2.13] α ∈ J (A) implies
that if h is a limit point of A � α in 2α then h�0 ∈ Σ is a limit point of A in 2ω1 . The case A ⊂ (Z + 1) is similar.

X is T4: In general (as is probably known) if D is a dense T4 subset of a space Y , and X is obtained from Y by
isolating all points of Y \D then X is T4. To see this, let H and K be disjoint closed sets in X. Then there exist disjoint
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open subsets U ′,V ′of D such that H ∩ D ⊂ U ′ and K ∩ D ⊂ V ′. Let U,V be open in Y such that U ∩ D = U ′ and
V ∩ D = V ′. Since D is dense in Y , U ∩ V = ∅. Thus (U ∪ H) \ K and (V ∪ K) \ H are disjoint open sets in X that
separate H and K .

The set D = {(z, z + 1): z ∈ Z} (clearly of cardinality κ) is closed discrete in X2: Since D consists of isolated
points of X2, it remains to show that D is closed in X2. Let (x, y) ∈ X2 \ D. Since X = Σ ∪ Z ∪ (Z + 1) is the union
of three pairwise disjoint sets, X2 is the union of nine corresponding pairwise disjoint sets. We proceed with these
nine cases. Case 1: (x, y) ∈ Σ × Σ : There exists α < κ such that x(α) = y(α) = 0 (in fact a final set of such α). Put
ε = {(α,0)}, then [ε] × [ε] is a neighborhood of (x, y) missing D. This completes Case 1. Since Z ∩ (Z + 1) = ∅,
(Z + 1) × X and X × Z are open sets in X2 that miss D, and this takes care of 5 more cases. If (x, y) ∈ Z × (Z + 1),
then (x, y) is isolated; so this leaves us with two cases: (x, y) ∈ Σ × (Z + 1) or (x, y) ∈ Z × Σ . If (x, y) ∈ Z × Σ ,
then {x} × (X \ {x + 1}) is an open neighborhood of (x, y) missing D. The last case is proved similarly, and this
completes the proof of the theorem. �

The spaces discussed in both Example 2.25 and Theorem 2.27 are both consistent examples. We do not know of a
ZFC example of a countably compact T4-space X such that X2 (or just H(X)) is not countably compact.

3. Frolík sums

Z. Frolík [10], and others have used the following construction, and refer to it as a “one-point countable-compac-
tification” of a family of spaces {Xα: α < κ}. The definition involves the disjoint topological sum

⊕{Xα: α < κ}
(see [6, 2.2]).

Definition 3.1. Let F = {Xα: α < κ} be a family of topological spaces. The Frolík sum of F , denoted F(Xα: α < κ),
is defined in two cases: If κ is finite, it is defined to be equal to the topological sum: F(Xα: α < κ) = ⊕{Xα: α < κ}.
If κ is infinite, the Frolík sum is defined to be

⊕{Xα: α < κ} ∪ {∗} where ∗ is a point not in
⊕{Xα: α < κ}, and a

neighborhood base of (∗) is formed by the unions of all but finitely many Xα . We let F(κ · X) denote the Frolík sum
of κ copies of the same space X.

Definition 3.2. A topological property P is said to be (countably) F-additive provided the Frolík sum of (countably
many) spaces with property P has property P .

Theorem 3.3. The following properties are all F-additive: countable compactness, sequential compactness, total
countable compactness, u-compactness, ω-boundedness, pseudocompactness, in Frolík’s class C, and in Frolík’s
class P.

Proof. These are all easy to prove. We only check this for Frolík’s class C and leave all other cases to the reader.
Recall that a space X is said to be in Frolík’s class C provided X × Y is countably compact for every countably
compact space Y (see [8].) (Frolík’s class P is defined similarly for pseudocompact spaces, see [9]). Let {Xα: α < κ}
be a family of spaces, each in Frolík’s class C. We show that X = F(Xα: α < κ) is also in Frolík’s class C. Let Y be
countably compact, and let ((xn, yn)) be a sequence in X × Y . We may assume that xn �= ∗ for all n < ω. If ∗ is a
cluster point of the sequence (xn) then there is a subsequence of (xn)n∈A that actually converges to ∗. It follows that
((xn, yn))n∈A has a cluster point in {∗} × Y . If ∗ is not a cluster point of the sequence (xn), then there exists a basic
neighborhood U of ∗ such that {n ∈ ω: xn ∈ U} = ∅. Thus there exists a finite F ⊂ κ such that ((xn, yn)) is contained
in (

⋃
α∈F Xα) × Y . Hence there exists α ∈ F such that {n ∈ ω: (xn, yn) ∈ Xα × Y } is infinite, and since Xα is in

class C, ((xn, yn)) has a cluster point in the countably compact subspace Xα × Y ⊂ X × Y . �
We note that first countability is countably F-additive, but the Frolík sum of uncountably many spaces is never

first countable (at ∗). Also the Frolík sum of even countably many locally countable spaces is not locally countable if
infinitely many of the spaces are uncountable.

Let us recall at this point our initial problem: Is the countable compactness of the hyperspace H(X) equivalent to
X being u-compact for some u in ω∗? Our next result may be considered as a partial answer to this problem and is
also an analogue to a theorem of Ginsburg and Saks [12]:
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Theorem 3.4. For any T2-space X the following are equivalent:

(1) H(F(κ · X)) is countably compact for every cardinal κ .
(2) H(F(2c · X)) is countably compact.
(3) H(F(|X|ω · X)) is countably compact.
(4) X is u-compact for some u ∈ ω∗.

Proof. This follows from 2.19 and 3.3 and the analogous result of Ginsburg–Saks for powers of X, see [12]. For
example, both (2) and (3) imply (4) because they imply that either X2c

or X|X|ω is countably compact (by 2.19); so
by the result of Ginsburg–Saks, X is u-compact for some ultrafilter u ∈ ω∗. �

The following result will turn out to be instrumental in constructing examples of countably compact spaces with
nice additional properties (like first countability or even local countability) and having hyperspaces that are not count-
ably compact.

Theorem 3.5. Let P be a property that is countably F-additive, hereditary to clopen sets, and preserved by well-
ordered increasing unions of clopen subsets of length of uncountable cofinality, where the union carries the direct
limit topology. Then for every κ and every pairwise disjoint family of spaces {Xα: α < κ} ⊂ P , there exists a space
Z ∈P such that each Xα is a clopen subspace of Z.

Proof. Let Z0 = ∅, and assume we have constructed spaces Zα ∈ P for α < γ (where γ � κ) such that β < α < γ

implies

(1) Zβ ⊂ Zα ,
(2) Zβ and Xβ are clopen in Zα .

We then define Zγ in three cases. If γ = α + 1, then put Zγ = Zα ⊕ Xα . If cf(γ ) > ω, put Zγ = ⋃{Zα: α < γ }
with the direct limit topology. If cf(γ ) = ω, then fix a strictly increasing sequence (βn: n < ω) such that
sup{βn: n < ω} = γ , and define Yn = Zβn+1 \ Zβn . Each Yn is clopen in Zβn+1 and so has property P . Put Zγ =
F(Yn: n ∈ ω). It is easy to check that Zγ ∈ P in all three cases, using our hypotheses, and that the inductive assump-
tions (1) and (2) remain valid. Finally, Z = Zκ is the desired space. �
Corollary 3.6. Let P be a property of Hausdorff spaces as in Theorem 3.5. Then the following are equivalent: (i) there
is a (transfinite) sequence of spaces in P whose product is not countably compact; (ii) there is a space Z in P such
that H(Z) is not countably compact.

Proof. (i) ⇒ (ii) follows immediately from Theorem 3.5 and Corollary 2.19. (ii) ⇒ (i) holds because if H(Z) is not
countably compact then Z is not u-compact for any u ∈ ω∗, hence some power of Z is not countably compact. �
Corollary 3.7. If b = c then there exists a first countable, countably compact 0-dimensional T2-space X such that
H(X) is not countably compact. If, in addition to b = c, we also have 2c < c+ω then there is even a good space X

such that H(X) is not countably compact.

Proof. Let {Xu: u ∈ ω∗} be the family of good spaces constructed by van Douwen under b = c such that Xu is not
u-compact for u ∈ ω∗ [4, Section 13]. Without loss of generality, the family {Xu: u ∈ ω∗} is pairwise disjoint.

The property P ≡ “first countable, countably compact 0-dimensional T2” is countably F-additive, hereditary to
closed sets, and preserved by increasing unions of uncountable cofinality of clopen sets with the direct limit topology.
By Theorem 3.5 there exists a space Z having property P in which {Xu: u ∈ ω∗} is a family of pairwise disjoint
clopen sets. But then H(Z) is not countably compact by Corollary 2.21.

To see the second part, we use theorem [20, Theorem 16] that, under the given conditions, states the existence of
a good space Z with a pairwise disjoint family {Xu: u ∈ ω∗} of clopen sets such that Xu is not u-compact for all
u ∈ ω∗, and then we apply Corollary 2.21 to that family. �
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Our next result fits here because it is closely related to van Douwen’s construction of non-u-compact good spaces
from [4] that was used in the previous theorem.

Theorem 3.8. If b = c, then for any tower {W ∗
α : α < c} in ω∗, there exists a good space X which is not u-compact for

any u ∈ T = ⋂{W ∗
α : α < c}.

Proof. The construction of our good space X is an Ostaszewski type construction of a not u-compact space (see [26]).
We follow the version of this construction given by van Douwen [4, Section 13] which uses the assumption b = c. We
only need to change his Case 2, subcase B [4, p. 160], but for clarity we sketch the entire construction.

The construction starts by listing all countably infinite subsets of c as {Kη: ω � η < c} such that Kη ⊂ η for
ω � η < c [4, 13.2]. The underlying set for X is the cardinal c. By recursion we construct topologies Tη on the
ordinals η � c satisfying the following conditions:

(1) (η,Tη) is a locally compact T2-space in which the collection of compact open subsets is a base,
(2) ∀ξ ∈ η[(ξ,Tξ ) is an open subspace of (η,Tη)],
(3) ∀ξ ∈ η \ ω [Kξ has a cluster point in (η,Tη)],
(4) ∀ξ ∈ η \ ω there exists V ∈ Tξ with ξ ∈ V such that (V ∩ ω)∗ ∩ T = ∅.

The first step of the construction yields the discrete topology Tω on ω; so we consider the step for ω < η � c, assuming
we have Tζ for ζ ∈ η.

Case 1. η is a limit ordinal. This case is the same as in [4].
Case 2. This case concerns the successor ordinal step of the construction, which van Douwen calls η = ξ + 1.
Subcase A. Kξ , has a cluster point in (ξ,Tξ ). This subcase is the same as in [4].
Subcase B. This is the case in the construction that we change. By b = c, property D holds for the space (ξ,Tξ ),

so we choose an indexed discrete family of open sets {Ux : x ∈ Kξ } with x ∈ Ux for all x ∈ Kξ the same way van
Douwen did except we add the additional requirement that (Ux ∩ ω)∗ ∩ T = ∅ which is possible by (4). Since T is
a t-set, there exists Wγ such that W ∗

γ ∩ (Ux ∩ ω)∗ = ∅ for all x ∈ Kξ . Hence Fx = Wγ ∩ (Ux ∩ ω) is finite for all
x ∈ Kx . We define the topology on the space (ξ + 1,Tξ+1) to be the smallest topology containing Tξ and{

BG = {ξ} ∪
⋃{

(Ux \ Fx): x ∈ Kξ \ G
}
: G ⊂ Kξ finite

}
.

Then Tξ ∪{BG: G ∈ [Kξ ]<ω} is a base for Tη . Since, (Ux \Fx)∩Wγ = ∅ for all x ∈ Kξ , we have (ω∩BG)∗ ∩W ∗
γ = ∅;

so (ω ∩ BG)∗ ∩ T = ∅ for any G ∈ [Kξ ]<ω. This completes the construction.
Now let u ∈ T . Then X = (c,Tc) is not u-compact because the identity sequence on ω has no u-limit in X

by (4). �
Let us now turn to some general results concerning the hyperspaces of Frolík sums of families of spaces. We start

with the case of finite families which, of course, just means looking at hyperspaces of finite topological sums. The
simplest of these is when we take just two summands.

Lemma 3.9. For any two spaces X and Y we have

H(X ⊕ Y) � H(X) ⊕ H(Y) ⊕ (
H(X) × H(Y)

)
.

Proof. This lemma is easily seen to be equivalent to

H 0(X ⊕ Y) � H 0(X) × H 0(Y ),

see [22, Corollary 5a of Section 17]. The apparent difference in form is due to the fact that H 0(X), as opposed to
H(X), includes the empty set. (So in this case the choice of H 0 over H seems to be more fortunate.) �
Corollary 3.10. If P is a finitely additive and finitely productive property of topological spaces and H(X1), . . . ,

H(Xn) all have property P , then H(X1 ⊕ · · · ⊕ Xn) has P as well.
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We now come to considering Frolík sums of infinite families of spaces. Our main result is the following embedding
theorem.

Theorem 3.11. Let {Xα: α < κ} be an infinite pairwise disjoint family of topological spaces and X = F(Xα: α < κ)

be their Frolík sum. Then

P =
∏
α<κ

H 0(Xα) � Q = {
C ∈ H(X): ∗ ∈ C

}
,

moreover Q is closed in H(X).

Proof. Let �C = (Cα) denote a point (κ-tuple) in the product P = ∏
α<κ H 0(Xα), i.e., each Cα is a (possibly empty)

closed subset of Xα . Define the map h :
∏

α<κ H 0(Xα) → H(X) by

h( �C) =
⋃

{Cα: α < κ} ∪ {∗},
then clearly Q = h[P ]. We claim that h is a homeomorphism between P and Q.

h is one–one: if h( �C) = h( �D) then (since the Xα are pairwise disjoint) h( �C) ∩ Xα = Cα = h( �D) ∩ Xα = Dα for
all α < κ ; so �C = �D.

h is continuous: Let U be a nonempty open set in X, then U+ and U− are typical subbasic open sets in H(X), so
it suffices to show that h−1(U+) and h−1(U−) are both open in the product P . First we consider the case that ∗ ∈ U ,
hence there exists a finite E ⊂ κ such that

⋃{Xα: α ∈ κ \ E} ⊂ U . Then for every �C ∈ P we have h( �C) ∈ U+ if and
only if Cα ⊂ U ∩ Xα for every α ∈ E, and therefore

h−1(U+) =
⋂{

π−1
α

(
(U ∩ Xα)+

)
: α ∈ E

}
is open in P . Concerning U−, we have h−1(U−) = P because Q ⊂ U− by definition.

If ∗ /∈ U then h−1(U+) = ∅ because Q ∩ U+ = ∅. Moreover,

h−1(U−) = { �C: (∃α < κ)(Cα ∩ U �= ∅)
} =

⋃
α<κ

π−1
α

(
(U ∩ Xα)−

)
is open in P.

h is open: Since h is one–one, it suffices to show that the h-images from a subbase of P are open in Q. Hence it
suffices to show that if α < κ and V is open in Xα then both h[π−1

α (V +)] and h[π−1
α (V −)] are open in Q. Indeed,

this holds because

h
[
π−1

α (V +)
] = {

h( �C): Cα ⊂ V
} = (Ṽ )+ ∩ Q

where Ṽ = ⋃{Xβ : β �= α} ∪ V ∪ {∗} is clearly open in X. Also

h
[
π−1

α (V −)
] = {

h( �C): Cα ∩ V �= ∅} = V − ∩ Q,

where the last “−” refers to the hyperspace H(X).
That Q is closed in H(X) is obvious from Q = H(X) \ (X \ {∗})+. Note that h[∏α<κ H(Xα)] is also closed in

H(X) because

H(X) \ h

[ ∏
α<κ

H(Xα)

]
= (

X \ {∗})+ ∪
⋃{

(X \ Xα)+: α < κ
}
. �

Corollary 3.12. Let {Xα: α < κ} be a family of T1-spaces. Then
∏

α<κ Xα is homeomorphic to a subspace of
H(F(Xα: α < κ)). If the spaces Xα are T2, then

∏
α<κ Xα is homeomorphic to a closed subspace of H(F(Xα :

α < κ)).

Proof. It is well known that if Y is T1 then the map j (y) = {y} is an embedding of Y into H(Y) that maps Y onto a
closed set if Y is T2. Moreover, H(X) is closed in H 0(X). The result then follows from that and Theorem 3.11. �
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Corollary 3.13. Let {Xα: α < κ} be a family of T2-spaces. If P is a closed hereditary property and H(F(Xα: α < κ))

has property P , then
∏

α<κ Xα has property P . In particular, if H(F(Xα: α < κ)) is countably compact, sequentially
compact, totally countably compact, etc. then so is

∏
α<κ Xα .

The statement concerning countably compact spaces in Corollary 3.13 was proved by Cao, Noguro, and Tamano
using a different and rather involved proof [3, Theorem 2.1]. As we pointed out above, this special case also follows
from Corollary 2.19.

As we have seen in Lemma 3.9 and Theorem 3.11, the product
∏

α<κ H 0(Xα) embeds as a closed subspace into
the hyperspace of the Frolík sum F(Xα: α < κ), hence any closed hereditary property of the latter is inherited by the
former. It may come as a surprise that for several countable compactness type properties (that are in the center of our
attention in this paper) the converse of this also holds. Of course, if κ is finite then the two spaces under consideration
are actually homeomorphic, hence in what follows we restrict ourselves to the case κ � ω.

Theorem 3.14. If {Xα: α < κ} is a family of T2-spaces, then
∏

α<κ H 0(Xα) is countably compact (respectively,
sequentially compact, respectively, totally countably compact) if and only if H(F(Xα: α < κ)) is countably compact
(respectively, sequentially compact, respectively, totally countably compact).

Proof. We prove the theorem for the totally countably compact case, the other cases being easier. Of course, by
Theorem 3.11, only the “only if” part needs proof, so assume that

∏
α<κ H 0(Xα) is totally countably compact.

Let X = F(Xα: α < κ) and (Cn) be a sequence of points in H(X). If there exists a finite E ⊂ κ such that {n ∈ ω:
Cn ⊂ ⋃

α∈E Xα} is infinite then, as H(
⊕

α∈E Xα) is totally countably compact by our assumptions, (Cn) has a sub-
sequence contained in a compact subset of H(

⊕
α∈E Xα) ⊂ H(X); so we are done.

Therefore we may assume that

(†) for every finite E ⊂ κ , {n ∈ ω: Cn ⊂ ⋃
α∈E Xα} is finite.

For each n let dn be the point in the product
∏

α<κ H 0(Xα) whose αth coordinate is Cn ∩ Xα . By hypothesis the
sequence (dn) has a subsequence contained in a compact sets K . By passing to a subsequence and re-indexing,
we may assume the entire sequence is contained in K . Let h be the homeomorphism given by Theorem 3.11. By
continuity, h(K) is compact in H(X) and contains h(dn) for all n. Note that h(dn) = Cn iff ∗ ∈ Cn, thus if the point
∗ is in Cn for infinitely many n then we are done. Otherwise, we may assume that none of the Cn contain ∗; hence
none of the Cn are in the range of h. We show that in this case the sequence of sets (Cn) converges to the compact set
h(K); consequently {Cn: n < ω} ∪ h(K) is a compact set containing all the Cn.

Consider any finite cover of h(K) by basic open sets in H(X), say

h(K) ⊂
⋃

{Oi : i < t}

where Oi = 〈Ui
j : j < ni〉 for i < t . We may assume that Oi ∩ h(K) �= ∅ for i < t . We also may assume that for each

i < t the Ui
j have been arranged so that for some 0 < mi � ni we have ∗ ∈ Ui

j iff j < mi . Then there is a finite set E

such that
⋃{Xα: α /∈ E} ⊂ ⋂{Ui

j : j < mi, i < t}. By (†), there is N < ω such that for all n > N we have

Cn ∩
⋂{

Ui
j : j < mi, i < t

} �= ∅.

For every n we have h(dn) = Cn ∪ {∗} ∈ h(K), hence there is i < t such that Cn ∪ {∗} ∈ Oi . Then we have Cn ⊂
Cn ∪ {∗} ⊂ ⋃{Ui

j : j < ni} and Cn ∩ Ui
j �= ∅ for all j < mi whenever n > N . If mi � j < ni then ∗ /∈ Ui

j ; so

Cn ∪ {∗} ∈ Oi implies (Cn ∪ {∗}) ∩ Ui
j �= ∅, which implies Cn ∩ Ui

j �= ∅. Thus we conclude that Cn ∈ ⋃{Oi : i < t}
for all n > N . This completes the proof. �
Corollary 3.15. Let κ < t, and let {Xα: α < κ} be a family of T2-spaces such that H(Xα) is sequentially compact
(respectively totally countably compact) for all α < κ . Then H(F(Xα: α < κ)) is sequentially compact (respectively,
totally countably compact).
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Proof. First we consider the case that H(X) is totally countably compact. Clearly, so is H 0(X). By [28, 3.3(B)], the
product

∏
α<κ H 0(Xα) is totally countably compact; so the result follows from Theorem 3.14. The same idea works

for the case that H(X) is sequentially compact: The product
∏

α<κ H 0(Xα) is sequentially compact (as remarked
after the proof of [28, 3.4(B)]); so again the result follows from Theorem 3.14. �

Our next example shows that the restriction κ < t in Corollary 3.15 cannot be improved substantially. Recall that
the splitting number s is the minimum cardinal λ such that 2λ is not sequentially compact. It is well known that
t � s � c (e.g., see [4, 6.1], [27, 5.12]).

Example 3.16. The family {Xα: α < s}, where Xα = 2 is a copy of the two-point discrete space for all α < s,
satisfies the hypothesis of Corollary 3.15 (i.e., H(Xα) is sequentially compact for α < s), but not the conclusion (i.e.,
H(F(Xα: α < κ)) is not sequentially compact).

Proof. The hyperspace of a finite space is finite, hence sequentially compact. On the other hand, H(F(Xα: α < s))

is not sequentially compact because it contains a closed copy of the product 2s which is not sequentially compact (see
[28, 5.12]). �

We can however step a little further if we are satisfied with the hyperspace of the Frolík sum being only countably
compact.

Corollary 3.17. Let {Xα: α < t} be a family of T2-spaces such that each H(Xα) is totally countably compact. Then
H(F(Xα: α < t)) is countably compact.

Proof. It is known, see, e.g., [28, 3.3(C)], that the product of t-many totally countably compact spaces is countably
compact. Thus by our assumption so is

∏
α<t H 0(Xα) and hence, by Theorem 3.14, so is H(F(Xα: α < t)) as

well. �
We conclude with listing a few open questions.

(1) If H(X) is countably compact, is X u-compact for some u ∈ ω∗?
(2) Does there exist in ZFC a countably compact and first countable (or just sequentially compact) space whose

hyperspace is not countably compact?
(3) What could be the smallest cardinality of a countably compact, first countable space X such that H(X) is not

countably compact?
(4) Is there a ZFC example of a countably compact T4 space whose hyperspace is not countably compact?

Let us point out that by Corollary 3.6 the sequentially compact case of question (2) is equivalent to the well-known
Scarborough–Stone problem (see [29]): Is every product of sequentially compact spaces countably compact?
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1984, Proceedings of the Conference on Convergence, Bechyně Czechoslovakia, Akademie-Verlag, Berlin, 1984, pp. 95–106.
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