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Abstract. We call a topological space κ-compact if every subset
of size κ has a complete accumulation point in it. Let Φ(µ, κ, λ)
denote the following statement: µ < κ < λ = cf(λ) and there is
{Sξ : ξ < λ} ⊂ [κ]µ such that |{ξ : |Sξ ∩ A| = µ}| < λ whenever
A ∈ [κ]<κ. We show that if Φ(µ, κ, λ) holds and the space X
is both µ-compact and λ-compact then X is κ-compact as well.
Moreover, from PCF theory we deduce Φ(cf(κ), κ, κ+) for every
singular cardinal κ. As a corollary we get that a linearly Lindelöf
and ℵω-compact space is uncountably compact, that is κ-compact
for all uncountable cardinals κ.

We start by recalling that a point x in a topological space X is
said to be a complete accumulation point of a set A ⊂ X iff for every
neighbourhood U of x we have |U ∩A| = |A|. We denote the set of all
complete accumulation points of A by A◦.

It is well-known that a space is compact iff every infinite subset has
a complete accumulation point. This justifies to call a space κ-compact
if every subset of cardinality κ in it has a complete accumulation point.
Now, let κ be a singular cardinal and κ =

∑{κα : α < cf(κ)} with
κα < κ for each α < cf(κ). Clearly, if a space X is both κα-compact
for all α < cf(κ) and cf(κ)-compact then X is κ-compact as well.
This trivial ”extrapolation” property of κ-compactness (for singular
κ) implies that in the above characterization of compactness one may
restrict to subsets of regular cardinality.

The aim of this note is to present a new ”interpolation” result on
κ-compactness, i.e. one in which µ < κ < λ and we deduce κ-
compactness of a space from its µ- and λ-compactness. Again, this
works for singular cardinals κ and the proof uses non-trivial results
from Shelah’s PCF theory.
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Definition 1. Let κ, λ, µ be cardinals, then Φ(µ, κ, λ) denotes the fol-
lowing statement: µ < κ < λ = cf(λ) and there is {Sξ : ξ < λ} ⊂ [κ]µ

such that |{ξ : |Sξ ∩ A| = µ}| < λ whenever A ∈ [κ]<κ.

As we can see from our next theorem, this property Φ yields the
promised interpolation result for κ-compactness.

Theorem 2. Assume that Φ(µ, κ, λ) holds and the space X is both
µ-compact and λ-compact. Then X is κ-compact as well.

Proof. Let Y be any subset of X with |Y | = κ and, using Φ(µ, κ, λ),
fix a family {Sξ : ξ < λ} ⊂ [Y ]µ such that |{ξ : |Sξ ∩ A| = µ}| <
λ whenever A ∈ [Y ]<κ. Since X is µ-compact we may then pick a
complete accumulation point pξ ∈ Sξ

◦ for each ξ < λ.
Now we distinguish two cases. If |{pξ : ξ < λ}| < λ then the

regularity of λ implies that there is p ∈ X with |{ξ < λ : pξ = p}| = λ.
If, on the other hand, |{pξ : ξ < λ}| = λ then we can use the λ-
compactness of X to pick a complete accumulation point p of this
set. In both cases the point p ∈ X has the property that for every
neighbourhood U of p we have |{ξ : |Sξ ∩ U | = µ}| = λ.

Since Sξ ∩U ⊂ Y ∩U , this implies using Φ(µ, κ, λ) that |Y ∩U | = κ,
hence p is a complete accumulation point of Y , hence X is indeed
κ-compact. ¤

Our following result implies that if Φ(µ, κ, λ) holds then κ must be
singular.

Theorem 3. If Φ(µ, κ, λ) holds then we have cf(µ) = cf(κ).

Proof. Assume that {Sξ : ξ < λ} ⊂ [κ]µ witnesses Φ(µ, κ, λ) and fix
a strictly increasing sequence of ordinals ηα < κ for α < cf(κ) that is
cofinal in κ. By the regularity of λ > κ there is an ordinal ξ < λ such
that |Sξ∩ηα| < µ holds for each α < cf(κ). But this Sξ must be cofinal
in κ, hence from |Sξ| = µ we get cf(µ) ≤ cf(κ) ≤ µ.

Now assume that we had cf(µ) < cf(κ) and set |Sξ∩ηα| = µα for each
α < cf(κ). Our assumptions then imply µ∗ = sup{µα : α < cf(κ)} < µ
as well as cf(κ) < µ, contradicting that Sξ = ∪{Sξ ∩ ηα : α < cf(κ)}
and |Sξ| = µ. This completes our proof. ¤

According to theorem 3 the smallest cardinal µ for which Φ(µ, κ, λ)
may hold for a given singular cardinal κ is cf(κ). Our main result says
that this actually does happen with the natural choice λ = κ+.

Theorem 4. For every singular cardinal κ we have Φ(cf(κ), κ, κ+).

Proof. We shall make use of the following fundamental result of Shelah
from his PCF theory: There is a strictly increasing sequence of length
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cf(κ) of regular cardinals κα < κ cofinal in κ and such that in the
product

P =
∏
{κα : α < cf(κ)}

there is a scale {fξ : ξ < κ+} of length κ+. (This is Main Claim 1.3 on
p. 46 of [2].)

Spelling it out, this means that the κ+-sequence {fξ : ξ < κ+} ⊂ P
is increasing and cofinal with respect to the partial ordering <∗ of
eventual dominance on P. Here for f, g ∈ P we have f <∗ g iff there is
α < cf(κ) such that f(β) < g(β) whenever α ≤ β < cf(κ).

Now, to show that this implies Φ(cf(κ), κ, κ+), we take the set H =
∪{{α}×κα : α < cf(κ)} as our underlying set. Note that then |H| = κ
and every function f ∈ P, construed as a set of ordered pairs (or in
other words: identified with its graph) is a subset of H of cardinality
cf(κ).

We claim that the scale sequence {fξ : ξ < κ+} ⊂ [H]cf(κ) witnesses
Φ(cf(κ), κ, κ+). Indeed, let A be any subset of H with |A| < κ. We
may then choose α < cf(κ) in such a way that |A| < κα. Clearly, then
there is a function g ∈ P such that we have A∩({β}×κβ) ⊂ {β}×g(β)
whenever α ≤ β < cf(κ). Since {fξ : ξ < κ+} is cofinal in P w.r.t. <∗,
there is a ξ < κ+ with g <∗ fξ and obviously we have |A ∩ fη| < cf(κ)
whenever ξ ≤ η < κ+. ¤

Note that the above proof actually establishes the following more
general result: If for some increasing sequence of regular cardinals {κα :
α < cf(κ)} that is cofinal in κ there is a scale of length λ = cf(λ) in
the product

∏{κα : α < cf(κ)} then Φ(cf(κ), κ, λ) holds.
Before giving some further interesting application of the property

Φ(µ, κ, λ), we present a result that enables us to ”lift” the first param-
eter cf(κ) in theorem 4 to higher cardinals.

Theorem 5. If Φ(cf(κ), κ, λ) holds for some singular cardinal κ then
we also have Φ(µ, κ, λ) whenever cf(κ) < µ < κ with cf(µ) = cf(κ).

Proof. Let us put cf(κ) = % and fix a strictly increasing and cofinal
sequence {κα : α < %} of cardinals below κ. We also fix a partition of
κ into disjoint sets {Hα : α < %} with |Hα| = κα for each α < %.

Let us now choose a family {Sξ : ξ < λ} ⊂ [κ]% that witnesses
Φ(cf(κ), κ, λ). Since λ is regular, we may assume without any loss of
generality that |Hα ∩ Sξ| < % holds for every α < % and ξ < λ. Note
that this implies |{α : Hα ∩ Sξ 6= ∅}| = % for each ξ < λ.

Now take a cardinal µ with cf(µ) = % < µ < κ and fix a strictly
increasing and cofinal sequence {µα : α < %} of cardinals below µ.
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To show that Φ(µ, κ, λ) is valid, we may use as our underlying set
S = ∪{Hα × µα : α < %}, since clearly |S| = κ.

For each ξ < λ let us now define the set Tξ ⊂ S as follows:

Tξ = ∪{(Sξ ∩Hα)× µα : α < %}.
Then we have |Tξ| = µ because |{α : Hα∩Sξ 6= ∅}| = %. We claim that
{Tξ : ξ < λ} witnesses Φ(µ, κ, λ).

Indeed, let A ⊂ S with |A| < κ. For each α < ρ let Bα denote the
set of all first co-ordinates of the pairs that occur in A∩ (Hα×µα) and
set B = ∪{Bα : β < %}. Clearly, we have B ⊂ κ and |B| ≤ |A| < κ,
hence |{ξ : |Sξ ∩B| = %}| < λ

Now, consider any ordinal ξ < λ with |Sξ ∩ B| < %. If 〈γ, δ〉 ∈
(Tξ ∩ A) ∩ (Hα × µα) for some α < % then we have γ ∈ Sξ ∩ Bα,
consequently Hα ∩ Sξ ∩B 6= ∅. This implies that

W = {α : (Tξ ∩ A) ∩ (Hα × µα) 6= ∅}
has cardinality ≤ |Sξ ∩B| < %. But for each α ∈ W we have

|Tξ ∩ (Hα × µα)| ≤ % · µα < µ,

hence

Tξ ∩ A = ∪{(Tξ ∩ A) ∩ (Hα × µα) : α ∈ W}
implies |Tξ ∩ A| < µ as well. But this shows that {Tξ : ξ < λ} indeed
witnesses Φ(µ, κ, λ). ¤

Arhangel’skii has recently introduced and studied in [1] the class of
spaces that are κ-compact for all uncountable cardinals κ and, quite ap-
propriately, called them uncountably compact. In particular, he showed
that these spaces are Lindelöf.

We recall that the spaces that are κ-compact for all uncountable
regular cardinals κ have been around for a long time and are called
linearly Lindelöf. Moreover, the question under what conditions is a
linearly Lindelöf space Lindelöf is important and well-studied. Note,
however, that a linearly Lindelöf space is obviously comapct iff it is
countably compact, i.e. ω-compact. This should be compared with
our next result that, we think, is far from being obvious.

Theorem 6. Every linearly Lindelöf and ℵω-compact space is uncount-
ably compact hence, in particular, Lindelöf.

Proof. Let X be a linearly Lindelöf and ℵω-compact space. Accord-
ing to the (trivial) extrapolation property of κ-compactness that we
mentioned in the introduction, X is κ-compact for all cardinals κ of
uncountable cofinality. Consequently, it only remains to show that X
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is κ-compact whenever κ is a singular cardinal of countable cofinality
with ℵω < κ.

But, according to theorems 4 and 5, we have Φ(ℵω, κ, κ+) and X is
both ℵω-compact and κ+-compact, hence theorem 2 implies that X is
κ-compact as well. ¤

Arhangel’skii gave in [1] the following surprising result which shows
that the class of uncountably compact T3-spaces is rather restricted:
Every uncountably compact T3-space X has a (possibly empty) com-
pact subset C such that for every open set U ⊃ C we have |X\U | < ℵω.
Below we show that in this result the T3 separation axiom can be re-
placed by T1 plus van Douwen’s property wD, see e.g. 3.12 in [3].
Since uncountably compact T3-spaces are normal, being also Lindelöf,
and the wD property is a very weak form of normality, this indeed is
an improvement.

Definition 7. A topological space X is said to be κ-concentrated on
its subset Y if for every open set U ⊃ Y we have |X \ U | < κ.

So what we claim can be formulated as follows.

Theorem 8. Every uncountably compact T1 space X with the wD prop-
erty is ℵω-concentrated on some (possibly empty) compact subset C.

Proof. Let C be the set of those points x ∈ X for which every neigh-
bourhood has cardinality at least ℵω. First we show that C, as a
subspace, is compact. Indeed, C is clearly closed in X, hence Lindelöf,
so it suffices to show for this that C is countably compact.

Assume, on the contrary, that C is not countably compact. Then,
as X is T1, there is an infinite closed discrete A ∈ [C]ω. But then by
the wD property there is an infinite B ⊂ A that expands to a discrete
(in X) collection of open sets {Ux : x ∈ B}. By the definition of C we
have |Ux| ≥ ℵω for each x ∈ B.

Let B = {xn : n < ω} be any one-to-one enumeration of B. Then
for each n < ω we may pick a subset An ⊂ Uxn with |An| = ℵn and
set A = ∪{An : n < ω}. But then |A| = ℵω and A has no complete
accumulation point, a contradiction.

Next we show that X is ℵω concentrated on C. Indeed, let U ⊃ C
be open. If we had |X \U | ≥ ℵω then any complete accumulation point
X \ U is not in U but is in C, again a contradiction. ¤

The following easy result, that we add or the sake of completeness,
yields a partial converse to theorem 8.

Theorem 9. If a space X is κ-concentrated on a compact subset C
then X is λ-compact for all cardinals λ ≥ κ.
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Proof. Let A ⊂ X be any subset with |A| = λ ≥ κ. We claim that
we even have A◦ ∩ C 6= ∅. Assume, on the contrary, that every point
x ∈ C has an open neighbourhood Ux with |A ∩ Ux| < λ. Then the
compactness of C implies C ⊂ U = ∪{Ux : x ∈ F} for some finite
subset F of C. But then we have |A ∩ U | < λ, hence |A \ U | = λ ≥ κ,
contradicting that X is κ-concentrated on C. ¤

Putting all these theorems together we immediately obtain the fol-
lowing result.

Corollary 10. Let X be a T1 space with property wD that is ℵn-
compact for each 0 < n < ω. Then X is uncountably compact if and
only if it is ℵω-concentrated on some compact subset.
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