INTERPOLATION OF k-COMPACTNESS AND PCF
ISTVAN JUHASZ AND ZOLTAN SZENTMIKLOSSY

ABSTRACT. We call a topological space k-compact if every subset
of size k has a complete accumulation point in it. Let ®(u, s, \)
denote the following statement: p < k < A = cf(\) and there is
{Se : £ < A} C [k]* such that |[{{ : |Sg N A| = p}| < A whenever
A € [k]<". We show that if ®(u,r,A) holds and the space X
is both p-compact and A-compact then X is k-compact as well.
Moreover, from PCF theory we deduce ®(cf(k),r,x™) for every
singular cardinal k. As a corollary we get that a linearly Lindelof
and N,-compact space is uncountably compact, that is x-compact
for all uncountable cardinals k.

We start by recalling that a point x in a topological space X is
said to be a complete accumulation point of a set A C X iff for every
neighbourhood U of x we have |[U N A| = |A|. We denote the set of all
complete accumulation points of A by A°.

It is well-known that a space is compact iff every infinite subset has
a complete accumulation point. This justifies to call a space k-compact
if every subset of cardinality x in it has a complete accumulation point.
Now, let x be a singular cardinal and k = Y {k, : o < cf(k)} with
Ko < k for each a < cf(k). Clearly, if a space X is both k,-compact
for all @ < cf(k) and cf(k)-compact then X is k-compact as well.
This trivial ”extrapolation” property of x-compactness (for singular
k) implies that in the above characterization of compactness one may
restrict to subsets of regular cardinality.

The aim of this note is to present a new ”interpolation” result on
k-compactness, i.e. one in which ¢ < k < X and we deduce k-
compactness of a space from its u- and A-compactness. Again, this

works for singular cardinals x and the proof uses non-trivial results
from Shelah’s PCF theory.
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Definition 1. Let x, A, u be cardinals, then ®(u, k, \) denotes the fol-
lowing statement: u < k < A = cf(\) and there is {S¢ : £ < A} C [k]*
such that [{£ : |Se N A| = p}| < X whenever A € [k]<".

As we can see from our next theorem, this property ® yields the
promised interpolation result for xk-compactness.

Theorem 2. Assume that ®(p, k,\) holds and the space X is both
u-compact and A-compact. Then X is k-compact as well.

Proof. Let Y be any subset of X with |Y| = k and, using ®(u, k, \),
fix a family {Se : £ < A} C [Y]* such that [{£ : [SeNA| = p}| <
A whenever A € [Y]<". Since X is u-compact we may then pick a
complete accumulation point pe € S¢° for each £ < A.

Now we distinguish two cases. If [{ps : & < A}| < X then the
regularity of A implies that there is p € X with [{§ < XA :pe =p}| = A
If, on the other hand, [{pe : & < A}| = X then we can use the -
compactness of X to pick a complete accumulation point p of this
set. In both cases the point p € X has the property that for every
neighbourhood U of p we have |[{{: |Se N U| = pu}| = A

Since SeNU C Y NU, this implies using ®(yu, x, A) that Y NU| = &,
hence p is a complete accumulation point of Y, hence X is indeed
k-compact. ]

Our following result implies that if ®(u, x, A) holds then x must be
singular.

Theorem 3. If ®(u, k, A) holds then we have cf(u) = cf(k).

Proof. Assume that {S¢ : £ < A} C [k]* witnesses ®(u, k, \) and fix
a strictly increasing sequence of ordinals 7, < k for a < cf(k) that is
cofinal in k. By the regularity of A > k there is an ordinal £ < A such
that |SeN7,| < p holds for each a < cf(k). But this S¢ must be cofinal
in s, hence from |S¢| = p we get cf () < cf(k) < p.

Now assume that we had cf (1) < cf(x) and set [SeNn,| = 14 for each
a < cf(k). Our assumptions then imply p* = sup{p, : @ < cf(k)} < p
as well as cf(k) < p, contradicting that Se = U{S: N1, : a < cf(K)}
and |S¢| = p. This completes our proof. O

According to theorem 3 the smallest cardinal p for which ®(u, k, \)
may hold for a given singular cardinal & is cf(x). Our main result says
that this actually does happen with the natural choice A = k™.

Theorem 4. For every singular cardinal k we have ®(cf(k), k, k™).

Proof. We shall make use of the following fundamental result of Shelah
from his PCF theory: There is a strictly increasing sequence of length
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cf(k) of regular cardinals k, < k cofinal in x and such that in the
product

P = H{/@a ca < cf(k)}

there is a scale {fe : £ < T} of length x*. (This is Main Claim 1.3 on
p. 46 of [2].)

Spelling it out, this means that the kT-sequence {f¢ : { <kT} C P
is increasing and cofinal with respect to the partial ordering <* of
eventual dominance on P. Here for f,g € P we have f <* g iff there is
a < cf(k) such that f(5) < g(8) whenever a < § < cf(k).

Now, to show that this implies ®(cf(k), k, k"), we take the set H =
U{{a} X kq : @ < cf(k)} as our underlying set. Note that then |H| = k
and every function f € P, construed as a set of ordered pairs (or in
other words: identified with its graph) is a subset of H of cardinality
cf (k).

We claim that the scale sequence {f¢ : € < x*} C [H]|(") witnesses
O (cf(k), K, kT). Indeed, let A be any subset of H with |A| < k. We
may then choose a < cf(k) in such a way that |A| < k,. Clearly, then
there is a function g € P such that we have AN({8} x kg) C {8} x g(B)
whenever a < § < cf(k). Since {fe : £ <k} is cofinal in P w.r.t. <*,
there is a £ < k™ with g <* f¢ and obviously we have |[AN f,| < cf(k)
whenever £ <n < kt. O

Note that the above proof actually establishes the following more
general result: If for some increasing sequence of regular cardinals {x,, :
a < cf(k)} that is cofinal in x there is a scale of length A = cf(}) in
the product [[{kq : @ < cf(k)} then ®(cf(k),x, A) holds.

Before giving some further interesting application of the property
O (i, K, A), we present a result that enables us to "lift” the first param-
eter cf(k) in theorem 4 to higher cardinals.

Theorem 5. If ®(cf(k), K, \) holds for some singular cardinal k then
we also have ®(u, k, \) whenever cf(k) < p < Kk with cf(p) = cf(k).

Proof. Let us put cf(k) = ¢ and fix a strictly increasing and cofinal
sequence {k, : a < g} of cardinals below k. We also fix a partition of
K into disjoint sets {H, : a < o} with |H,| = Kk, for each a < p.

Let us now choose a family {S¢ : & < A} C [x]? that witnesses
O(cf(k), k, A). Since A is regular, we may assume without any loss of
generality that |H, N Sg| < p holds for every o < p and £ < A. Note
that this implies [{a : H, NS¢ # 0}| = o for each £ < A.

Now take a cardinal p with cf(u) = ¢ < p < K and fix a strictly
increasing and cofinal sequence {p, : @ < p} of cardinals below pu.
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To show that ®(u,rx,A) is valid, we may use as our underlying set
S =U{H, X s : a < p}, since clearly |S| = k.
For each £ < A let us now define the set T; C S as follows:

Te = U{(Se N Hy) X pio - < o}

Then we have |T¢| = p because [{a : H, N Se # 0} = o. We claim that
{T¢ : € < A} witnesses O(p, k, A).

Indeed, let A C S with |A| < k. For each o < p let B, denote the
set of all first co-ordinates of the pairs that occur in AN (H, X pq) and
set B =U{B, : f < p}. Clearly, we have B C k and |B| < |A| < &,
hence [{£: [SeNB| = o} < A

Now, consider any ordinal £ < X\ with |Se N B| < p. If (y,0) €
(Te N A) N (Hy X pig) for some o < p then we have v € S¢ N By,
consequently H, NS¢ N B # (. This implies that

W =Aa: (TeNA)N(Hy X p1o) # 0}
has cardinality < |Se N B| < p. But for each o € W we have
Te N (Ha X pa)| < 0+ pa < 1,

hence
TeNA=U{(TeNA)N(Hy X po) : v € W}

implies |Te N A| < p as well. But this shows that {7¢ : £ < A} indeed
witnesses ®(u, k, A). O

Arhangel’skii has recently introduced and studied in [1] the class of
spaces that are xk-compact for all uncountable cardinals x and, quite ap-
propriately, called them uncountably compact. In particular, he showed
that these spaces are Lindelof.

We recall that the spaces that are k-compact for all uncountable
reqular cardinals k have been around for a long time and are called
linearly Lindelof. Moreover, the question under what conditions is a
linearly Lindelof space Lindeldf is important and well-studied. Note,
however, that a linearly Lindelof space is obviously comapct iff it is
countably compact, i.e. w-compact. This should be compared with
our next result that, we think, is far from being obvious.

Theorem 6. Fuvery linearly Lindelof and R, -compact space is uncount-
ably compact hence, in particular, Lindelof.

Proof. Let X be a linearly Lindel6f and N,-compact space. Accord-
ing to the (trivial) extrapolation property of rk-compactness that we
mentioned in the introduction, X is k-compact for all cardinals x of
uncountable cofinality. Consequently, it only remains to show that X
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is k-compact whenever k is a singular cardinal of countable cofinality
with N, < k.

But, according to theorems 4 and 5, we have ®(X,, k, k1) and X is
both R, -compact and x*-compact, hence theorem 2 implies that X is
rk-compact as well. O

Arhangel’skii gave in [1] the following surprising result which shows
that the class of uncountably compact T3-spaces is rather restricted:
Every uncountably compact T3-space X has a (possibly empty) com-
pact subset C' such that for every open set U D C' we have | X \U| < N,.
Below we show that in this result the T3 separation axiom can be re-
placed by Ty plus van Douwen’s property wD), see e.g. 3.12 in [3].
Since uncountably compact T3-spaces are normal, being also Lindelof,
and the wD property is a very weak form of normality, this indeed is
an improvement.

Definition 7. A topological space X is said to be k-concentrated on
its subset Y if for every open set U DY we have | X \ U| < k.

So what we claim can be formulated as follows.

Theorem 8. FEvery uncountably compact Ty space X with the wD prop-
erty is W,,-concentrated on some (possibly empty) compact subset C'.

Proof. Let C' be the set of those points x € X for which every neigh-
bourhood has cardinality at least N,. First we show that C, as a
subspace, is compact. Indeed, C' is clearly closed in X, hence Lindelof,
so it suffices to show for this that C' is countably compact.

Assume, on the contrary, that C' is not countably compact. Then,
as X is Ty, there is an infinite closed discrete A € [C]“. But then by
the wD property there is an infinite B C A that expands to a discrete
(in X)) collection of open sets {U, : x € B}. By the definition of C' we
have |U,| > R, for each z € B.

Let B = {x, : n < w} be any one-to-one enumeration of B. Then
for each n < w we may pick a subset A, C U,, with |4,| = X, and
set A = U{4, : n < w}. But then |A] = X, and A has no complete
accumulation point, a contradiction.

Next we show that X is N, concentrated on C. Indeed, let U D C
be open. If we had | X'\ U| > R, then any complete accumulation point
X \ U is not in U but is in C, again a contradiction. U

The following easy result, that we add or the sake of completeness,
yields a partial converse to theorem 8.

Theorem 9. If a space X is k-concentrated on a compact subset C
then X is A-compact for all cardinals \ > k.
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Proof. Let A C X be any subset with |A| = A > k. We claim that
we even have A° N C # (). Assume, on the contrary, that every point
x € C has an open neighbourhood U, with |A N U,| < A. Then the
compactness of C' implies C C U = U{U, : x € F} for some finite
subset F' of C'. But then we have |[ANU| < A, hence |[A\ U| = XA > &,
contradicting that X is k-concentrated on C. U

Putting all these theorems together we immediately obtain the fol-
lowing result.

Corollary 10. Let X be a Ty space with property wD that is N, -
compact for each 0 < n < w. Then X s uncountably compact if and
only if it is N, -concentrated on some compact subset.
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