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ABSTRACT. Given an ideal Z on w let a(Z) (a(Z)) be minimum of
the cardinalities of infinite (uncountable) maximal Z-almost dis-
joint subsets of [w]*. We show that a(Z,) > w if Z;, is a summable
ideal; but a(Z;) = w for any tall density ideal Z; including the
density zero ideal Z. On the other hand, you have b < a(Z) for
any analytic P-ideal Z, and a(Z;) < a for each density ideal Zj.

For each ideal Z on w denote bz and 07 the unbounding and
dominating numbers of (w*, <7) where f <7 giff {n € w: f(n) >
g(n)} € Z. We show that bz = b and 27 = 0 for each analytic
P-ideal 7.

Given a Borel ideal 7 on w we say that a poset P is Z-bounding
iff Ve e INVF Iy € INV x C y. Pis I-dominatingiff 3y € TNVFE
VeeINV xChy.

For each analytic P-ideal Z if a poset P has the Sacks proper-
ty then P is Z-bounding; moreover if 7 is tall as well then the
property Z-bounding/Z-dominating implies w*-bounding/adding
dominating reals, and the converses of these two implications are
false.

For the density zero ideal Z we can prove more: (i) a poset P
is Z-bounding iff it has the Sacks property, (ii) if P adds a slalom
capturing all ground model reals then P is Z-dominating.

1. INTRODUCTION

In this paper we investigate some properties of some cardinal invari-
ants associated with analytic P-ideals. Moreover we analyze related
“bounding” and “dominating” properties of forcing notions.

Let us denote fin the Frechet ideal on w, i.e. fin = [wW]<¥. Further
we always assume that if Z is an ideal on w then the ideal is proper,
ie. w ¢ T, and fin C Z, so especially Z is non-principal. Write Z+ =
P(w)\Z and T* = {w\X : X € T}.
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An ideal Z on w is analytic if T C P(w) ~ 2¥ is an analytic set in
the usual product topology. 7 is a P-ideal if for each countable C C 7
there is an X € 7 such that Y C* X for each Y € C, where A C* B iff
A\B is finite. 7 is tall (or dense) if each infinite subset of w contains
an infinite element of 7.

A function ¢ : P(w) — [0,00] is a submeasure on w iff p(X) <
e(Y)for X CY Cw, p(XUY) < o(X) + ¢(Y) for X,V C w, and
o({n}) < oo for n € w. A submeasure ¢ is lower semicontinuous iff
©(X) = lim, o (X Nn) for each X C w. A submeasure ¢ is finite if
p(w) < oo. Note that if ¢ is a lower semicontinuous submeasure on w
then ©(|U,c. An) < 2w ©(An) holds as well for A, C w. We assign
the ezhaustive ideal Exh(p) to a submeasure ¢ as follows

Exh(p) = {X Cw: Tim p(X\n) = 0}.

Solecki, [So, Theorem 3.1], proved that an ideal Z C P(w) is an
analytic P-ideal or Z = P(w) iff Z = Exh(y) for some lower semicon-
tinuous finite submeasure. Therefore each analytic P-ideal is F,s (i.e.
I19) so a Borel subset of 2. Tt is straightforward to see that if ¢ is a
lower semicontinuous finite submeasure on w then the ideal Exh(y) is
tall iff lim,, . p({n}) = 0.

Let Z be an ideal on w. A family A C Z" is Z-almost-disjoint (Z-AD
in short), if AN B € 7 for each {A, B} € [A]>. An Z-AD family A is
an Z-MAD family if for each X € Z7 there exists an A € A such that
XNAeZI", ie AisC-maximal among the Z-AD families.

Denote a(Z) the minimum of the cardinalities of infinite Z-MAD
families. In Theorem 2.2 we show that a(Z,) > w if Z; is a summable
ideal; but a(Z;) = w for any tall density ideal Z; including the density

zero ideal A
Z:{Agw: lim m:()}.

n—oo n
On the other hand, if you define a(Z) as minimum of the cardinalities of
uncountable Z-MAD families then you have b < a(Z) for any analytic
P-ideal Z, and a(Z;) < a for each density ideal Z; (see Theorems 2.6
and 2.8).

In Theorem 3.1 we prove under CH the existence of an uncountable
Cohen-indestructible Z-MAD families for each analytic P-ideal Z.

A sequence (A, : o < k) C [w]* is a tower if it is C*-descending, i.e.
Ag € A, if o < B < K, and it has no pseudointersection, i.e. a set
X € [w]¥ such that X C* A, for each @ < k. In Section 4 we show
it is consistent that the continuum is arbitrarily large and for each tall
analytic P-ideal Z there is towers of height w; whose elements are in
A
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Given an ideal Z on w if f,g € w¥ write f <z gif {n € w: f(n) >
g(n)} € Z. As usual let <*=<g,. The unbounding and dominating
numbers of the partially ordered set (w*, <7), denoted by bz and 07
are defined in the natural way, i.e. bz is the minimal size of a <z-
unbounded family, and 07 is the minimal size of a <7-dominating fam-
ily. By these notations b = bg, and 0 = 0g,. In Section 5 we show that
bz = b and 07 = 0 for each analytic P-ideal Z. We also prove, in Corol-
lary 6.8, that for any analytic P-ideal Z a poset P is <z-bounding iff it
is w*-bounding, and P adds <z-dominating reals iff it adds dominating
reals.

In Section 6 we introduce the Z-bounding and Z-dominating proper-
ties of forcing notions for Borel ideals: P is Z-bounding iff any element
of TN VT is contained in some element of Z N V; P is Z-dominating iff
there is an element in Z NV which mod-finite contains all elements of
InvVv.

In Theorem 6.2 we show that for each tall analytic P-ideal 7 if a
forcing notion is Z-bounding then it is w“-bounding, and if it is Z-
dominating then it adds dominating reals. Since the random real forc-
ing is not Z-bounding for each tall summable and tall density ideal Z
by Proposition 6.3, the converse of the first implication is false. Since a
o-centered forcing can not be Z-dominating for a tall analytic P-ideal
Z by Theorem 6.4, the standard dominating real forcing D witnesses
that the converse of the second implication is also false.

We prove in Theorem 6.5 that the Sacks property implies the Z-
bounding property for each analytic P-ideal Z.

Finally, based on a theorem of Fremlin we show that the Z-bounding
property is equivalent to the Sacks property.

2. AROUND THE ALMOST DISJOINTNESS NUMBER OF IDEALS

For any ideal Z on w denote a(Z) the minimum of the cardinalities
of infinite Z-MAD families.

To start the investigation of this cardinal invariant we recall the
definition of two special classes of analytic P-ideals: the density ideals
and the summable ideals (see [Fal).

Definition 2.1. Let & : w — R* be a function such that > _ h(n) =
00. The summable ideal corresponding to h is

Ih:{Agw:Zh(n)<oo}.

neA
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Let (P, : n < w) be a decomposition of w into pairwise disjoint nonempty

finite sets and let ji = (u, : n € w) be a sequences of probability mea-
sures, [, : P(P,) — [0,1]. The density ideal generated by i is

i={ACuw: lim p,(ANP,) =0}.

A summable ideal 7}, is tall iff lim,, ., h(n) = 0; and a density ideal
Z; is tall iff
(t i iy () = 0.

n—oo 1€Py,

Clearly the density zero ideal Z is a tall density ideal, and the sum-
mable and the density ideals are proper ideals.

Theorem 2.2. (1) a(Zy,) > w for any summable ideal Iy,
(2) a(Zz) = w for any tall density ideal Z;.

Proof. (1): We show that if {4, : n < w} C Z;} is Z-AD then there is
B € Z,} such that BN A, €T forn € w.
For each n € w let B, C A, \ U{A,, : m < n} be finite such that
> icp, M(i) > 1, and put
B =U{B, :n € w}.

(2): Write i = (u, : n € w) and p, concentrates on P,. By (f) we
have lim,, ., |P,| = oc.
Now for each n we can choose k,, € w and a partition {P, : k < k,}
of P, such that
(a) lim,, o Kk, = 00,
(b) if k < k,, then p,(P,x) > Qk%
Put Ay = U{P,x : k < k,} for each k € w. We show that {Ay : k € w}
is a Z;-MAD family.
If k,, > k then p,(AxNP,) = pn(Pog) > Qkﬂ Since for an arbitrary
k for all but finitely many n we have k, > k it follows that

. . 1 1
lin sup o, (A, O ) = Hmsup i (B ) 2 imsup o = 05 > 0,

thus A, € Z;
Assume that X € ZI. Pick ¢ > 0 with limsup,,_ . pn(X N P,) > ¢
For a large enough k we have # < §soif k <k, then
P\ LB i S BY) € gy < o
So for each large enough n there is i,, < k such that p,(X N P,;,)
7 Then 4, = ¢ for infinitely many n, so limsup,,_,. (X N A4;)

and so X N A4, EZ+

(k+1

VARV

ST
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This Theorem gives new proof of the following well-known fact:
Corollary 2.3. The density zero ideal Z is not a summable ideal.

Given two ideals Z and J on w write Z <gk J (see |Ru]) iff there is
a function f :w — w such that

I={ICw:f'1eJ},

and write Z <gp J (see [LaZh]) iff there is a finite-to-one function
f :w — w such that

I={ICuw:f'reJg}

The following Observations imply that there are Z-MAD families of
cardinality ¢ for each analytic P-ideal Z.

Observation 2.4. Assume that T and J are ideals on w, T <gx J
witnessed by a function f @ w — w. If Ais an Z-AD family then
{f'A: Ae A} is a T-AD family.

Observation 2.5. fin <gg Z for any analytic P-ideal .

Proof. Let T = Exh(p) for some lower semicontinuous finite submea-
sure ¢ on w. Since w ¢ Z we have lim,_ p(w\n) =& > 0. Hence by
the lower semicontinuous property of ¢ for each n > 0 there is m > n
such that ¢([n,m)) > ¢/2.

So there is a partition {I,, : n < w} of w into finite pieces such that
o(I,) > €/2 for each n € w. Define the function f : w — w by the
stipulation I, = {n}. Then f witnesses fin <gp Z. O

For any analytic P-ideal Z denote a(Z) the minimum of the cardi-
nalities of uncountable Z-MAD families.

Clearly a(Z) > w implies a(Z) = a(Z), especially a(Z,) = a(Z) for
summable ideals.

Theorem 2.6. a(Z;) < a for each density ideal Zj.

Proof. Let f : w — w be the finite-to-one function defined by f~'{n} =
P, where ji = (u, : n € w) and p, : P(P,) — [0,1]. Specially f
witnesses fin <gp Zj.

Let A be an uncountable (fin-)MAD family. We show that f~![A] =
{f'A: Ae A} is a Z;-MAD family.

By Observation 2.4, f~'[A] is a Z;-AD family.

To show the maximality let X € Z;r be arbitrary, lim sup,, . (XN
P,) =¢>0. Thus

J={necw: u,(XNP,)>e/2}
1s infinite. So there is A € A such that AN J is infinite.
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Then f~'A € f~'[A] and XNf~'A € Z] because there are infinitely
many n such that we have P, C f~'A and p,(X N B,) > /2. O

Problem 2.7. Does a(Z) < a hold for each analytic P-ideal Z?
Theorem 2.8. b < a(Z) provided that T is an analytic P-ideal.

Remark. It X C [w}w is an infinite almost disjoint family then there is
a tall ideal Z such that X is Z-MAD. So the Theorem above does not
hold for an arbitrary tall ideal on w.

Proof. T = Exh(yp) for some lower semicontinuous finite submeasure (.
Let A be an uncountable Z-AD family of cardinality smaller than b.
We show that A is not maximal.
There exists an € > 0 such that the set

A.={AecA: lim (A\n) > e}

is uncountable. Let A" = {A, : n € w} C A. be a set of pairwise
distinct elements of A.. We can assume that these sets are pairwise
disjoint. For each A € A\ A’ choose a function f4 € w* such that

(*4) P((ANA,)\ fa(n)) <27 for each n € w.

Using the assumption |A| < b there exists a strictly increasing func-
tion f € w¥ such that f4 <* f for each A € A\ A'. For each n pick
g(n) > f(n) such that ¢(A, N [f(n),g(n))) > ¢, and let

X = U (Anm [f(n),g(n)))

new

Clearly X € Zg because for each n < w there is m such that A,, N
[£(m),g(m)) € X\n and s0 (X \ 1) > ¢(An 1 [f(m), g(m)) > &, L.
lim,, . p(X\n) > €.

We have to show that X N A € Z; for each A € A. If A = A, for
some n then X NA=XNA,=A,N[f(n),g(n)), i.e. the intersection
is finite.

Assume now that A € A\A’". Let 6 > 0. We show that if k is large
enough then o((ANX)\ k) <.

There is N € w such that 27Vt < § and fa(n) < f(n) for each
n > N.

Let k be so large that k contains the finite set (J,,_y[f(n), g(n)).
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Now (X N ANk = U,e, (4n N AN [f(n),g(n)))\k and (A, N AN
[f(n),9(n)))\k=0if n < N so

(XA ANk = [ (A0 AN [F(n),g(n)\k €

n>N

U ((An n D\ F(n) € [ (A0 AN\ fa(n).

n>N n>N

Thus by (%) we have

P(XNANE) < 3 p(An A\ faln) € 3 oo =27 <6

n>N n>N

O

3. COHEN-INDESTRUCTIBLE Z-MAD FAMILIES

If ¢ is a lower semicontinuous finite submeasure on w then clearly
¢ is determined by ¢ [ [w]<¥. Using this observation one can define
forcing indestructibility of Z-MAD families for an analytic P-ideal Z.
The following Theorem is a modification of Kunen’s proof for existence
of Cohen-indestructible MAD family from CH (see [Ku| Ch. VIII Th.
2.3.).

Theorem 3.1. Assume CH. For each analytic P-ideal I then there is
an uncountable Cohen-indestructible T-MAD family.

Proof. We will define the uncountable Cohen-indestructible Z-MAD
family {A¢ : & < wi} € Z7 by recursion on & € wy. The family
{A¢ : € < wy} will be fin-AD as well. Our main concern is that we do
have a(Z) > w so it is not automatic that {A, : n < £} is not maximal
for £ < wy.

Denote C the Cohen forcing. Let Z = Exh(y) be an analytic P-ideal.
Let {(pe, Xe, 0¢) 1 w < € < wy } be an enumeration of all triples (p, X, 8)
such that p € C, X is a nice name for a subset of w, and § is a positive
rational number.

Write e = lim,, o ¢(w \ n) > 0. Partition w into infinite sets {4, :
m < w} such that lim, . (A, \ n) = ¢ for each m < w.

Assume £ > w and we have A, € ZT for n < £ such that {4, : n < ¢}
is a fin-AD so especially an Z-AD family.

Claim: There is X € Z" such that | X N A¢| < w for { < &.

Proof of the Claim. Write £ = {(; : i <w}. Recursion on j € w we can
choose z; € [A@j} < for some ¢; € w such that

(i) p(z;) = €/2,
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(i) z; N (Uig;Ag) = 0.
Assume that {z; : i < j} is chosen. Pick ¢; € w\ {¢; : i < j}. Let
m € w such that A, NU{A¢, : i < j} € m. Since p(A4,, \ m) > ¢ there
is 7; € [Ag,\m] = with w(x;) > /2.

Let X = U{z; : j < w}. Then |[A; N X]| < w for ( < ¢ and
lim,, (X \ n) > £/2. O

If pe does not force (a) and (b) below then let As be X from the
Claim.
(a) lim,, o @(Xg\n) > 55,
by Vn<&X:nA, €T

Assume pe IF(a)A(b). Let {BS : k € w} = {4, : n < £} and
{ph kcw}={p €C:p <p} be enumerations. Clearly for each
k € w we have

p5 I lim @((Xg\ U{B;:1< E\n) > b,

so we can choose a ¢ < pi and a finite a§ C w such that ¢(a}) > d¢
and ¢¢ IF a5 C (X \U{B: : 1 < EV)\k. Let Ac = U{d} : k € w}.
Clearly A € Z% and {A, : n < &} is a fin-AD family.

Thus A= {A4¢:{ <wi} CZ7T is a fin-AD family.

We show that A is a Cohen-indestructible Z-MAD. Assume otherwise
there is a & such that pg |- lim,,_o, ¢(Xe\n) > 0:AV 1 < wy XeNA, € Z,
specially pe IF(a)A(b). There is a pi < pe and an N such that pi I+
G((XeNA)\N) < d¢. We can assume k > N, so pf, IF ((XeNA)\k) <
d¢. By the choice of ¢ and d§ we have ¢; I- @ C (Xe N Ag)\k, so
i IF @((Xe N Ag)\k) > d¢, contradiction. O

4. TOWERS IN Z*

Let Z be an ideal on w. A C*-decreasing sequence (A, : a < k) is a
tower in T* if (a) it is a tower (i.e. there is no X € [w]” with X C* A4,
for a < k), and (b) A, € Z* for a < k. Under CH it is straightforward
to construct towers in Z* for each tall analytic P-ideal Z. The existence
of such towers is consistent with 2“ > w; as well by the Theorem 4.2
below. Denote C, the standard forcing adding o Cohen reals by finite
conditions.

Lemma 4.1. Let T = Exh(p) be a tall analytic P-ideal in the ground
model V. Then there is a set X € VE'NT such that | X N S| =w for
each S € [w}w nv.
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Proof. Since T is tall we have lim,_ .., ¢({n}) = 0. Fix a partition
(I, : n € w) of w into finite intervals such that ¢({z}) < 5= for @ € I,
(we can not say anything about ¢({z}) for x € Ij). Then X' € 7
whenever | X' N [,| <1 for each n.

Let {i} : k < k,} be the increasing enumeration of I,,. Our forcing
C adds a Cohen real ¢ € w® over V. Let

X, ={i% :¢(n) = kmod k,} e VENT.
A trivial density argument shows that |X, N S| = w for each S €
VN [w]”. O
Theorem 4.2. I-c,, "There exists a tower in I* for each tall analytic
P-ideal Z."

Proof. Let V be a countable transitive model and G be a C,,-generic
filter over V. Let Z = Exh(y) be a tall analytic P-ideal in V[G] with
some lower semicontinuous finite submeasure @ on w. Thereis a § < wq
such that ¢ | [w]<¥ € V[Gs| where G5 = G N Cy, so we can assume
ol W eV.

Work in V[G] recursion on w; we construct the tower A = (A4, : a <
wi) in Z* such that A | a € V[G,].

Because 7 contains infinite elements we can construct in V' a sequence
(A, :n € w) in Z* which is strictly C*-descending, i.e. |A,\Api1| = w
for n € w. Assume (A¢ : { < ) are done.

Since 7 is a P-ideal there is A] € 7* with A! C* Ag for § < a.

By lemma 4.1 there is a set X, € V[G4.1]NZ such that X, NS # ()
for each S € [w]” NV[Ga).

Let Ay = A\X, € V[Gos1] NI s0 S €* A, for any S € V[G,] N
[w]“. Hence V[G] E"(A, : @ < wy) is a tower in Z*". O

Problem 4.3. Do there exist towers in Z* for some tall analytic P-ideal
7 in ZFC?

5. UNBOUNDING AND DOMINATING NUMBERS OF IDEALS

A supported relation (see [Vol) is a triple R = (A, R, B) where R C
A x B, dom(R) = A, ran(R) = B, and we always assume that for each
b € B there is an a € A such that (a,b) ¢ R.

The unbounding and dominating numbers of R:

b(R) =min{|A|: A CAAVbe BA ¢ R'{b}},
(R)=min{|B|: B CBANA=R'B'}.
For example by = b(w*, <7,w¥) and 97 = d(w*, <7,w*). Note that
b(R) and 9(R) are defined for each R, but in general b(R) < ?(R)
does not hold.
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We recall the definition of Galois-Tukey connection of relations.

Definition 5.1. ([VO]) Let Rl = (Al, Rl, Bl) and RQ = (AQ, RQ, Bg) be
supported relations. A pair of functions ¢ : Ay — Ay, ¢ : By — Bjis a
Galois-Tukey connection from Ry to R, in notation (¢,1) : Ry < Re
if a3 Ry (by) whenever ¢(a;)Rabs. In a diagram:
w(bg) c B1 # BQ > bQ
R, <~ Ry
a; € Ay ., Ay 3 d(ay)

We write Ry < Ry if there is a Galois-Tukey connection from R; to
Ro. It Ry X Ry and Ry < R also hold then we say R; and R, are
Galois-Tukey equivalent, in notation Ry = Ro.

Fact 5.2. If R1 = Ry then b(R1) > b(Ry) and 9(R1) < 0(Rs).
Theorem 5.3. If 7 <gg J then (v, <r,w*) = (W, <7,w").

Proof. Fix a finite-to-one function f : w — w witnessing Z <gg J.
Define ¢, : w¥ — w* as follows:

¢(x)(i) = max(a" f~H{i}),
U(y) () = y(f ().
We prove two claims.
Claim 5.3.1. (¢,¢) : (w*, <7,0%) < (W, <7,w").

Proof of the claim. We show that if ¢(z) <7 y then z <7 ¥ (y). Indeed,
I ={i: ¢()i) > y)} € Z. Assume that f(j) = i ¢ I. Then
() (i) = max(z"f~H{i}) < y(i). Since y(i) = P(y)(j), so

z(7) < max(z”f~H{f()}) < y(f()) = ¢(¥)(5)
Since f~'I € J this yields x <7 ¥(y). O
Claim 5.3.2. (¢, ¢) : (w*, <7,w*) < (w¥, <7,w").

Proof of the claim. We show that if ¢(y) <7 x then y <7 ¢(z). As-
sume on the contrary that y €7 ¢(x). Then A = {i € w : y(i) >
é(x)(i)} € ZT. By definition of ¢, we have A = {i : y(i) > max(2” f~'{i})}.
Let B=f'A€ JT. For j € B we have f(j) € A and so
D(y)(7) = y(f(7) > ¢(2)(f(5)) = max(z"f{f(5)}) = 2(j).

Hence ¢(y) £7 x, contradiction. O
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These claims prove the statement of the Theorem, so we are done.
O

By Fact 5.2 we have:
Corollary 5.4. If 7 <gp J holds then bz = bs and 07 = 0.
By Observation 2.5 this yields:

Corollary 5.5. If T is an analytic P-ideal then (w*, <*, w*) = (w¥, <7
,wY), and by = b and 07 = 0.

6. Z-BOUNDING AND Z-DOMINATING FORCING NOTIONS

Definition 6.1. Let Z be a Borel ideal on w. A forcing notion P is
Z-bounding if

FpVAeZTIdBeINV AC B,
P is Z-dominating if
FpdBeIVAeINV AC"B.

Theorem 6.2. Let T be a tall analytic P-ideal. If P is Z-bounding then
P is w¥-bounding as well; if P is T-dominating then P adds dominating
reals.

Proof. Assume that Z = Exh(p) for some lower semicontinuous finite
submeasure ¢. For A € 7T let

da(n) =min{k € w: p(A\ k) <27"}.

Clearly if A C B € 7 then d4 < dp.

It is enough to show that {d4 : A € T} is cofinal in (w*, <*). Let f €
w®. Since 7 is a tall ideal we have limy_.. p({k}) = 0 but lim,, o (w\
m) = & > 0. Thus for all but finite n € w we can choose a finite set
A, Cw\f(n) such that 27 < p(A4,) <27"so A=U{4,:new}e
7 and f <" djg.

Why? We can assume if & > f(n) then ¢({k}) < 27". Let n be
so large such that 27" < e. Now if there is no a suitable A,, then
e(w\f(n)) < 27" < ¢, contradiction. O

The converse of the first implication of Theorem 6.2 is not true by
the following Proposition.

Proposition 6.3. The random forcing is not Z-bounding for any tall
summable and tall density ideal Z.
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Proof. Denote B the random forcing and A the Lebesgue-measure.
If 7 = 1, is a tall summable ideal then we can chose pairwise dis-
joint sets H(n) € [w]* such that 37,y k(1) = 1 and max{h(l) : | €
H(n)} < 27" for each n € w. Let H(n) = {I} : k € w}. For each n
fix a partition {[B}] : k € w} of B such that )\(Bk) = h(I}) for each
k € w. Let X be a B-name such that IFg X = {I7 : [B?] € G}. Clearly

IFg X e Ih. X shows that B is not Zp-bounding.
Assume on the contrary that there is a [B] € B and an A € 7}, such
that [B] IF X C A. There is an n € w such that

D OABE) =D h(I) < AB

IneA IneA
Choose a k such that I} ¢ A and [BR]A[B] # [0]. We have [BY]A[B] IF
I € X\A, contradiction.

If 7 = Z; is a tall density ideal then for each n fix a partition
{[B] : k € P} of B such that A(By) = p,({k}) for each k. Let X be
a B-name such that IFg X = {k : [B"] € G}. Clearly b5 X € Z;. X
shows that B is not Z;-bounding.

Assume on the contrary that there is a [B] € B and an A € Z; such

that [B] IF X C A. There is an n € w such that

> ABY) = (AN P,) < A(B).

keANP,
Choose a k € P,\A such that [By] A [B] # [#]. We have [B] A [B] IF
k € X\A, contradiction. O

The converse of the second implication of Theorem 6.2 is not true as
well: the Hechler forcing is a counterexample according to the following
Theorem.

Theorem 6.4. If P is o-centered then P is not Z-dominating for any
tall analytic P-ideal Z.

Proof. Assume that Z = Exh(p) for some lower semicontinuous finite
submeasure ¢. Let ¢ = lim,, o ¢(w \ n) > 0.

Let P = U{C, : n € w} where C,, is centered for each n. Assume on
the contrary that Ibp X €e ZAV Ae€ZINV AC* X for some P-name
X.

For each A € Z choose a py € P and a k4 € w such that
(0) palk A\ks € X A (X \ ka) <e/2.
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For each n,k e wlet Cpy = {A €T :ps € C, ANka =k}, and let
B, = C, k. We show that for each n and k

o(Bnr \ k) <e/2.

Assume indirectly ¢(B,\k) > /2 for some n and k. There is a &’
such that ¢(B,, N [k, k")) > €/2 and there is a finite D C C,, such
that B, N [k, k") = (UD) N [k, k'). Choose a common extension ¢ of
{pa: A€ D}. Now we have ¢IF U{A\k: A€ D} C X and so

¢ I £/2 < (Buinlk, k) = o((UD)N[k, K')) < p(XN[k, k) < o(X\k),

which contradicts (o).
So for each n and k the set w \ B, is infinite, so w \ B, contains
an infinite D, , € Z. Let D € Z such that D, ;, C* D for each n, k € w.
Then there is no n, k such that D C* B, . Contradiction. ]

By this Theorem an by Lemma 4.1 the Cohen forcing is neither Z-
dominating nor Z-bounding for any tall analytic P-ideal Z.

Finally in the rest of the paper we compare the Sacks property and
the Z-bounding property.

Theorem 6.5. If P has the Sacks property then P is Z-bounding for
each analytic P-ideal T.

Proof. Let T = Exh(p). Assume IFp X € Z. Let dy be a P-name for
an element of w* such that Ibp dy(7) = min{k € w : (X \k) < 27"}
We know that P is w*-bounding. If p IF dy < f for some strictly
increasing f € w* then by the Sacks property there is a ¢ < p and a
slalom S : w — [[w]<]™, |S(n)| < n such that

qIFV°n X N[f(n), f(n+1)) € S(n).

Now let

A=|J{D e Sn): ¢(D) <27},
A € T because p(A\f(n)) < > 4, e(AN[f(k), f(k+1)) <> isn 35
Clearly ¢ IF X C* A. O

A supported relation R = (A, R, B) is called Borel-relation iff there
is a Polish space X such that A, B C X and R C X? are Borel sets.
Similarly a Galois-Tukey connection (¢,1)) : R1 < Ry between Borel-
relations is called Borel GT-connection iff ¢ and 1) are Borel functions.
To be Borel-relation and Borel GT-connection is absolute for transitive
models containing all relevant codes.

Some important Borel-relation:
(A): (Z,C,7) and (Z,C*, Z) for a Borel ideal 7.
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(B): Denote Slm the set of slaloms on w, ie. S € SIm iff §: w —
[w]<“ and |S(n)| = 2™ for each n. Let C and C* be the following
relations on w* x Slm:

fEW S «— V¥ necwf(n) e Sn).

The supported relations (w*”, C, Slm) and (w*, C*, Slm) are Borel-relations.

(C): Denote £{ the set of positive summable series. Let < be the
coordinate-wise and <* the almost everywhere coordinate-wise ordering
on (. (¢f,<,¢]) and (¢f,<*,¢]) are Borel-relations.

Definition 6.6. Let R = (A, R, B) be a Borel-relation. A forcing
notion P is R-bounding if

lFpVae Adbe BNV aRb;
R-dominating if

IFp 3b € BYae€ ANV aRb.

For example the property Z-bounding/dominating is the same as
(Z, C*, 7)-bounding/dominating.
We can reformulate some classical properties of forcing notions:

w*-bounding = (w”, <®, w*)-bounding

(w¥, <, w¥)-dominating
(w*, %, SIm)-bounding

adding a slalom capturing = (w“, C*, Slm)-dominating

adding dominating reals

Sacks property

all ground model reals
If R = (A, R, B) is a supported relation then let R+ = (B, ~R~!, A)
where b(—=R™1)a iff not aRb. Clearly (R+)t = R and b(R) = 0(R").
Now if R is a Borel-relation then R+ is a Borel-relation too, and a
forcing notion is R-bounding iff it is not R*+-dominating.

Fact 6.7. Assume R, < Rq are Borel-relations with Borel GT-connection
and P is a forcing notion. If P is Ro-bounding/dominating then P is
R1-bounding/dominating.

By Corollary 5.5 this yields

Corollary 6.8. For each analytic P-ideal T (1) a poset P is <z-
bounding iff it is w*-bounding, (2) forcing with a poset P adds <z-
dominating reals iff this forcing adds dominating reals.

We will use the following Theorem.

Theorem 6.9. (|Fr] 526B, 5241) There are Borel GT-connections (Z,C
L Z) 2 (0, < 0f) and (07, < 6f) = (w0, E7, Slm).
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Note that there is no any Galois-Tukey connection from (¢, <, ¢})
to (Z,C, 2) so they are not GT-equivalent (see [LoVe|) Th. 7.).

Corollary 6.10. If P adds a slalom capturing all ground model reals
then P is Z-dominating.

Proof. By Fact 6.7 and Theorem 6.9 adding slalom is the same as
(¢f,<*,¢])-dominating. Let & be a P-name such that IFp # € (7 AV
y € {f NV y <* & Moreover let X be a P-name such that IFp
X ={zelf :|2\i] <w Vn (z2(n) # in) = 2(n) € w)}. Let
(p,0) : (Z2,C,2) = (£F,<,4f) be a Borel GT-connection. Now if A
is a P-name such that IFp V z € X 9(z) C* A then A shows that P is
Z-dominating. U

Denote D the dominating forcing and LOC the Localization forcing.

Observation 6.11. If 7 is an arbitrary analytic P-ideal then two step
iteration D x LOC s Z-dominating.

Indeed, let Z € V C M C N be transitive models, d € M N w*
be strictly increasing and dominating over V, and S € N, § : w —
[w]<]™, |S(n)| < n a slalom which captures all reals from /. Now
if

X,=U{de S(n)NP([dn),din+1)): p(A) <27}
then it is easy to see that ¥ C* U{X,, : n € w} € ZN N for each
YeVnli.

Problem 6.12. For which analytic P-ideal Z does (Z, C*),7) < (¢, <®
1) hold, or “adding slaloms” imply Z-dominating, or at least LOC is
Z-dominating?

Problem 6.13. Does Z-dominating (or Z-dominating) imply adding
slaloms?

We will use the following deep result of Fremlin to prove Theorem
6.15.

Theorem 6.14. ([Fr| 526G) There is a family {Ps : f € w*} of Borel
subsets of (1 such that the following hold:

) & =0{Py: f ew?},
(ii) if f < g then Py C P,,
(iil) (Pr, <, 0) < (Z,C, Z) with a Borel GT-connection for each f.

Theorem 6.15. P is Z-bounding iff P has the Sacks property.
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Proof. Let {P : f € w*} be a family satisfying (i), (ii), and (iii) in
Theorem 6.14, and fix Borel GT-connections (¢, ;) : (Pr, <, ¢f) <
(Z,C, Z) for each f € w”. Assume P is Z-bounding and IFp & € (. P
is w*-bounding by Theorem 6.2 so using (ii) we have IFp ¢ = U{P; :
few’NV}. We can choose a P-name f for an element of w* NV such
that I-p & € P;. By Z-bounding property of P’ there is a P-name A for

an element of ZNV such that Ibp ¢ (&) C A, solFp @ < wf-(/l) elnv.

So we have P is (¢, <™, ¢])-bounding. By Theorem 6.9 and Fact 6.7
P has the Sacks property.

The converse implication was proved in Theorem 6.5.
O

Problem 6.16. Does the Z-bounding property imply the Sacks prop-
erty for each tall analytic P-ideal Z7?
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