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Abstract

Denote by G and D, respectively, the the homomorphism poset of the finite
undirected and directed graphs, respectively.

A maximal antichain A in a poset P splits if A has a partition (B, C') such
that for each p € P either b <p p for some b € B or p <, ¢ for some c € C.

We construct both splitting and non-splitting infinite maximal antichains
in G and in D.

A point y € P is a cut point in a poset P if and only if there is x <,<p y < z
such that [z, 2] = [z,y] U [y, z]. We show if G € D contains any directed circle,
then G can not be a cut point in D.

1 Introduction

For any fixed type of finite relational structure, homomorphisms induce an ordering
of the set of all structures. In particular, given two graphs [respectively, directed
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graphs| G and H write G < H or G — H provided that there is a homomorphism
from G to H, that is, a map f : V(G) — V(H) such that for all {z,y} € E(G),
{f(x), f(y)} € E(H) [respectively, for all (x,y) € E(G), (f(x), f(y)) € E(H)]. Then
the relation < is a quasi-order and so it induces an equivalence relation: we say that G
and H are homomorphism-equivalent or hom-equivalent, and write G ~ H if and only
if G < H and H < G. The homomorphism posets G and ID are the partially ordered
sets of all equivalence classes of finite undirected and directed graphs, respectively,
ordered by the <. We will often abuse notation by replacing the classes that comprise
G and D with their members.

These partially ordered sets are of significant intrinsic interest and are useful tools
in the study of graph and digraph properties. For instance, it is easily seen that both
are countable distributive lattices: the supremum, or join, of any pair is their disjoint
sum, and the infimum, or meet, is their categorical or relational product. Both G
and D are “predominantly” dense — the former shown by Welzl [19] and the latter,
by Nesetfil and Tardif [15]. Both also embed all countable partially ordered sets —
see [18] for a presentation.

The maximal chains and antichains of an ordered set are subobjects of interest. In
this case, maximal antichains are particularly relevant because of their relationship
to the notion of a homomorphism duality, introduced by Nesetfil and Pultr [13]: say
that an ordered pair (F, D) of graphs, or directed graphs, is a duality pair if

F—=-=»D (1)

where F— = {G: F — G} and »D = {G:G - D}. Equivalently, the set of all
structures is partitioned by the upset F'— and the downset — D. [Here we use the
other common notation F! and D' for upsets and downsets, respectively.]

One important motivation for consideration of duality pairs is that of an “ob-
struction” to a graph property. For instance, the possibility of a homomorphism of
a graph G to Ks, a 2-coloring, is obstructed by the existence of a homomorphism of
some odd cycle to G. While there are no nontrivial duality pairs in G, in D, each
tree can play the role of F' in (1). In fact, in [15], Nesetfil and Tardif obtain a cor-
respondence between duality pairs and gaps in the homomorphism order for general
relational structures. They use this to characterize duality pairs and generalize this
by describing exactly when the left handside of (1) can be replaced by a finite union
of final segments. They further note in [16] that the 2-element maximal antichains in
D are exactly the duality pairs (F, D) where F is a tree and D is its dual.

Foniok, Nesetfil and Tardif [10] are concerned with the most general circumstance.
Let F and D both be finite antichains of structures of fixed type A. Call (F,D) a

generalized duality if
U F— = ﬂ - D (2)
FeF DeD

Equivalently, with S denoting the homomorphism poset of A-structures, S is parti-



tioned by

() e (0 )

The generalized dualities are characterized in [10]. They also show that when A
consists of one k-ary relation, which contains the graph cases, every maximal antichain
in the lattice of A-structures is of the form F U D. Conversely, for all but three
exceptional cases, the generalized dualities (F, D) yield a maximal antichain F U D.

It is quite natural to ask, in more general circumstances, if maximal antichains
possess these sorts of partitions. Indeed, Ahlswede, Erdds and Graham [1] introduced
the notion of “splitting” a maximal antichain. Say that a maximal antichain A of a
poset P splits if A can be partitioned into two subsets B and C such that P = BTUC';
say that P has the splitting property if all of its maximal antichains split. They
obtained sufficient conditions for the splitting property, from which they proved, in
particular, that all finite Boolean lattices possess it. The property is also a useful
tool in combinatorial investigations of posets, particularly distributive lattices; see,
for instance [2, 3]. It is also a natural notion for infinite posets; see [4, 8, 9].

The correspondence between generalized dualities and maximal antichains ob-
tained in [10] and the partition in (3) demonstrate that for A = (k), essentially all
finite maximal antichains in the lattice S of A-structures split.

This paper is motivated by two goals. First, we would like to obtain general order
theoretic conditions on countable posets that ensure antichains split and, thereby,
obtain some of the duality results tied to finite maximal antichains described above.
See Section 4 for applications to G and Section 5 for results on ID. Second, we obtain
splitting and non-splitting results for infinite maximal antichains; in particular, these
results underscore differences between the structures G and ID. The necessary results
on splitting and related notions are given in Section 3, which is preceded in Section
2 by a directed version of what is known as the Sparse Incomparability Lemma.

In addition to the selected papers cited in this section, we refer the reader to the
book [11] by Hell and Nesetfil that is devoted to graph homomorphisms. Chapter
3 gives a thorough introduction and many of the key results on maximal antichains
and dualities in G and D.

2 A Directed Sparse Incomparability Lemma

Recall that the the girth of a graph, girth(G), is the length of a shortest cycle contained
in the graph. In case G is directed, its girth is that of the underlying undirected
graph, that is, of the symmetric version of G. In one of the first applications of the
probabilistic method, in 1959 Paul Erdés [5] showed the existence of graphs with
independently prescribed girth and chromatic number. More precisely, for all natural
numbers k£ and ¢ there is a graph G such that x(G) > k and girth(G) > ¢.

Based on another probabilistic argument due to Erdds and Hajnal [6], NeSetfil
and Rodl [14] obtained an interesting generalization, referred to as the “Sparse In-



comparability Lemma”: for every pair of graphs H and G such that G — H but
H +/ @, and for every positive integer ¢ there exists a graph H' with girth(H') > ¢
such that H' — H and H' 4 G.

Here is a formulation from which the Sparse Incomparibilty Lemma follows, itself
a special case of a more far-reaching generalization.

Theorem 2.1 (Nesettil-Zhu [17]). For every graph H and for every positive integers
k and € there exists a graph G with the following properties:

(1) girth(G) > ¢, and
(2) for every graph Hy with at most k vertices, G — Hy if and only if H — Hy.

Here, we require a directed graph version of Theorem 2.1. The following is a special
case of a Sparse Incomparability Lemma for finite relational structures [12].

Theorem 2.2 (Directed Sparse Incomparability Lemma). For each directed graph
H = (W, F) and for all integers m,{ € N there is a directed graph H' such that

(1) girth(H") > ¢,

(2) for each directed graph G with |V(G)| < m we have H — G if and only if
H — G, and

(3) H and H' have the same numbers of connected components. In particular, if H
is connected then so is H'.

Regarding the proof of Theorem 2.2, there are both probabilistic and deterministic
arguments available. For instance, it is straightforward to adapt the probabilistic
proof of Nesettil-Rodl. We found an alternative approach based on what appears to
be a new graph parameter. Here is a brief outline of the argument.

Given a graph G = (V, F) let the bipartite stability number o, (G) be the maximum
integer ( such that:

JA, B € [V]’with AN B =0 and no edge between A and B.

Clearly ap(G) > a(G)/2, where a(G) denotes the usual stability or independence
number of G. The following result is obtained by adjusting the Erdés-Rényi proof [7]
that there are graphs of large girth and small independence number.

Lemma 2.3. For all k,¢ € N and for all but finitely many n € N there exists a
connected graph G' = (V, E) with |V| = n, girth(G') > { and ap(G') < n/k.

Let H, m and ¢ be as in the statement of Theorem 2.2. Let k = 3m|W| and
n = kj for sufficiently large j. By Lemma 2.3, there exists a graph G’ = (V, E) such
that

o V=W x[3mj]



o girth(G') > ¢
o (G <n/k=j

In effect, we “blow up” each vertex of H into a class of 3mj vertices.

Define a digraph graph H* = (V,E*) as follows: if (h,7),(h,i') € V then
((h,i), (W' i")) € E* if and only if ({(h,i),(h',')) € E and (h,}') € F.

One now argues that if H is connected then H* has a large enough connected
component that satisfies (1), (2), and (3) of the theorem.

3 The splitting property

In the forthcoming sections we would like to apply some results from [9] to the posets
G and D to obtain antichains with certain properties related to dualities and partitions
of G and . Concerning G it would be enough just to quote some theorems from [9],
but concerning D we should reformulate them a bit to make them applicable here.

Let P = (P, <) be a poset. We say that a subset A C P is cut-free in P provided
there are no y € A and x,z € P such that z <, y <, z and AN [z,2] = AN
([z,y] Uly,2]). An element y € P is called cut-point iff there are x,z € P such that
r <,y <pzand [z,z] = [r,y] Uy, z]. Clearly there is no cut-point in a cut-free set.

If P= (P, <)is aposet and A C P then we define the upset A" and the downset
Al of A as follows:

Al={peP:Jac Aa<pp}

and
At ={peP:Jac Ap<pal.

An antichain in P is a set of pairwise incomparable elements. We say A splits if
there is a partition (B, C) of A such that P = BTUC'. We say that A strongly splits
if and only if there is a partition (B, C') of A such that for each p € P\ A either the
set B Np' or the set C Np! are infinite.

Definition 3.1. Let P = (P, <) be a poset and let P’ C P.

1. P’ is an upward loose kernel in P if

(UL) for all finite subsets ' C P and x € P\ F' there is y € [z' N P'], y # z,
such that each element of F' is incomparable to y.

2. P’ is a downward loose kernel in P if

(DL) for all finite subsets ' C P’ and z € P\ F' there is y € [z} N P'], y # z,
such that each element of F'is incomparable to y.

We say that the poset P is upward loose if P itself is an upward loose kernel in P,
and downward loose is defined dually. (In [9] the terms loose and dually loose were
used.)



Remarks. An upward loose kernel P’ in poset P does not have maximal elements;
in particular, P’ is infinite. Clearly the dual statement holds for any downward loose
kernel. Also, if P contains an upward loose kernel then there is an upward loose
kernel of P that is maximal, with respect to containment. This is easily shown using
Zorn’s Lemma. Again, the dual statement holds for downward loose kernels.

Definition 3.2. Let P = (P, <) be a poset and P’ C P. We say that P’ has the
finite antichain extension property provided

(FAE) for all finite antichains F C P’ and = ¢ F there is y € [z} N P'] such that
each element of F' is incomparable to .

Observation 3.3. If P’ C P is both upward loose kernel and downward loose kernel
in P then P’ has the finite antichain extension property.

The following observation is a sharpening of [9, Theorem 3.9]. We include the straight-
forward proof to illustrate how the FAE can be applied.

Theorem 3.4. Let P = (P, <) be a countable infinite poset and assume that P' C P
has the finite antichain extension property. Let Ay C P’ be a finite antichain. Then
there is a strongly splitting P-mazimal antichain Ay C A C P'.

Proof. Let {p, : n < w} be an w-abundant enumeration of P, that is, the set {n :
pn = p} is infinite for each p € P. By induction on ¢ construct an infinite antichain
A={a; i <w} C P as follows: if p; ¢ {a; : j < i} then let a; be comparable
to pi. If p; € {a; : j < i} then let n; = min{n : p, ¢ {a,, : m < i}} and let a; be
comparable to p,,. This construction can be carried out because P’ has the finite
antichain extension property.

Let p € P\ A. Then the set A, = {a; : p; = p} is infinite and for each a € A,
the element a and p are comparable. Let (B,C) be a partition of A such that
|IBNAy| =|CNA,|=wforeachpe P\ A

Then the partition (B, C) has the required property. ]

The following results show that the existence of a loose kernel guarantees an infinite
non-splitting maximal antichain. The first is a slight generalization of [9, Theorem
3.6] .

Theorem 3.5. Assume that P = (P,<) is a countable poset and P' C P is an
upward loose kernel. Then there exists an infinite non-splitting antichain A C P" and
A is mazimal in P.

Proof. See [9, Theorem 3.6]. O

Theorem 3.6. Assume that P = (P,<) is a countable poset and P' C P is an
upward loose kernel in P. Assume that Ay C P’ is a non-mazimal antichain in P.
Then there exists an infinite non-splitting antichain A such that Ay C A C P’ and A
18 maximal in P.



Proof. The set P\ A{ is an upward loose kernel in P\ A{, and P\ A% # () because
A; was not a maximal antichain. Hence by Theorem 3.5 there is a P\ All—maximal
antichain A" C P’ \A{ which does not split in P\A% Then A = AjUA’ is a maximal
antichain in P having the required properties. O

4 The homomorphism poset G

The partially ordered set G of hom-equivalence classes of finite undirected graphs is
known to have only two finite maximal antichains — { K} and {K,}. Consequently,
there are no nontrivial dualities. However, in studying the ordered set G, it is inter-
esting to know whether maximal antichains split and whether antichains extend to
maximal ones that split.

Let G' = G\ {K;, Ky}. For any bipartite graph G, G — Kj, so we know that all
graphs G’ are hom-equivalent to graphs all of whose connected components contain
odd cycles. The oddgirth of a graph G, oddgirth(G), is the length of the shortest odd
cycle contained in the graph. As with girth, if graph does not contain any odd cycles,
its oddgirth is regarded as infinite.

The notion of oddgirth is useful in dealing with homomorphism questions because
of this: for graphs G and H, if oddgirth(G) < oddgirth(H) then G - H. Also, it
is straightforward to contruct graphs of prescribed oddgirth and chromatic number
using shift graphs — for instance, see [11, Theorem 2.23]. Alternatively, the original
Erdos result could be used in the first part of the proof below.

Theorem 4.1. G’ is both upward loose and downward loose.

Proof. Let F C G’ be finite. To see that G’ is upward loose, let X € G\ F', that is,
F —» X for all F' € F. Let Y’ be a graph such that for all F' € F,

(1) oddgirth(Y”) > oddgirth(F”) for all components F’ of F', and

(2) x(Y') > x(F)

Now let Y = X + Y’ and let F' € F. By (1), F - Y, since no component of F' has
a homomorphism to Y and F' -+ X. By (2), Y’ - F,so Y - F. Hence, (UL) holds
and G’ is upward loose.

Now let us show that G’ is downward loose. Let H € G\ F!, that is, H -+ F for
all F € F. Let k = max{|V(H)|,|V(F)|: F € F} and ¢ = max{oddgirth(F) : F' €
F} + 1. Here ¢ is finite because F C G'.

By Theorem 2.1 there is a graph G € G’ such that for all K € G where |V(K)| < k
we have G — K if and only if H — K, and girth(G) > ¢. Therefore G — H but for
all F' € F we have G 4 F. Since girth(G) > oddgirth(F') we have ' /4 G for each
F € F. Furthermore H /4 K, therefore H € G’, therefore G / K and so G € G'.
Thus (DL) holds and G’ is downward loose. O



As noted above, it is well-known that G’ has no finite maximal antichains. We
include a short proof to illustrate the relationship between upward loose sets and
maximal antichains.

Corollary 4.2. There is no finite mazimal antichain in G'.

Proof. Indeed, let F C G’ be a finite antichain. Then K; < F; (for each i) there-
fore K, ¢ F'. The application of Theorem 4.1 gives us an element of G’, which is
incomparable to F. O

Since there are no finite maximal antichains and every finite antichain extends
to a maximal one, each finite antichain can be extended to an infinite maximal an-
tichain. The following shows that quite different behavior can be found in the various
extensions.

Corollary 4.3. Let A C G’ be a finite antichain. Then

(1) there is a non-splitting maximal antichain Ay C G" with A C Ay, and

(2) there is a strongly splitting mazimal antichain Ay C G’ such that A C A,.

Proof. (1) This is a direct consequence of Theorem 3.6, applied to the poset G and
the upward loose subset G'.

(2) This follows from an application of Theorem 3.4 to G and the downward loose
subset G'. m

The notion of a cut-point and a cut-free subset are closely tied to the splitting
property: see [1] and [9]. It has also been studied independently in the context of
homomorphism orders of graphs: see [12]. We provide a short proof that G’ is cut-
free, both to illustrate an application of the sparse incomparability lemma and to
highlight differences between G and D that we shall see again in the next section.

Proposition 4.4. G’ is cut-free.

Proof. We need to show that for all triples FF < G < H, if G € G’ (and therefore
H € G') then there is a G’ € G’ such that F' < G’ < H and G’ is incomparable to G.
Since oddgirth(G) is finite for G € G, we can apply Theorem 2.1 to H with param-
eters k = max(|V(G)],|V(F)|) + 1 and ¢ = oddgirth(G) + 1 to get a graph H' such
that:

e H — H, since H — H,

e H -+ @G, since H» G,

e H' » F, since H-» F, and
e girth(H') > /.

Since oddgirth(G) < ¢ we have X - H' for each connected component X of G.
Therefore the graph G’ = F 4+ H' satisfies the requirements.
0



5 Homomorphism poset D

In the study of G, long odd cycles play a crucial role. So, one might hope that the
investigation the following two subsets D' and D* of D would lead to the construction
of nice antichains.

Before defining these, it is useful to recall that a finite directed graph X is a core
if every homomorphism of X to itself is bijective. Every digraph is homomorphically
equivalent to a unique core, and, so, every directed graph class contains exactly one
core (cf. [11]). For the rest of this section, we shall use “graph” for “directed graph”
and, given a directed graph X, X denotes its undirected version.

Let I’ be the subset of I consisting of all directed graph classes whose core
X has the property that every connected component of X contains an odd cycle.
Furthermore, let D* be the subset of DD consisting of all graph classes with core Y
such that Y is connected and contains an odd cycle. Of course, D* C I, while the
graph Z which is the sum of the two orientations of a 3-cycle is in I’ and not in D*.

One can prove the following:

Theorem 5.1. In the partially ordered set DD,
(1) IV is an upwards loose kernel, and
(2) D* is cut-free.
Moreover, (D*, <) is downward loose.
Unfortunately, we can also prove that
Observation 5.2. I)' does not have the finite antichain extension property.

Proof. Let T3 be the transitive tournament on three vertices and let Py = (W, F) be
the directed path on four vertices: W = {xg, 1,22, z3} and F = {(x;,xi41) : 1 =
0,1,2}. Now let H = T3 + Pj, the disjoint union of 7" and P;. Then H is a core in
D. Also, T € IV, is a core and T' < H. Regard {T'} as an antichain. If D' had the
(FAE) property there would exist a core H' € D' such that H' is incomparable to
T and H' < H. However, every connected component of H’ contains an odd cycle,
so H' < H implies that H' < T since no component of H' can be mapped by a
homomorphism into Ps. ]

Although we cannot prove that D* does not satisfy the (FAE) property, fortunately
there is another subset D¢ of D which is both an upward loose kernel in D and has
the finite antichain extension property in . To discuss it, first we need an easy
observation. A finite directed graph C is a directed cycle if it is connected and each
vertex has indegree and outdegree 1. It is easily seen that each directed cycle is a
core.

Observation 5.3. Let C be a directed cycle and T be a graph such that T is an
arbitrary tree. Then T — C.



Proof. Map a vertex v of T' to any vertex of the cycle. Next the vertices adjacent to
vin T can be mapped into vertices of C' so that directed edges are preserved. Since
there is no cycle in T we can finish the process easily. O

Let D¢ be the set of all homomorphism classes in D whose core X has the property
that for some C', C' — X. Here is a direct consequence of Observation 5.3.

Observation 5.4. If G € D°, T € D and T is a tree, then G +T ~ G.

Hence we can assume that no component of an element of D¢ can be embedded into
a tree. Therefore from now on we assume that each component X of each element of
D¢ has the property that X contains a cycle.

Theorem 5.5. The subposet D¢ is an upward loose kernel in .

Proof. Let F C D¢ be finite, and X € D° but X ¢ F'. We are going to find an
Y € D¢ such that X — Y, Y 4 X, and Y is incomparable to each F' € F.

Let n := max{| X|,|F|: F € f} Using the Erdés theorem, obtain a graph Z such
that x(Z) > n, girth(Z) > n, Z is connected, and Z contains at least one directed
cycle. Then Z € D°. Let Y = X 4+ Z. Since Z € D¢ therefore Y € D° as well. Clearly
X — Y while Y /4 X because x(Y) > |X|.

Assume that f : F' — Y. Then there is a component K of F' such that f : K — Z.
But |V (K)| < n while girth(Z) > n, hence the image f(K) is a tree, which contradicts
the assumption that no component of an element of D¢ can be mapped into a tree. [

Theorem 5.6. Let Ay C D¢ be a finite antichain. Then there is a non-splitting
D-maximal antichain A C D¢ with A D Aj.

Proof. Since D¢ is an upward loose kernel it can be used in Theorem 3.5 to extend a
non-maximal antichain into a non-splitting antichain, maximal in D. O

Theorem 5.7. D¢ has the finite antichain extension property in D.

Proof. Let F C D¢ be a finite antichain and X € D. We need to find Y € (X1 ND°)\
FL. In case X ¢ F! then Theorem 5.5 provides the required Y.

Assume now that X € F!' . Then X € D¢ because there exists F' € F with
F'— X and the image of its directed circle of F' is a directed circle in X.

Let n = max{|X|, |F|: F € F}. Apply Theorem 2.2 with H = X and m =/{=n
to obtain X’ = H’. Now let Y = X’ + Cy,. (The directed circle has kn vertices.)
Then X’ — X and ékn — ék therefore Y — X. At the same time X /4 Y since
girth(Y) > ¢ > |X| therefore the circle Cj, of X cannot be embedded into Y. The
same applies for the directed circles in each F' € F therefore F' /4 Y. Finally we have
X 4 FandsoY 4 F. m

Corollary 5.8. D¢ does not contain finite maximal antichains.

10



Corollary 5.9. Let Ay C D¢ be a finite antichain in D. Then there is a strongly
splitting D-mazimal antichain Ay C A C D°.

Proof. This is just the direct application of Theorem 3.4 to the posets D and D°. [
Theorem 5.10. D¢ is cut-free in D.

Proof. Let F < G < H where G € D¢ (and therefore H € D° as well). We need a
G’ € D¢, which is incomparable to G but F < G’ < H.

Let n = max{|F|, |G|, |H|}. Apply Theorem 2.2 to H with parameters m = ¢ =n
to obtain the directed graph H’'. Since H € D¢, there is k such that Cy is a subgraph
of H. Let G' = F + H' + Ch,,.

Then F' — G’ since F is a subgraph of G’. Furthermore H' — H due to the fact
that |[H| =n <m and H — H. Due to our assumption on D¢, each component of the
graph G contains cycles, and at least one of them, say K, cannot be embedded into
F. Therefore if G — Y then for this component we have K — H' + C,,;,. However,
girth(H' 4+ C,;) > | K|, hence K is embedded into a tree, a contradiction. O
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