ELEMENTARY SUBMODELS IN INFINITE
COMBINATORICS

LAJOS SOUKUP

ABSTRACT. We show that usage of elementary submodels is a sim-
ple but powerful method to prove theorems, or to simplify proofs
in infinite combinatorics. First we introduce all the necessary con-
cepts of logic, then we prove classical theorems using elementary
submodels. We also present a new proof of Nash-Williams’s theo-
rem on cycle-decomposition of graphs, and finally we obtain some
new decomposition theorems by eliminating GCH from some proofs
concerning bond-faithful decompositions of graphs.

1. INTRODUCTION

The aim of this paper is to explain how to use elementary submod-
els to prove new theorems or to simplify old proofs in infinite com-
binatorics. The paper is a combination of an expository article and a
research paper: we introduce all the necessary concept and give easy ex-
amples to illustrate our method, but the paper also contains new proofs
of theorems of Nash-Williams on decomposition of infinite graphs, and
some new results concerning bond-faithful decompositions.

Our aim is to popularize a method instead of giving just “black boz”
theorems.

In Section 2 we recall and summarize all necessary preliminaries from
set theory, combinatorics and logics.

In section 3 we give the first application of elementary submodels,
and we explain why it is natural to consider Y-elementary submodels
for some large enough finite family ¥ of formulas.

In section 4 we use elementary submodels to prove some classical
theorems in combinatorial set theory. All these theorems have the
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following Ramsey-like flavor: Fvery large enough structure contains
large enough “nice” substructure.

In section 5 we prove structure theorems of different kind: FEvery
large structure having certain properties can be partitioned into small
“nice” pieces. A typical example is Nash-Williams theorem on cycle
decomposition of graphs without odd cuts. To prove these structure
theorems it is not enough to consider just one elementary submodel but
we should introduce the concept of the chain of elementary submodels.

Finally, in section 6, we give a more elaborated application of chain
of elementary submodels to eliminate GCH from a theorem concerning
bond-faithful decomposition of graphs.

2. PRELIMINARIES

2.1. Set theory. We use the standard notion and notation of set the-
ory, see [5] or [7]. If k is a cardinal and A is a set, let

(1) [A]<K:{CLCA:‘CL|</€}; [A]" ={aC A:|a| =k}

If X and Y are sets let [X,Y] = {{z,y} 12 € X,y e Y}.

We denote by V' the class of all sets, and by On the class of all ordi-
nals. The cumulative hierarchy (V, : a € On) is defined by transfinite
induction on « as follows:

(2) Va1 = P<Va)7
(3) Vg =U{V,:a < B} if §is a limit ordinal.

Fact 2.1. V. =U{V, : a € On}, i.e. for each set x there is an ordinal
o such that x € V.

2.2. Combinatorics. We use the standard notion and notation of
combinatorics, see e.g. [1]. A graph G is a pair (V(G), E(G)), where
E(G) C [V(G)}Z. V(G) and E(G) are the set of vertices and edges, re-
spectively, of G. If X C V|G| then G[X]| denotes the induced subgraph
on X. If M is a set then let

GIM=V(G)NMEGNM);  G\M=(V(G),E(G)\ M).
If G is fixed, and A C V(G) then we write A for V(G) \ A. A cut of
G is a set of edges of the form E(G) N [A, 4] for some A C V(G). A

bond is a non-empty cut which is minimal among the cuts with respect
to inclusion.

Fact 2.2. ) # F C E(G) is a bond in G iff there are two distinct
connected components Cy and Cy of G\F' such that F' = E(G)N[Cy, Cy].

The following statement will be used later several times.
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Proposition 2.3. Assume that H is a subgraph of G, F is a bond
i H. If F is not a bond in G then F C [D]2 for some connected
component D of G.

Proof. By fact 2.2 there are two distinct connected components C; and
Cy of H \ F such that F' = E(H) N [Cy,Cs]. If that Cy and C; are
subsets of different connected components of G, C; C Dy and Cy C D,
then

F =[Cy, Co)NE(H) C [Dy, D))NE(G) € FU([Dy, DoJNE(G\F)) = F,

i.e. F'=1[Dy,Dy]N E(G) and so F' is a bond in G by Fact 2.2 above.
This is not the case, so C7 and C5 are subsets of the same connected
component D of G\ F. Thus F' C [C,Cy) C [D]Q. O

Given a graph G for z # y € V(G) denote yg(z,y) the edge connec-
tivity of x and y in G, i.e.

Yo(x,y) = min{|F| : FF C E(G) : F separates = and y in G}.

By the weak Erdds-Menger Theorem there are y5(x,y) many edge dis-
joint paths between x and y in G.

A k-cover of a graph G is a family G of subgraphs of G such that
every edge of G belongs to exactly x members of the family G. A
decomposition is a 1-cover, i.e. a family H such that {E(G’) : G' € G}
is a partition of E(G).

2.3. Logic. The language of set theory is the first order language £
containing only one binary relation symbol €. So the formulas of £ are
over the alphabet {V, -, (,)3,=, €} U Var, where Var is an infinite set
of variables. To simplify our formulas we often use abbreviations like
Ve, —, x Cy, dlz, dz € y ¢, ete.

An L-structure is a pair (M, E), where E C M x M. In this paper
we will consider only structure in the form (M, €] M) where €] M is
the restriction of the usual membership relation to M, i.e.

elM={{z,y) e M x M :x € y}.

We usually write (M, €) or simply M for (M, e[ M).

If p(z1,...,x,)is aformula, ay, ..., a, are sets, then let p(ay, ..., a,)
be the formula obtained from ¢(x1,...,z,) by replacing each free oc-
currence of x; with a;. [An occurrence of x; is free it is not within the
scope of a quantifier Jx; ]

If p(x,z1,...,2,) is a formula, ay,...,a, are sets, then C' = {a :
vla,ay,...,a,)} is a class. Especially, every set b is a class: b = {a :
a € b}. Moreover, all sets form the class V: V = {a : a = a}. In this
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paper we will consider just these classes: the sets and the “universal”
class V.

For a formula ¢(zq,...,x,), a class M, and for a4,...,a, € M we
define when
(2) M E p(ay, ... a,),
i.e. when M satisfies p(ay,...,a,), by induction on the complexity of

the formulas in the usual way:

(i) M = “a; € a;” iff a; € aj,

i) M= “pvy” it M =por M =1,
(ili) M | “—¢" iff M |= ¢ fails.
(iv) M = “Qrep(z,aq,...a,)" iff there is an a € M such that M =

“ola,ay, ..., a,)"

For a formula ¢(z1, ..., z,) let o™ (21,...,2,) be the formula obtained
by replacing each quantifier dx with dx € M in . Clearly for each
Q1y... 0y € M,

(3) oM(ay, ... a,) iff M= lay, ..., a,).

If p(x1,...,2,) is a formula, M and N are classes, M C N, then we
say that ¢ is absolute between M and N,

(4) M <, N

in short, iff for each aq,...,a, € M

(5) M E=p(ay,...,a,) iff N =p(a, ... a,)
If ¥ is a collection of formulas then write

(6) M <5 N

iff M <, N for each p € 3.
M is an elementary submodel of N,

(7) M <N

iff M <, N for each formula ¢.
If ¢ is absolute between M and V', where V is the class of all sets,
then we say that ¢ is absolute for M.

Theorem 2.4 (Lowenheim-Skolem). For each set N and infinite subset
A C N there is a set M such that AC M < N and |[M| = |A|.

Since ZFC' f Con(ZFC) by Godel Second Incompleteness Theo-
rem, it is not provable in ZFC that there is a set M with M = ZFC.
So, since V' |= ZFC, it is not provable in ZFC that there is a set M with
M < V. Thus, in Lowenheim-Skolem theorem above, the assumption
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that N is a set was essential. However, as we will see, the following re-
sult can serve as a substitute of Lowenheim-Skolem theorem for classes
in certain cases.

Theorem 2.5 (Reflection Principle). Let ¥ be a finite collection of
formulas. Then for each cardinal k there is a cardinal A such that
Vi <s V, and [V\]™" C Vi fie. cf()) > &),

We need some corollaries of this theorem.

Corollary 2.6. Let 3 be a finite collection of formulas, k an infinite
cardinal, and x a set.

(1) There is a set M <5, V with x € M and |M| = k.

(2) If kK > w is reqular then there is a set M <y V with x € M,
|M| < Kk and M Nk € k.

(3) If k¥ = Kk then then there is a set M <5 V' such that x € M,
M| =k, M Nkt €rt, and [M]* C M.

(4) If k > w is regular then the set

Se={MnNkrk:xeM=<sV,MNEkE K}
contains a closed unbounded subset of k.

Proof. We can assume x € V. By the Reflection Principle there is a
cardinal A\ > « such that V), <x V and [V,\}H C Vi.

(1) Straightforward from Lowenheim-Skolem theorem: since V) is a set,
\VA| > k, and « € V) there is M < V) with € M and |M| = k. Then
M <sV.

(2) Construct a sequence (M, : n < w) of elementary submodels of V)
with |M,| < k as follows. Let M, be a countable elementary submodel
of V) with x € M. If M, is constructed, let «a,, = sup(M,, N k). Since
k is regular we have «, < k. By Lowenheim-Skolem theorem there
is an elementary submodel M, of V) such that of M, U, C M,
and |M,1] = |M,, U a,,| < k. Finally let M = U{M,, : n < w}. Then
M <Vy,and so M <z V,and M Nk =supaq, € k.

(3) Construct an increasing sequence (M, : v < wy) of elementary sub-
models of V) with |M,| = k as follows. Let My be an elementary
submodel of V) with kU {z} C My and |My| = k. For limit v let
M, = U{Mgs : § < v}. If M, is constructed, let a,, = sup(M, N k™).
Since |M,| = k we have a,, < kT. Let X, = M,, Ua, U [Ml,]w. Then
| X,| < k¥ = k. By Lowenheim-Skolem theorem there is an elementary
submodel M, ; of V) with X, C M,.; and |M, ;| = k. Finally let
M =U{M, : v < w}. Since k > wy, MNkT =sup{a, : v <w} € kT,
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If Ae [M}w then there is v < w; with A C M, and so A € X, C
M,,1 C M.

(4) Construct a continuous increasing chain of elementary submodels
(M, : v < k) of V) with |M,| < v+w as follows. Let My be a countable
elementary submodel of V) with x € M. For limit v let M, = U{Mj :
B < v}. If M, is constructed, let c,, = sup(M, N k™). Since |M,| < K
and k is regular we have o, < k. Let X, = M, U (ay, + 1). Since
| X,| < v+ w, by Lowenheim-Skolem theorem there is an elementary
submodel M, of V) with X, C M, and |M,| = |X,|.

Then C' = {a, : ¥ < K} is a closed unbounded subset of x and
C C S, because «,, € S, is witnessed by M,,. O

2.4. Absoluteness. A set bis definable from parameters aq, ..., a, iff
there is a formula () such that

(8) Ve(o(x,ay,...,a,) <> =Db).

We say that b is definable iff we do not need any parameters, i.e.

Vr(p(x) < x =Db).

Claim 2.7. If b is definable from ay,...a, € M, M <{5z0(.9).0=5} V
then b € M.

Proof. Since M <3,05 V, @ € M and so M |= Jxp(x,d), there is
b € M such that M = ¢(V',a@). Thus M < .5 V yields V = o(V, @),

and so b=V € M. O
Given a class N we say that a formula ¢(z1,...,z,,y) defines the
operation EY in N iff N |= Vay, ..., 2,3yp(x1,.. ., 24,y), and for

each ay,...,an,0 € N, F)(ay,...,a,) = biff N = @(ay,...,an,b). If
V' = N then we omit the superscript V.

Given a class N we say that the operation F, is absolute for N
provided ¢ defines an operation in N, and ¢(Z,y) is absolute for N.

Claim 2.8. If the formula ¢ defines the operation F, in V', moreover
M <(vaye@y).e@@y)y V then ¢ defines an operation Fé‘” m M, and

FM=F,| M.

Proof. Since M <vz3yz,y) V, for each ai,...,a, € M thereis b € M
such that M = ¢(d,b). Thus V = ¢(d,b), and so F,(ad) = b e M.
If M | ¢(d,b) Ap(a@bt) then V = o(d,b) A (d,b'), sob=1. Thus
M EVidlyp(Z,y). O



ELEMENTARY SUBMODELS 7

3. FIRST APPLICATION OF ELEMENTARY SUBMODELS.

In this section we present an example

e to illustrate our basic method,

e to indicate the main technical problem of this approach; and
also

e to give a solution to that technical problem.

In [9] Nash-Williams proved that a graph G is decomposable into
cycles if and only if it has no odd cut. In Section 5 we give a new
proof of this result. Let us say that a graph G is NW iff it does not
have any odd cut. We will prove Nash-Williams Theorem by induction
on |V(G)|. Since the statement is trivial for countable graphs, it is
enough to decompose an uncountable NW-graph GG into NW-graphs of
smaller cardinality. We will use “small” elementary submodels to cut
the graph G into the right pieces. To do so we need two lemmas, the
first (and easy) one will serve as the first example of the application of
our method.

Lemma 3.1. If G = (W, E) is an NW-graph, G € M <V, then
G| M =G[MNW] is also an NW-graph.

Proof. Assume on the contrary that G [ M has an odd cut F =
{f1,---, fans1}. Since any cut is the disjoint union of bonds we can
assume that F'is a bond. Since F' can not be a bond in GG, by Proposi-

tion 2.3 there is a connected component D of G\ F such that F' C [D} 2,
Let bc € F. Then b and ¢ are in D, D is connected, so there is a path
bwiws . .. w,,_1c between b and ¢ in G which avoids F'.

Claim 3.2. [M]™ c M.

Proof of the claim. Consider the operations Fi(x,y) = {z,y} and Fy(z)
Uz. By Claim 2.8, there are formulas o1, 07,02 and o} such that if
N <{s;.01y V then N is closed under operation Fj, i =1, 2.

Since M < V', this yields that M is closed under F; and F3. Since

(9) {ag, ... a,} = U{{ao,...,an_1},{an}}
we obtain [M } YoM by induction on n. U
Claim 3.3. wU{w} C M.

Proof of the Claim. ) and w are definable, so by Claim 2.7 there are
formulas p; and pf, and p, and pj, respectively, such that if N <y,
V then ) € N, and if N <y, 4y V then w € N. Since M <V, this
implies (), w € M.
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Consider the operation Fs(x) = U {z}. By Claim 2.8, there are
formulas o3 and o} such that if NV <{os,05) V then N is closed under
operation Fj. Since M <V, this yields that M is closed under Fj. So
0€ M and n+ 1= F3(n) imply w C M. O

So we have F' € M and m € M. Consider the following formula
01(G,m, f,b,c, F):
(10) @G is a graph, f is a function, dom(f) = m, ran(f) C V(G),
fO)=b,fim—=1)=cAMi<m—1){f@@),f(i+1)} € E(G)\F.
Since
(11) Af (G, m, f,b,¢, F),

the assumption M <37, (Gm,fp.e,r) V and G,m, b, c, ' € M imply that
the same formula holds in M. So there is f € M such that

(12) QOl(G,m,f,b,C,F).
Since M <, (G,m,f.be,r) V We have
(13) gol(G,m, f7 bv C, F)

To complete the proof we need one more claim.
Claim 3.4. If g € M is a function, x € dom(g), then g(x) € M.

Proof of the Claim. Consider the evaluation operation Fy(g,y) = g(y).
By Claim 2.8, there are formulas o4 and o} such that if N <, ) V
then N is closed under operation Fy. Since M < V', this yields that M
is closed under the evaluation operation Fj. O

By Claim 3.4 above, ran(f) C M NW, and so f(0)f(1)...f(m—1)
is a path between b and c¢in G [ M which avoids F'. Contradiction. [

So if M is a “small” elementary submodel of V', then G [ is a “small”
NW-subgraph of G. Unfortunately, as we explained before the formula-
tion of the Reflection Principle, we can not get any set M with M <V
by the Second Incompleteness Theorem of Godel. So we can not apply
the lemma above to prove the Nash-William Theorem.

Fortunately, this is just a technical problem because one can observe
that in the proof above we have not used the full power of M < V,
we applied the absoluteness only for finitely many formulas between V'
and M. Namely, we used only the absoluteness for the formulas from
the family

(14) X" ={oy,00,:1=1,2,3,4} U{p;, 0}, j = 1,2} U{If1, 01}
So actually the proof of lemma 3.1 yields the following result:



ELEMENTARY SUBMODELS 9

Lemma 3.5. If G = (W, E) is an NW-graph, G € M <5 V' for some
large enough finite set X2 of formulas, then G | M is also an NW-graph.

In many proofs we will argue in the following way:

(I) using the Reflection Principle we can find a cardinal A such that
V) resembles to V' in two ways:
(1) [Va]" C Vi for some large enough cardinal , and
(2) V) <x V for some large enough finite collection ¥ of formu-
las.

We can not use the model V) directly, because it is too large, but

(IT) since V), is a set, we can use Lowenheim-Skolem Theorem to find
a small elementary submodel M of V) which contains G.

Then M <x V.

We do not fix ¥ in advance. Instead of this we write down the
proof, and after that we put all the formulas for which we used the
absoluteness into Y. Actually, apart from the proof of lemma 3.5 above,
we will not construct X explicitly.

Remark . We will show later that if 3 is large enough then G \ M is
also an NW-graph, so the pair (G [ M,G \ M) is a decomposition of
G into NW-graphs.

3.1. More on absoluteness. In Claim 3.6 below we summarize cer-
tain observations we made in the proof of lemma 3.1 above.

Claim 3.6. There is a finite collection Yy of formulas such that if
M <5, V then [Mrw C M, wu{w} C M, and f(x) € M for each
function f € M and x € dom(f) N M.

We need two more easy claims.

Claim 3.7. There is a finite collection 1 of formulas such that if
M <5, V then for each A € M if |A| C M then A C M.

Proof. Let X1 D ¥ be a finite family of formulas such that

(1) the formulas “f is a bijection between x and y” and “If (f is
a bijection between x and y)” are in X,

(2) if M <y, V then M is closed under the “cardinality” operation
A |A]

Assume that |A| = k. Then kK € M by (2). Since V = “3f f is
a bijection between rk and A” there is f € M such that M = “f is a
bijection from k onto A”. Then f is a bijection from k to A by (1). So
if a € A then there is a € k such that f(a) = a. However, f,a € M
so f(a) € M by X1 D Xy. Thus A C M. O
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Claim 3.8. If M <s,us, V then for each countable set A € M we
have A C M.

Proof. If A is countable then |A| = w C M by Claim 3.6 because
M <5, V. Thus A C M by Claim 3.7 because M <y, V. O

4. CLASSICAL THEOREMS

In this section we prove some classical theorems using elementary
submodels.

A family A is called A-system with kernel D ifft AN A’ = D for each
A#£A € A A A-system is a A-system with some kernel.

Theorem 4.1. Every uncountable family A of finite sets contains an
uncountable A-system.

Proof. We can assume that A C [wl] <

Let ¥ be a large enough finite set of formulas. By Corollary 2.6(1)
there is a countable set M such that A € M <y V.
Since A is uncountable, we can pick A € A\ M. Let D = M N A.

Since [M} = © M we have D € M by Claim 3.6. Let

(15) B={BC.A:Bisa A-system with kernel D}.
Since A, D € M we have B € M as well. Moreover,
(16) 3B (B is a C-maximal element of B).

Since M <y V, and the parameter B is in M, there is B € M such
that

(17) M = (B is a C-maximal element of B).
Since M <y V', we have
(18) B is a C-maximal element of B.

Claim: B is uncountable.

Assume on the contrary that B is countable. Then, by claim 3.8,
M <5 V implies B C M. Let C = BU{A}. Since A ¢ M,C D B. If
Be B, then Be Mandso BC M and D C AnNBC ANM = D.
So C 2 B is a A-system with kernel D, i.e. B was not a C-maximal
element of B. This contradiction proves the claim. O

Remark . In each proofs of this section we will argue in the following
way. Let A be a structure of “size” k. Let M <y V for some large
enough finite family ¥ of formulas with A € M and |M| < &, i.e. M is
a “small” elementary submodel which contains, as element, a “large”
structure A. Since M has less element than the size of A, there is A
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from A such that A ¢ M. Then this A has some “trace” D on M. If
M is “closed enough” then this trace D is in M. Using this trace we
define, in M, a maximal, “nice” substructure B of A. Then, using the
fact that A ¢ M, we try to prove that B is large “enough”.

In the proof above we could use an arbitrary countable elementary
submodel M of V), with A € M. However, in the next proof we need
elementary submodels with some extra properties.

Theorem 4.2. If A is a family of finite sets such that k = |A| is an
uncountable reqular cardinal, then A contains a A-system of size k.

Proof. We can assume that A C [/{] =
Let ¥ be a large enough finite set of formulas. By Corollary 2.6(2)
there is a set M with |M| < k such that A € M <5z V and M Nk € k.
Since |A| = k, we can pick A € A\ M. Let D = M N A. Since
[M] ¥ C M we have D € M by Claim 3.6. Then
(19
IB (B C A is C-maximal among the A-systems with kernel D).

Since M <y V', and the parameters A and D are in M, there is B € M
such that
(20)

M E (B C Ais C-maximal among the A-systems with kernel D).

Since M <y V,
(21) B C Ais C-maximal among the A-systems with kernel D.

Claim: |B| = k.
Assume on the contrary that |B| < k. Since B € M we have |B| €
M N k. Thus |B| € M and so B C M by Claim 3.7.

Let C = BU{A}. If B € B, then B € M and so B C M by
M <5 V. Thus BNA=D. SoC 2 Bis a A-system with kernel D.
Contradiction. t

To proof the next theorem we need elementary submodels one more
additional property.

Theorem 4.3. If k¥ = K then every family A = {A, : a < Kt} C
[/{ﬂw contains a A-system of size k*. Especially, every family A =
{Ao:a <t} C [cF]” contains a A-system of size .

Proof. Let X be a large enough finite set of formulas. By Corollary

2.6(3) there is a set M with |[M| = k such that A € M <x V, MNk" €
kT and [M]" C M.
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Since |A| = kT > |M|, we can pick A € A\ M. Let D = M N A.
Since [M}w C M, we have D € M.

Then
(22

IB (B C A is C-maximal among the A-systems with kernel D).

Since M <y V and [M}w C M, the parameters A and D are in M, so
there is B € M such that
(23)

M E (B C Ais C-maximal among the A-systems with kernel D).
Since M <y V,
(24) B C Ais C-maximal among the A-systems with kernel D.
Claim: |B| = k™.
Assume on the contrary that |B| < k. Thus |B] C x C M and so
B C M by Claim 3.7.

Let C = BU{A}. If B € B, then B € M and so B C M and

ANB =Dby M <y V. So C 2 B is a A-system with kernel D.
Contradiction. O

Next we prove two classical partition theorems.

Theorem 4.4 (Erdés-Dusnik-Miller). If k = cf(k) > w then k —
(k,w+1)2.

Proof. Fix a coloring f : [/@]2 — 2.
Let ¥ be a large enough finite set of formulas. By Corollary 2.6(2)
there is a set M with |M| < k such that f € M <x V and M Nk € k.

FIGURE 1

Fix £ € K\ M. Let A be a C-maximal subset of M N« such that
AU{¢} is 1-homogeneous. If A is infinite, then we are done.
Assume that A is finite. Let

(25) B={per\A:Vae A f(B,a) =1}

Clearly £ € B. Since f,A € M we have B € M. Let C C B be a
C-maximal 0-homogeneous subset.
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Claim: |C] = k.

Assume on the contrary that |C| < k. Then |C| € M Nk and so
|C'| € M because M Nk € k. Thus C C M by Claim 3.7. Let v € C.
Since v € M \ A we have that AU{~}U{¢{} is not 1-homogeneous. But
AU{¢} is 1-homogeneous and v € B, so f(7,£) = 0. Thus C' U {¢} is
0-homogeneous. Since £ € B, we have £ € C' by the maximality of C,
which contradicts B C M. U

Theorem 4.5 (Erdés—Rado). ¢ — (¢©,wy + 1)2.

Proof. Fix a function f : [cﬂz — 2.

Let ¥ be a large enough finite set of formulas. By Corollary 2.6(3)
there is a set M with |[M| = ¢ such that f € M <z V, M N¢t € ¢t
and [M }w C M.

Pick £ € ¢\ M.

Let A be a C-maximal subset of M N k such that AU {¢} is 1-
homogeneous. If A is uncountable, then we are done.

Assume that A is countable. Since [M}w C M, we have A € M.

Let

(26) B={fer\A:Vae A f(B,a)=1}.

Since f,A € M we have B € M. Let C C B be a C-maximal 0-
homogeneous subset.

Claim: |C] = ¢™.

Assume on the contrary that |C| < ¢. Then |C] C ¢ C M and so
C C M by Claim 3.7. Let v € C. Since v € M \ A we have that
AU{~v} U {¢} is not 1-homogeneous. But AU {{} is 1-homogeneous
and v € B, so f(v,£) = 0. Thus C' U {¢} is 0-homogeneous. Since
¢ € B, we have ¢ € C by the maximality of €', which contradicts
B C M. O

Given a set-mapping F' : X — P(X) we say that a subset Y C X is
a F-freeiff y' ¢ F(y) fory #y' €Y.

Theorem 4.6. If k = cf(k) > w and F : k — K] = then there is an
F'-free subset C' of size k.

Proof. Let ¥ be a large enough finite set of formulas. By Corollary
2.6(2) there is a set M with |[M| < x such that F' € M <y V and
M Nk € k.

Let £ € k\ M and A = F(§) N M. Let C be a C-maximal F-free
subset of x \ A. Since F, A € M we can assume that C' € M.
Claim: |C| = k.
Assume on the contrary that |C| < k. Then C' C M by Claim 3.7.
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Since F(y) € M for v € C' and F(§)NC C ANC = 0 we have that
CU{¢} is also F-free. So C' was not C-maximal. Contradiction. [

First we prove a weak form of Fodor’s Pressing Down Lemma.

Theorem 4.7. If k = cf(k) > w, f : Kk — K is a regressive function
then there is 1 < k such that f~'{n} is unbounded in x.

Proof. Let X be a large enough finite set of formulas. By Corollary
2.6(2) there is a set M with |M| < k such that f € M <y V and
MnNk €k

Let ¢ = sup(M N k) and consider n = f(£). We claim that T =
f~"n} is unbounded in k. Since n € ¢ = M Nk we have T € N. If
T is bounded, then supT € M Nk = & However £ € T which is a
contradiction. O

Theorem 4.8. (Fodor’s Pressing Down Lemma) If k = cf(k) > w,
S C k 1s stationary, and f : S — Kk is a regressive function then there
is an ordinal n < k such that f~'{n} is stationary.

Proof. Let X be a large enough finite set of formulas. By Corollary
2.6(4) there is a set M with |M| < k such that S, f € M <y V and
E=MnkeS.

Let n = f(£). We show that T = f~'{n} is stationary. Clearly
T € M. If T is not stationary then there is a closed unbounded set
C € N such that CNT = (.
Claim: sup(M Nk) € C if C € M is a club subset of k.
Since C'is closed, if sup(M Nk) ¢ C then there is n < sup(M N k) such
that (C\n)NM = 0. Then M = “C\n=0". Thus V = “C\n=10",
i.e. C Cn. Contradiction, T'= f~'{n} is stationary.

So by the claim £ € C'NT. Contradiction. O

5. DECOMPOSITION THEOREMS

In the previous section we proved theorems which claimed that “Given
a large enough structure A we can find a large enough nice substructure
of A.” In this section we proved results which have a different flavor:
Every large structure having certain properties can be partitioned into
“nice” small pieces.

In [9] the following statements were proved:

Theorem 5.1 (Nash-Williams). G is decomposable into cycles if and
only if it has no odd cut.

We give a new proof which illustrates how one can use “chains of
elementary submodels”. To do so we need two lemmas. The first one
was proved in in section 3:
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Lemma 3.5. If G = (W, E) is an NW-graph, G € M <5 V' for some
large enough finite set X2 of formulas, then G | M is also an NW-graph.

The second one is following statement.

Lemma 5.2. If G = (W, E) is an NW-graph, G € M <x V' for some
large enough finite set 2 of formulas, then G\ M is also an NW-graph.

Lemma 5.2 above follows easily from the next one.

Lemma 5.3. Assume that M <x, V with |M| C M for some large
enough finite set &2 of formulas. If G € M is a graph, x # y € V(QG)
and F C E(G\ M), such that

(27) |F| < M|, ye\m(z,y) > 0 and F separates x and y in G\ M
then
(28) F separetes x and y in G.

Proof of Lemma 5.2 from Lemma 5.3. Assume on the contrary that G'\
M has an odd cut F. Since any cut is the disjoint union of bonds we
can assume that F'is a bond.

Pick ¢ic; € F. Then clearly ye\ (e, c2) > 0. Moreover F' separates
c; and ¢ in G\ M, so F separates them in G by by lemma 5.3, i.e. ¢
and ¢y are in different connected components of G\ F

However F' can not be a bond in GG, so by Proposition 2.3 there is a
connected component D of G \ F such that F' C [D]2. i.e. ¢; and ¢y
are the same connected component of G\ F. This contradiction proves
the lemma. O

Proof of Lemma 5.3. Assume that G, M, x, y and F form a counterex-
ample.

FIGURE 2
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Fix a path P = pop; ... p, from z to y in G\ M which witnesses that
Yeom (x,y) > 0, ie. po =, p, =y and p;piy1 € E(G)\ M for i < n.

We assumed that F' does not separate x and y in G, so there is a
path Q = qq . ..q,, from x to y witnessing this fact, i.e. g =z, ¢, = ¥y
and ¢;q;41 € E(G) \ F for j < m. Since F separates x and y in G\ M
there is at least one j* < m such that g;«q;«41 € M.

Let j, = min{j : ¢; € M} and j, = max{j : g; € M}. Since j, < j*
and j, > j* 4+ 1 we have j, < j,. Let 2’ = ¢;, and y = ¢;,. Let
Qr = ¢j,qj,—1 - --@1Go and Qy = GmGm—1 - - .q;,- Then Q,PQ, is a walk
from 2’ to 3 in G\ M. Hence yo\m(2',y') > 0.

Claim: v (2/,y') > |M]|.

Indeed, assume that A\ = ~vg(2',y') < |M|. Since M <5 V and
',y € M thereis A € M N [V(G)}/\ such that A separates x’ and v/
in G. Since |A] = A C M we have A C M. So M separates ' and v/,
i.e. ve\m(2',y’) = 0. This contradiction proves the claim.

By the weak Erdés-Menger Theorem there are vo(2',y’) many edge
disjoint paths between 2’ and ¥ in G. Since |[MUF| = |M| < ya(2', ')
there is a path R = rg...rg from 2’ to 3’ which avoids M U F. Then
Q. 'RQ," is walk from x to y in G'\ M which avoid F. Contradiction.

U

Proof of theorem 5.1. We prove the theorem by induction on |V(G)].

If G is countable infinite then for each e € F(G) there is a cycle C' in
G with e € E(C') because e is not a cut in G. Moreover, G \ C' is also
an NW-graph, i.e. it does not have odd cuts. Using this observation
we can construct a sequence {C; : i < w} of edge disjoint cycles in G
with F(G) = U{E(C)) i < w}.

Assume now that k = V(G) > w and we prove the statement for
graphs of cardinality < k.

Let X be a large enough finite set of formulas. By the Reflection
Principle 2.5 there is a cardinal A such that V) <y V and [V,\r C V.
Then G € V.

We will construct a sequence (M, : a < k) C V) of elementary sub-
models of V), with

(*a) |My| =w+ |a], « € M, and M, € My44

as follows:
(i) Let My be a countable elementary submodel of V) with G € M.
(ii) if # < & is limit then let Mg = U{M, : a < [}. Since |Mjp| <
w+ |f] < k and Mz C V) we have Mg € V).
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(iii) If 8 = o+ 1 then |M, U {M,} U 5| = w + |B] so by Lowenhein-
Skolem Theorem there is Mz < V) with M, U {M,} U B C Mg
and | My| = w -+ ]

The construction clearly guarantees (x,). Using the chain (M, : a < k)

decompose G as follows:

o fora <rkrlet G, =(G\ M,) | Myya.

By lemma 5.2 the graph G/, = G \ M, is NW. Moreover, since M, €
M1 we have G\ M, € M,1. So we can apply lemma 3.5 for M,
and G/, to deduce that G, is NW.

So we decomposed the graph G into NW-graphs {G, : a < k}.
Moreover, |V (Ga)| < [May1] < w+ |a] < K, so by the inductive hy-
pothesis, every (G, is the union of disjoint cycles. So G itself is the
union of disjoint cycles which was to be proved. O

5.1. General framework. If ® is a graph property then we write
G € ® to mean that the graph G has property ®.

We say that a graph property & is well-reflecting iff for each graph
G € & whenever G € M <y V with |[M| C M for some large enough
finite set X of formulas, we have both G [ M € ® and G\ M € &.

Theorem 5.4. Let ® be a well-reflecting graph property. Then every
graph G € ® can be decomposed into a family {G; : i € 1} C & of
countable graphs.

To prove this theorem we need to introduce the following notion.
Let k and A be cardinals. We say that (M, : a < k) is a k-chain of
submodels of V) ift

(1) the sequence (M, : a < k) C Vo N [V3] =" is strictly increasing
and continuous (i.e. Mg = U{M, : o < p} for limit 3),
(2) M, < V), a« C M, and M,, € M, for a < &,

Fact 5.5. If [V)\} =" C Vy then for each x € V) there is a k-chain of
elementary submodels (M, : o < k) of V\ with x € M.

Proof. Actually such a chain was constructed in the proof of Theorem
5.1. O

Proof of Theorem 5.4. By induction on |G|. If |G| is countable then
there is nothing to prove.

Assume that G = (k, E) and k > w. By the Reflection Principle
2.5 there is a cardinal A such that V), <x V and [V)\r C V,. Then,
by Fact 5.5 there is a k-chain of elementary submodels of V) with
G € My. For a < klet G, = (G\ M) | Myyq. Since @ is well-
reflecting, the graph G!, = G\ M, is in . Moreover, since M,, € My4
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we have G\ M, € M. So applying once more the fact that ® is well
reflecting for M, ; and G/, we obtain that G, is in ®.

So we decomposed the graph G into graphs {G,, : a < k} C ®. How-
ever |V(G,)| < |[May1] < w+ |al < K, so by the inductive hypothesis,
every (G, has a decomposition G, into countable elements of ®. Then
G = U{G, : a < k} is the desired decomposition of G. O

Theorem 5.6. Let ® and ¥ be graph properties. Assume that

(1) ® is well-reflecting,

(2) if H € ® is a countable graph then H € U,

(3) if G has a decomposition {G; :i € I} with G; € ¥ then G € V.
Then G € ® implies G € V.

Proof. Theorem 5.4 and (1) yield that G has a decomposition into
countable graphs {G; :i € I} C ®. By (2) , {G;:i € I} C V. Finally,
by (3), this implies G € ¥ which was to be proved. O

In lemmas 3.5 and 5.2 we proved that the graph property “there is
no odd cut’ is well-reflecting.

As we will see, Theorem 5.6 can be applied as a “black box” principle
in many proofs.

5.2. Applications of Theorem 5.6. First we give a new proof of a
result of Laviolette.

Theorem 5.7 ([8, Corollary 1]). Every bridgeless graph can be parti-
tioned into countable bridgeless graphs.

Proof. We need the following lemma:
Lemma 5.8. The ‘“bridgeless” property is well-reflecting.

Proof of lemma 5.8. Assume that G is a graph and G € M <5 V for
some large enough finite family ¥ of formulas.
(1) Assume that an edge e = zy is a bridge in G [ M. Then

(29) M = e separates = and v,
so, by M <5 V
(30) V' |= e separates = and y,

i.e. e is a bridge in G.

(2) Assume that an edge e = xy is a bridge in G\ M. Then e separates
x and y in G \ M, so by lemma 5.3, e separates x and y in G, i.e. e is
a bridge in G. U

By lemma 5.8, we can apply theorem 5.4 to get the statement of this
theorem. 0
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Let us formulate two corollaries.

Corollary 5.9 (Laviolette, [8, Theorem 1]). Every bridgeless graph has
a cycle w-cover.

Proof. Every countable bridgeless graph clearly has a cycle w-cover,
and by the previous theorem every bridgeless graph can be partitioned
into countable bridgeless graphs. O

It is worth to mention that in [8] Theorem 5.8 was a corollary of
Corollary 5.9.

Before formulation of the second corollary let us recall the following
conjecture of Seymour and Szekeres.

Double Cover Conjecture . Every bridgeless graph has a cycle dou-
ble cover.

Since every bridgeless graph can be partitioned into countable bridge-
less graphs, we yield

Corollary 5.10 (Laviolette, [8]). If the Double Circle Congjecture holds
for all countable graphs then it holds for each graphs.

Next we sketch two more applications.
In [9] the following statements were also proved:

Theorem 5.11 (Nash-Williams). (1) A graph G can be decomposed
into cycles and endless chains if and only if it has no vertex of odd
valency. (2) G is decomposable into endless chains if and only if it has
no vertex of odd valency and no finite non-trivial component.

Let us recall that a connected component is non-trivial if it has at
least two elements.

Proof of 5.11. For i = 1,2 we say that a graph G is NW; iff G satisfies
the assumption of statement (i) from 5.1.

Lemma 5.12. The statements of Theorem 5.1 hold for countable graphs.
The proof of Lemma 5.12 is left to the reader.
Lemma 5.13. The following graph properties are well-reflecting:

(1) there is no vertex of odd valency.
(2) there is no finite non-trivial component.

Proof of lemma 5.13. (1) Assume that in G there is no vertex of odd
valency. Let G € M <y V with |M| C M for some large enough finite
set 3 of formulas.

Claim There is no vertex of odd valency in G | M
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Indeed, let x € V| and assume that the set A = {v € V(G) : yz €
E(G | M)} is finite. Then A € M, and for each v € V(G) N M we
have v € A iff va € E(G) N M. Thus

(31) MEA={veV(G):vr e EG)},
so, by M <y V', we have
(32) MEA={veV(G):vr e EG)},

ie. A={veV(G) :vx € E(G)}. V| A=G(z), ie. A= G(x).
Thus dg(z) = dem ().
Let G € M <x V, M| C M, and x € V. If x ¢ M, then G(x) =
(G\ M)(z), so dgim(x) = dg(zx) is even.
Claim There is no vertex of odd valency in G \ M

Assume x € M. If dg(x) < |M| then {v € V(G) : vx € E(G)} C M,
and so dg\y () = 0. If dg(z) > |M| then dg(z) = da\m ().

If x € M then clearly dg(x) = deym ().

(2) Assume that in G there is no finite component Let G € M <5 V
with |[M| C M for some large enough finite set ¥ of formulas.
Claim There is no finite non-trivial component in G | M

Let x € V(G) N M and assume that = has a finite component C' in
G | M. Then C € M and

(33) M = C is the component of z,
S0
(34) V = C' is the component of z,

i.e. G has finite component.
Claim There is no finite non-empty component in G \ M

Assume that there is a finite non-trivial component C' in G \ M.
Since C' is not a component in M there is an edge cd € E(G) N M with
c € C. Since C is non-trivial there is ¢ € C' such that ¢c’ is an edge in
G\ M. Then c € M and ¢ ¢ M.

Since dg(c) < |M] would imply ¢ € {¢* : e¢* € E(G)} C M we have
dg(z) > |M|. However {c¢* : ec* € E(G)}\ M C C, and so |C| > |M]|.
Contradiction. U

We want to apply theorem 5.6. Let ®; be the property NW; for
1 = 1,2, and ¥, be “decomposable into cycles and endless chains ”,
and Wy be “decomposable into endless chains ”.

Then condition 5.6.(1) holds by lemma 5.13, 5.6.(2) is true by lemma
5.12. 5.6.(3) is trivial from the definition. Putting together these things
we obtain the theorem. O
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6. BOND FAITHFUL DECOMPOSITIONS

In this section we prove a decomposition theorem in which we can
not apply Theorem 5.6.

Definition 6.1. Let x be an infinite cardinal. A decomposition H of
a graph G is k-bond faithful iff |E(H)| < k for each H € H,
(i) any bond of G of cardinality < r is contained in some member of
the decomposition,
(ii) any bond of cardinality < x of a member of the decomposition is

a bond of G.

Theorem 6.2. For any cardinal k every graph has a k-bond faithful
decomposition.

Laviolette [8] proved that the theorem above holds for k = w in ZFC,
and for any x > w under GCH. We eliminate GCH from the proof.
The following lemma is the key of the proof.

Lemma 6.3. If G is a graph, G € M <x V with |M| C M for some
large enough finite set ¥ of formulas.
(1) If F C E(G | M) is a bond of G | M with |F| < |M| then F is
a bond in G.
(II) If F C E(G) is a bound of G\ M with |F| < |M| then F is a
bond in G.

Proof of 6.3. (I) Assume on the contrary that F' is not a bound in
G. Pick xa’ € F. Then by Proposition 2.3 = and z’ are in the same
connected component D of G\ F', and so there is a path P = zy25 . ..z,
in G\ F, zy =z, x, = 2/. Choose the path in such a way that the
cardinality of the finite set

(35) IP = {Z P41 ¢ M}
is minimal. Since F'is a cut in G | M we have Ip # (). Let ¢ = min I,
Then z; € M. Let j = min{j > i : z; € M}. Then j > i+ 1,
x;, x; € M, and moreover fy(G\M)\F(:cZ-, z;) > 0.

Claim 6.4. If v,y € M, yo\m(x,y) > 0 then yaou(z,y) = |M|.

Proof of the Claim. Write u = |M|. If yo(z,y) < p then there is A €
[V(G)}“ such that A separates x and y in G. Since G, z,y,u € M <y V
we can find such an A in M. Since 4 C M we have A C M, and so M
separates z and y in G. Thus ye\a (2, y) = 0.

But ye\m(z,y) > 0, so we have yg(z,y) > |[M]. So, by the weak
Erdoés-Menger Theorem there is a family P of p many edge disjoint
paths between x and y in G. Since G, z,y, u € M we can find such a
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Pin M. But |P| =pu C M, and so P C M. Thus there are py-many
edge disjoint paths between x and y in M, i.e. v (x,y) = k. O

By the Claim yga (@i, ;) = k. So, by the weak infinite Menger
Theorem, there are k many edge disjoint path in G\ M between x and
y. Since |F| < &, there is a path Q = z;y1...yxz; in G | M which
avoid F. Then P’ = xy...2y1 ... y%j ... T, is a path between z; and
xp in G\ F with |Ip/| < |Ip|. Contradiction.

(II) Let cico € F. Then ye\m(cr,c2) > 0, F separates ¢; and ¢ in
G\ M, so F also separates ¢; and ¢y in G by lemma 5.3. In other
words, ¢; and ¢y are in different connected component of G'\ F', and so
F should be a bond in G' by Proposition 2.3. O

Proof of theorem 6.2. By induction on |V(G)|. If |V(G)| < & then the
one element decomposition {G} works.

Assume that G = (u, F), and u > k. Let 3 be a large enough finite
set of formulas. By the Reflection Principle 2.5 there is a cardinal A
such that Vi <x V and [VA]" C Vi

By Fact 5.5 there is a u-chain of elementary submodels (M, : « < p)
of V) with G € M.

Using the chain (M, : a < p) partition G as follows:

o fora < plet Gy, = (G\ My) [ Mo
Let G, = G'\ M,. By lemma 6.3(1I)
e any bond of cardinality < x of G, is a bond of G.

Moreover, since M, € M,1 we have G\ M, € M,.1. So we can apply
lemma 6.3(I) for M,.; and G/, to derive that

e any bond of cardinality < k of G, is a bond of G.,.
Putting together

e any bond of cardinality < k of G, is a bond of G.
Moreover |V (Go)| < |Mas1| < w4+ |a| < K, so by the inductive
hypothesis, every GG, has a x-bond faithful decomposition H,. Let
H =U{H, : a < u}. H clearly satisfies 6.1(ii): if F" is a bond of some

H € H, with |F| < k, then F'is a bond of G,, and so F' is a bond of
G

Finally we check 6.1(i). We recall one more result of Laviolette: a
result from

Theorem 6.5 ([8, Proposition 3|). For any cardinal k every graph has
an decomposition which satisfies 6.1(3).

Let us remark that GCH was assumed in [8, Proposition 3], but in
the proof it was not used.
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Since My <x V, we have a decomposition K € M, of G which
witnesses 6.1(i). Assume that A is a bond of G with |A| < k. Then
there is K € K such that A C E(K). Let a be minimal such that
E(K)N Myy1 # 0. Then K € M,.,. Thus A C E(H) C E(G,).
Since, by the inductive assumption, the decomposition H, satisfies
6.1(i) there is H € H, with A C E(H). But H € H, so we are done.

O
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