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Abstract

Let C(α) denote the class of all cardinal sequences of length α associated with
compact scattered spaces. Also put

Cλ(α) = {f ∈ C(α) : f(0) = λ = min[f(β) : β < α]}.

If λ is a cardinal and α < λ++ is an ordinal, we define Dλ(α) as follows: if λ = ω,

Dω(α) = {f ∈ α{ω, ω1} : f(0) = ω},

and if λ is uncountable,

Dλ(α) = {f ∈ α{λ, λ+} : f(0) = λ,

f−1{λ} is < λ-closed and successor-closed in α}.

We show that for each uncountable regular cardinal λ and ordinal α < λ++ it is
consistent with GCH that Cλ(α) is as large as possible, i.e.

Cλ(α) = Dλ(α).

This yields that under GCH for any sequence f of regular cardinals of length α the
following statements are equivalent:

(1) f ∈ C(α) in some cardinal preserving and GCH-preserving generic-extension of
the ground model.

(2) for some natural number n there are infinite regular cardinals λ0 > λ1 >
· · · > λn−1 and ordinals α0, . . . , αn−1 such that α = α0 + · · · + αn−1 and
f = f0

_ f1
_· · · _fn−1 where each fi ∈ Dλi(αi).
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The proofs are based on constructions of universal locally compact scattered
spaces.
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1 Introduction

Given a locally compact scattered T2 (in short : LCS) space X the αth Cantor-
Bendixson level will be denoted by Iα(X). The height of X, ht(X), is the least
ordinal α with Iα(X) = ∅. The reduced height ht−(X) is the smallest ordinal α
such that Iα(X) is finite. Clearly, one has ht−(X) ≤ ht(X) ≤ ht−(X) + 1. The
cardinal sequence of X, denoted by SEQ(X), is the sequence of cardinalities
of the infinite Cantor-Bendixson levels of X, i.e.

SEQ(X) =
〈
|Iα(X)| : α < ht(X)−

〉
.

A characterization in ZFC of the sequences of cardinals of length ≤ ω1 that
arise as cardinal sequences of LCS spaces is proved in [4]. However, no char-
acterization in ZFC is known for cardinal sequences of length < ω2.

For an ordinal α we let C(α) denote the class of all cardinal sequences of length
α of LCS spaces. We also put, for any fixed infinite cardinal λ,

Cλ(α) = {s ∈ C(α) : s(0) = λ ∧ ∀β < α [s(β) ≥ λ]}.

In [2], the authors show that a class C(α) is characterized if the classes Cλ(β)
are characterized for every infinite cardinal λ and every ordinal β ≤ α. Then,
they obtain under GCH a characterization of the classes C(α) for any ordinal
α < ω2 by means of a a full description under GCH of the classes Cλ(α) for any
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ordinal α < ω2 and any infinite cardinal λ. The situation becomes, however,
more complicated when we consider the class C(ω2) . We can characterize
under GCH the classes Cλ(ω2) for λ > ω1, by using the description given in
[2] and the following simple observation.

Observation 1.1 If λ ≥ ω2, then f ∈ Cλ(ω2) iff f � α ∈ Cλ(α) for each
α < ω2.

PROOF. If SEQ(Xα) = f � α for α < ω2 then take X as the disjoint union
of {Xα : α < ω2}. Then SEQ(X) = f because for any β < ω2 we have
Iβ(X) =

⋃{Iβ(Xα) : β < α < ω2} and so

| Iβ(X)| =
∑

β<α<ω2

| Iβ(Xα)| = ω2 · f(β) = f(β).

2

If α is any ordinal, a subset L ⊂ α is called κ-closed in α, where κ is an
infinite cardinal, iff sup 〈αi : i < κ〉 ∈ L ∪ {α} for each increasing sequence
〈αi : i < κ〉 ∈ κL. The set L is < λ-closed in α provided it is κ-closed in α for
each cardinal κ < λ. We say that L is successor closed in α if β+ 1 ∈ L∪{α}
for all β ∈ L.

For a cardinal λ and ordinal δ < λ++ we define Dλ(δ) as follows: if λ = ω,

Dω(δ) = {f ∈ δ{ω, ω1} : f(0) = ω},

and if λ is uncountable,

Dλ(δ) = {s ∈ δ{λ, λ+} : s(0) = λ,

s−1{λ} is < λ-closed and successor-closed in δ}.

The observation 1.1 above left open the characterization of Cω1(ω2) under
GCH. In [2, Theorem 4.1] it was proved that if GCH holds then

Cω1(δ) ⊆ Dω1(δ),

and we have equality for δ < ω2. In Theorem 1.3 we show that it is consistent
with GCH that we have equality not only for δ = ω2 but even for each δ < ω3.

To formulate our results we need to introduce some more notation.

We shall use the notation 〈κ〉α to denote the constant κ-valued sequence of
length α. Let us denote the concatenation of a sequence f of length α and
a sequence g of length β by f _g so that the domain of f _g is α + β and
f _g(ξ) = f(ξ) for ξ < α and f _g(α + ξ) = g(ξ) for ξ < β.
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Definition 1.2 An LCS space X is called Cλ(α)-universal iff SEQ(X) ∈
Cλ(α) and for each sequence s ∈ Cλ(α) there is an open subspace Y of X
with SEQ(Y ) = s.

In this paper we prove the following result:

Theorem 1.3 If κ is an uncountable regular cardinal with κ<κ = κ and 2κ =
κ+ then for each δ < κ++ there is a κ-complete κ+-c.c poset P of cardinality
κ+ such that in V P

Cκ(δ) = Dκ(δ)
and there is a Cκ(δ)-universal LCS space.

How do the universal spaces come into the picture? The first idea to prove the
consistency of Cλ(α) = Dλ(α) is to try to carry out an iterated forcing. For
each f ∈ Dλ(α) we can try to find a poset Pf such that

1Pf 
 There is an LCS space Xf with cardinal sequence f .

Since typically |Xf | = λ+, if we want to preserve the cardinals and CGH we
should try to find a λ-complete, λ+-c.c. poset Pf of cardinality λ+. In this case
forcing with Pf introduces λ+ new subsets of λ because Pf has cardinality λ+.
However |Dλ(α)| = λ++! So the length of the iteration is at least λ++, hence
in the final model the cardinal λ will have λ+ · λ++ = λ++ many new subsets,
i.e. 2λ > λ+.

A Cλ(δ)-universal space has cardinality λ+ so we may hope that there is a
λ-complete, λ+-c.c. poset P of cardinality λ+ such that V P contains a Cλ(δ)-
universal space. In this case (2λ)V

P ≤ ((|P |λ)λ)V = λ+. So in the generic
extension we might have GCH.

In this paper, we shall use the notion of a universal LCS space in order to prove
Theorem 1.3. Further constructions of universal LCS spaces will be carried out
in [6].

Problem 1.4 Assume that s is a sequence of cardinals of length α, s /∈ C(α).
Is it possible that there is a |α|+-Baire (|α|+-complete) poset P such that s ∈
C(α) in V P?

For an ordinal δ < κ++ let Lδκ = {α < δ : cf(α) ∈ {κ, κ+}}.

Definition 1.5 An LCS space X is called Lδκ-good iff X has a partition X =
Y ∪∗ ⋃∗{Yζ : ζ ∈ Lδκ} such that

(1) Y is an open subspace of X, SEQ(Y ) = 〈κ〉δ,
(2) Y ∪ Yζ is an open subspace of X with SEQ(Y ∪ Yζ) = 〈κ〉ζ _〈κ+〉δ−ζ.

Theorem 1.3 follows immediately from Theorem 1.6 and Proposition 1.7 below.
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Theorem 1.6 If κ is an uncountable regular cardinal with κ<κ = κ then for
each δ < κ++ there is a κ-complete κ+-c.c poset P of cardinality κ+ such that
in V P there is an Lδκ-good space.

Proposition 1.7 Let κ be an uncountable regular cardinal, δ < κ++ and X be
an Lδκ-good space. Then for each s ∈ Dκ(δ) there is an open subspace Z of X
with SEQ(Z) = s. Especially, under GCH an Lδκ-good space is Cκ(δ)-universal.

PROOF. Let J = s−1{κ+} ∩ Lδκ. For each ζ ∈ J let

f(ζ) = min((δ + 1) \ (s−1{κ+} ∪ ζ)).

Let
Z = Y ∪

⋃
{I<f(ζ)(Y ∪ Yζ) : ζ ∈ J}.

Since Y ∪Yζ is an open subspace of X it follows that I<f(ζ)(Y ∪Yζ) is an open
subspace of Z. Hence for every α < δ

Iα(Z) = Iα(Y ) ∪
⋃
{Iα(I<f(ζ)(Y ∪ Yζ)) : ζ ∈ J}

= Iα(Y ) ∪
⋃
{Iα(Y ∪ Yζ) : ζ ∈ J, ζ ≤ α < f(ζ)}. (1)

Since [ζ, f(ζ)) ⊂ s−1{κ+} for ζ ∈ J it follows that if s(α) = κ then Iα(Z) =
Iα(Y ), and so

| Iα(Z)| = | Iα(Y )| = κ. (2)

If s(α) = κ+, let ζα = min{ζ ≤ α : [ζ, α] ⊂ s−1{κ+}}. Then ζα ∈ J because
s(0) = κ and s−1{κ} is < κ-closed and successor-closed in δ. Thus ζα ≤ α <
f(ζα) and so

| Iα(Z)| ≥ | Iα(Y ∪ Yζα)| = κ+. (3)

Since |Z| ≤ |X| = κ+ we have | Iα(Z)| = κ+. Thus SEQ(Z) = s. 2

Theorem 1.3 yields the following characterization:

Theorem 1.8 Under GCH for any sequence f of regular cardinals of length
α the following statements are equivalent:

(A) f ∈ C(α) in some cardinal preserving and GCH-preserving generic-extension
of the ground model.

(B) for some natural number n there are infinite regular cardinals λ0 > λ1 >
· · · > λn−1 and ordinals α0, . . . , αn−1 such that α = α0 + · · · + αn−1 and
f = f0

_ f1
_· · · _fn−1 where each fi ∈ Dλi(αi).

PROOF. (A) clearly implies (B) by [2].

Assume now that (B) holds. Without loss of generality, we may suppose that
λn−1 = ω. Since the notion of forcing defined in Theorem 1.3 preserves GCH,
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we can carry out a cardinal-preserving and GCH-preserving iterated forcing
of length n− 1, 〈Pm : m < n− 1〉, such that for m < n− 1

V Pm |= Cλm(αm) = Dλm(αm).

Put k = n − 2, β = α0 + · · · + αk and g = f0
_f1

_· · · _fk. Since fm ∈
Dλm(αm)∩V , in V Pk we have fm ∈ Cλm(αm) for each m < n−1. Hence in V Pk

we have g ∈ C(β) by [2, Lemma 2.2]. Also, by using [4, Theorem 9], we infer
that fn−1 ∈ C(αn−1) in ZFC. Then as f = g_fn−1, in V Pk we have f ∈ C(α)
again by [2, Lemma 2.2]. 2

Problem 1.9 (1) Are (A) and (B) below equivalent under GCH for every
sequence fof regular cardinals?

(A) f ∈ C(α).
(B) for some natural number n there are infinite regular cardinals λ0 > λ1 >
· · · > λn−1 and ordinals α0, . . . , αn−1 such that α = α0 + · · · + αn−1 and
f = f0

_ f1
_· · · _fn−1 where each fi ∈ Dλi(αi).

(2) Is it consistent with GCH that (A) and (B) above are equivalent for every
sequence of regular cardinals?

Juhász and Weiss proved in [3] that 〈ω〉δ ∈ C(δ) for each δ < ω2.

Also, it was shown in [5] that for every specific regular cardinal κ it is consistent
that 〈κ〉δ ∈ C(δ) for each δ < κ++. However, the following problem is open:

Problem 1.10 Is it consistent with GCH that 〈ω1〉δ ∈ C(δ) for each δ < ω3?

2 Proof of theorem 1.6

This section is devoted to the proof of Theorem 1.6, so κ is an uncountable
regular cardinal with κ<κ = κ, and δ < κ++ is an ordinal.

If α ≤ β are ordinals let

[α, β) = {γ : α ≤ γ < β}. (4)

We say that I is an ordinal interval iff there are ordinals α and β with I =
[α, β). Write I− = α and I+ = β.

If I = [α, β) is an ordinal interval let E(I) = {εIν : ν < cf(β)} be a cofinal
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closed subset of I having order type cf β with α = εI0 and put

E(I) = {[εIν , εIν+1) : ν < cf β} (5)

provided β is a limit ordinal, and let E(I) = {α, β′} and put

E(I) = {[α, β′), {β′}} (6)

provided β = β′ + 1.

Define {In : n < ω} as follows:

I0 = {[0, δ)} and In+1 =
⋃
{E(I) : I ∈ In}. (7)

Put I =
⋃{In : n < ω}. Note that I is a cofinal tree of intervals in the sense

defined in [5]. Then, for each α < δ we define

n(α) = min{n : ∃I ∈ In with I− = α}, (8)

and for each α < δ and n < ω we define

I(α, n) ∈ In such that α ∈ I(α, n). (9)

Proposition 2.1 Assume that ζ < δ is a limit ordinal. Then, there is a
j(ζ) ∈ ω and an interval J(ζ) ∈ Ij(ζ) such that ζ is a limit point of E(J(ζ)).
Also, we have n(ζ)− 1 ≤ j(ζ) ≤ n(ζ), and j(ζ) = n(ζ) if cf(ζ) = κ+.

PROOF. Clearly j(ζ) and J(ζ) are unique if defined.

If there is an I ∈ In(ζ) with I+ = ζ then J(ζ) = I, and so j(ζ) = n(ζ). If there
is no such I, then ζ is a limit point of E(I(ζ, n(ζ)− 1)), so J(ζ) = I(ζ, n(ζ)−1)
and j(ζ) = n(ζ)− 1.

Assume now that cf(ζ) = κ+. Then ζ ∈ E(I(ζ, n(ζ)− 1)), but |E(I(ζ, n(ζ)− 1))∩
ζ| ≤ κ, so ζ can not be a limit point of E(I(ζ, n(ζ)− 1)). Therefore, it has a
predecessor ξ in E(I(ζ, n(ζ)− 1)), i.e [ξ, ζ) ∈ In(ζ), and so J(ζ) = [ξ, ζ) and
j(ζ) = n(ζ). 2

Example 2.2 Put δ = ω2 · ω2 + 1. We define

E([0, δ)) = {0, ω2 · ω2},

E([0, ω2 · ω2)) = {ω2 · ξ : 0 ≤ ξ < ω2},

E([ω2 · ξ, ω2 · (ξ + 1))) = {ζ : ω2 · ξ ≤ ζ < ω2 · (ξ + 1)},

E({ζ}) = {ζ} for each ζ ≤ ω2 · ω2.
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Then, we have n(ω2 · ω2) = 1, n(ω2 · ω1) = 2, n(ω2 · ω1 + ω) = 3. Also, we
have j(ω2 · ω2) = j(ω2 · ω1) = 1 and J(ω2 · ω2) = J(ω2 · ω1) = [0, ω2 · ω2).

If cf(J(ζ)+) ∈ {κ, κ+}, we denote by {εζν : ν < cf(J(ζ)+)} the increasing
enumeration of E(J(ζ)), i.e. εζν = εJ(ζ)

ν for ν < cf(J(ζ)+).

Now if ζ < δ, we define the basic orbit of ζ (with respect to I) as

o(ζ) =
⋃
{(E(I(ζ,m)) ∩ ζ) : m < n(ζ)}. (10)

Note that this is the notion of orbit used in [5] in order to construct by forcing
an LCS space X such that SEQ(X) = 〈κ〉η for any specific regular cardinal
κ and any ordinal η < κ++. However, this notion of orbit can not be used
to construct an LCS space X such that SEQ(X) = 〈κ〉κ+

_ 〈κ+〉. To check
this point, assume on the contrary that such a space X can be constructed
by forcing from the notion of a basic orbit. Then, since the basic orbit of κ+

is {0}, we have that if x, y are any two different elements of Iκ+(X) and U, V
are basic neighbourhoods of x, y respectively, then U ∩ V ⊂ I0(X). But then,
we deduce that |I1(X)| = κ+.

However, we will show that a refinement of the notion of basic orbit can be
used to proof Theorem 1.6.

If ζ < δ with cf ζ ≥ κ, we define the extended orbit of ζ by

o(ζ) = o(ζ) ∪ (E(J(ζ)) ∩ ζ). (11)

Consider the tree of intervals defined in Example-2.2. Then, we have o(ω2 ·
ω1) = o(ω2 · ω1) = {ω2 · ξ : 0 ≤ ξ < ω1}, o(ω2 · ω2) = {0}, o(ω2 · ω2) = {ω2 · ξ :
0 ≤ ξ < ω2}.

Note that if ζ < δ, the basic orbit of ζ is a set of cardinality at most κ (see
[5, Proposition 1.3]). Then, it is easy to see that for any ζ < δ with cf ζ ≥ κ ,
the extended orbit of ζ is a cofinal subset of ζ of cardinality cf ζ.

In order to define the desired notion of forcing, we need some preparations.
The underlying set of the desired space will be the union of a collection of
blocks.

Let
B = {S} ∪ {〈ζ, η〉 : ζ < δ, cf ζ ∈ {κ, κ+}, η < κ+}. (12)

Let
BS = δ × κ (13)
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and

Bζ,η = {〈ζ, η〉} × [ζ, δ)× κ (14)

for 〈ζ, η〉 ∈ B \ {S}.

Let

X =
⋃
{BT : T ∈ B}. (15)

The underlying set of our space will be X. We should produce a partition
X = Y ∪∗ ⋃∗{Yζ : ζ ∈ Lδκ} such that

(1) Y is an open subspace of X with SEQ(Y ) = 〈κ〉δ ,
(2) Y ∪ Yζ is an open subspace of X with SEQ(Y ∪ Yζ) = 〈κ〉ζ _〈κ+〉δ−ζ .

We will have Y = BS, Yζ =
⋃{Bζ,η : η < κ+} for ζ ∈ Lδκ.

Let

π : X −→ δ such that
π(〈α, ν〉) = α,

π(〈ζ, η, α, ν〉) = α.
(16)

Let

π− : X −→ δ such that
π−(〈α, ν〉) = α,

π−(〈ζ, η, α, ν〉) = ζ.
(17)

Define

πB : X −→ B by the formula x ∈ BπB(x). (18)

Define the block orbit function oB : B \ {S} −→
[
δ
]≤κ

as follows:

oB(〈ζ, η〉) =

 o(ζ) if cf ζ = κ,

o(ζ) ∪ {εζν : ν < η} if cf ζ = κ+.
(19)

That is, if cf ζ = κ+ then

oB(〈ζ, η〉) = o(ζ) ∩ εζη.

Finally we define the orbits of the elements of X as follows:

o* : X −→
[
δ
]≤κ

such that
o*(〈α, ν〉) = o(α),

o*(〈ζ, η, α, ν〉) = oB(〈ζ, η〉) ∪ (o(α) \ ζ).
(20)
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Let Λ ∈ I and {x, y} ∈
[
X
]2

. We say that Λ isolates x from y if

(i) Λ− < π(x) < Λ+,
(ii) Λ+ ≤ π(y) provided πB(x) = πB(y),
(iii) Λ+ ≤ π−(y) provided πB(x) 6= πB(y).

Now, we define the poset P = 〈P,≤〉 as follows: 〈A,�, i〉 ∈ P iff

(P1) A ∈
[
X
]<κ

.

(P2) � is a partial order on A such that x � y implies x = y or π(x) < π(y).
(P3) Let x � y.

(a) If πB(y) = 〈ζ, η〉 and ζ ≤ π(x) then πB(x) = πB(y).
(b) If πB(y) = 〈ζ, η〉 and ζ > π(x) then πB(x) = S.
(c) If πB(y) = S then πB(x) = S.

(P4) i :
[
A
]2
−→ A ∪ {undef} such that for each {x, y} ∈

[
A
]2

we have

∀a ∈ A([a � x ∧ a � y] iff a � i{x, y}).

(P5) ∀{x, y} ∈
[
A
]2

if x and y are �-incomparable but �-compatible, then

π(i{x, y}) ∈ o*(x) ∩ o*(y).
(P6) Let {x, y} ∈ [A]2 with x � y. Then:

(a) If πB(x) = S and Λ ∈ I isolates x from y, then there is z ∈ A such
that x � z � y and π(z) = Λ+.

(b) If πB(x) 6= S, π(x) 6= π−(x) and Λ ∈ I isolates x from y, then there
is z ∈ A such that x � z � y and π(z) = Λ+.

The ordering on P is the extension: 〈A,�, i〉 ≤ 〈A′,�′, i′〉 iff A′ ⊂ A, �′=�
∩(A′ × A′), and i′ ⊂ i.

By using (P3), we obtain:

Claim 2.3 Assume that x, y, z and Λ are as in (P6). Then we have:

(a) If πB(x) = πB(y), then πB(z) = πB(x) = πB(y).

(b) If πB(x) 6= πB(y) and Λ+ < π−(y), then πB(z) = πB(x).

(c) If πB(x) 6= πB(y) and Λ+ = π−(y), then πB(z) = πB(y).

Since κ<κ = κ implies (κ+)<κ = κ+, we have that the cardinality of P is κ+.
Then, using the arguments of [5] it is enough to prove that Lemmas 2.4, 2.5
and 2.6 below hold.

Lemma 2.4 P is κ-complete.
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Lemma 2.5 P satisfies the κ+-c.c.

Lemma 2.6 Assume that p = 〈A,�, i〉 ∈ P , x ∈ A, and α < π(x). Then
there is p′ = 〈A′,�′, i′〉 ∈ P with p′ ≤ p and there is b ∈ A′ \ A with π(b) = α
such that b �′ y iff x � y for y ∈ A.

Since κ is regular, Lemma 2.4 clearly holds.

PROOF of Lemma 2.6. Let β = π(x). Let K be a countable subset of
[α, β) such that α ∈ K and I(γ, n)+ ∈ K ∪ [β, δ) for γ ∈ K and n < ω. For
each γ ∈ K pick bγ ∈ X \ A such that π(bγ) = γ and

(1) if πB(x) = S then πB(bγ) = S.
(2) if πB(x) 6= S and γ ≥ π−(x) then πB(bγ) = πB(x).
(3) if πB(x) 6= S and γ < π−(x) then πB(bγ) = S.

Let A′ = A ∪ {bγ : γ ∈ K},

�′=� ∪{〈bγ, bγ′〉 : γ, γ′ ∈ K, γ ≤ γ′}
∪ {〈bγ, z〉 : γ ∈ K, z ∈ A, x � z}.

The definition of i′ is straightforward because if y ∈ A′ and γ ∈ K then either
y and bγ are �′-comparable or they are �′-incompatible.

Then p′ = 〈A′,�′, i′〉 and b = bα satisfy the requirements. 2

Finally we should prove Lemma 2.5.

Proof of Lemma 2.5.

Assume that 〈rν : ν < κ+〉 ⊂ P with rν 6= rµ for ν < µ < κ+.

Write rν = 〈Aν ,�ν , iν〉 and Aν = {xν,i : i < σν}.

Since we are assuming that κ<κ = κ, by thinning out 〈rν : ν < κ+〉 by means
of standard combinatorial arguments, we can assume the following:

(A) σν = σ for each ν < κ+.
(B) {Aν : ν < κ+} forms a ∆-system with kernel A.
(C) For each ν < µ < κ+ there is an isomorphism h = hν,µ : 〈Aν ,�ν , iν〉 −→
〈Aµ,�µ, iµ〉 such that for every i < σ and x, y ∈ Aν the following holds:
(a) h � A = id .
(b) h(xν,i) = xµ,i.
(c) πB(x) = πB(y) iff πB(h(x)) = πB(h(y)).
(d) πB(x) = S iff πB(h(x)) = S.
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(e) π(x) = π−(x) iff π(h(x)) = π−(h(x)).

(f) if {x, y} ∈
[
A
]2

then iν{x, y} = iµ{x, y}.

Note that in order to obtain (C)(f) we use condition (P5) and the fact that
|o∗(x)| ≤ κ for every x ∈ A. Also, we may assume the following:

(D) There is a partition σ = K ∪∗ F ∪∗ L ∪∗ D ∪∗ M such that for each
ν < µ < κ+:
(a) ∀i ∈ K xν,i ∈ A and so xν,i = xµ,i. A = {xν,i : i ∈ K}.
(b) ∀i ∈ F xν,i 6= xµ,i but πB(xν,i) = πB(xµ,i) 6= S.
(c) ∀i ∈ L πB(xν,i) 6= πB(xµ,i) but π−(xν,i) = π−(xµ,i).
(d) ∀i ∈ D πB(xν,i) = S and π(xν,i) 6= π(xµ,i).
(e) ∀i ∈M πB(xν,i) 6= S and π−(xν,i) 6= π−(xµ,i).

(E) If πB(xν,i) = πB(xν,j) then {i, j} ∈
[
K ∪D

]2
∪
[
K ∪ F

]2
∪
[
L
]2
∪
[
M
]2

.

It is well-known that if γ < κ = κ<κ then the following partition relation
holds:

κ+ −→ (κ+, (ω)γ)
2.

Hence we can assume:

(F) If ν < µ < κ+ then for each i ∈ σ we have
(a) π(xν,i) ≤ π(xµ,i),
(b) π−(xν,i) ≤ π−(xµ,i).

By (F)(a) and (F)(b) the sequences {π(xν,i) : ν < κ+} and {π−(xν,i) : ν < κ+}
are increasing for each i ∈ σ, hence the following definition is meaningful:

For i ∈ σ let

δi =



π(xν,i) if i ∈ K,

sup{π(xν,i) : ν < κ+} if i ∈ F ∪D,

π−(xν,i) if i ∈ L,

sup{π−(xν,i) : ν < κ+} if i ∈M.

By using Proposition 2.1, (C)(c) and condition (P3), we obtain:

Claim 2.7 (a) If i ∈ F ∪ D ∪M , then cf(δi) = κ+ and sup(J(δi)) = δi.
Moreover for every ν < κ+ we have π(xν,i) < δi if i ∈ F ∪D, and π−(xν,i) < δi
if i ∈M .

(b) If {i, j} ∈ [L]2 ∪ [M ]2 and xν,i ≺ν xν,j for ν < κ+, then δi = δj.
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Indeed, (b) holds for large enough ν, and so (C)(c) implies that it holds for
each ν.

We put

Z0 = {π−(xν,i) : i ∈ F ∪K, πB(xν,i) 6= S} ∪ {δi : i ∈ σ}. (21)

Since π′′A = {δi : i ∈ K} we have π′′A ⊂ Z0. Then, we define Z as the closure
of Z0 with respect to I:

Z = Z0 ∪ {I+ : I ∈ I, I ∩ Z0 6= ∅}. (22)

Since |Z| < κ, we can assume:

(G) A = {xν,i : i ∈ K ∪ F ∪D, π(xν,i) ∈ Z}.

Equivalently,

if i ∈ F ∪D then π(xν,i) /∈ Z. (23)

Let us remark that for i ∈ L ∪M we may have that π(xν,i) ∈ Z.

Our aim is to show that there are ν < µ < κ+ such that rν and rµ are
compatible. Note that if x, y ∈ A with x 6= y then, by (C)(f), we may assure
that iν{x, y} = iµ{x, y}. However, if x ∈ Aν \A and y ∈ Aµ \A it may happen
that for infinitely many v ∈ A we have v �ν x and v �µ y. Then, in order to
amalgamate rν and rµ in such a way that any pair of such elements has an
infimum in the amalgamation, we will need to add new elements to Aν ∪ Aµ.
Then, the next definitions will permit us to find suitable room for adding new
elements to the domains of the conditions.

Let

σ1 = {i ∈ σ \K : cf(δi) = κ}

and

σ2 = {i ∈ σ \K : cf(δi) = κ+}.

Assume that i ∈ σ \K. Put Ii = J(δi). Let

13



ξi = min{ν ∈ cf δi : εIiν > sup(δi ∩ Z)}.

Then, if i ∈ σ1 we put

γ(δi) = εIiξi and γ(δi) = δi,

and if i ∈ σ2 we put

γ(δi) = εIiξi and γ(δi) = εIiξi+κ.

Claim 2.8 For each i ∈ F ∪ D ∪M there is νi < κ+ such that for all νi ≤
ν < κ+ we have:

if i ∈ F ∪D then π(xν,i) ∈ J(δi) \ γ(δi) (24)

and
if i ∈M then π−(xν,i) ∈ J(δi) \ γ(δi). (25)

PROOF. For i ∈ F ∪D ∪M we have

δi =

 sup{π(xν,i) : ν < κ+} if i ∈ F ∪D,

sup{π−(xν,i) : ν < κ+} if i ∈M,
(26)

and γ(δi) < sup(J(δi)) = δi. 2

Claim 2.9 For each i ∈ L with cf(δi) = κ+ there is νi < κ+ such that for all
νi ≤ ν < κ+, o∗(xν,i) ⊃ o(δi) ∩ γ(δi).

Definition 2.10 rν is good iff

(i) ∀i ∈ F ∪D π(xν,i) ∈ J(δi) \ γ(δi).
(ii) ∀i ∈M π−(xν,i) ∈ J(δi) \ γ(δi).

(iii) ∀i ∈ L if cf δi = κ+ then o*(xν,i) ⊃ o(δi) ∩ γ(δi).

Using Claims 2.8 and 2.9 we can assume:

(H) rν is good for ν < κ+.

By using (H), we will prove that rν and rµ are compatible for {ν, µ} ∈ [κ+]2.
First, we need to prove some fundamental facts.

By using (P3), (E) and (C)(c) we obtain:
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Claim 2.11 If xν,i �ν xν,j then either πB(xν,i) = S or πB(xν,i) = πB(xν,j)
and {i, j} ∈ [K ∪ F ]2 ∪ [L]2 ∪ [M ]2.

Indeed, (P3) and (E) imply that Claim 2.11 holds for large enough ν, and
then (C)(c) yields that it holds for each ν.

Claim 2.12 If xν,i �ν xν,j then δi ≤ δj.

PROOF. If xν,i �ν xν,j then xµ,i �µ xµ,j for each µ < κ+, and so we have:

(a) π(xµ,i) ≤ π(xµ,j),
(b) π−(xµ,i) ≤ π−(xµ,j),
(c) if πB(xµ,i) 6= πB(xµ,j) then π(xµ,i) ≤ π−(xµ,j).

Hence if πB(xν,i) 6= πB(xν,j) then

δi = sup{π(xµ,i) : µ < κ+} ≤ sup{π−(xµ,j) : µ < κ+} ≤ δj. (27)

If πB(xν,i) = πB(xν,j) then either {i, j} ∈
[
K ∪ F

]2
∪
[
K ∪D

]2
and so

δi = sup{π(xµ,i) : µ < κ+} ≤ sup{π(xµ,j) : µ < κ+} = δj, (28)

or {i, j} ∈
[
L
]2
∪
[
M
]2

and so

δi = sup{π−(xµ,i) : µ < κ+} ≤ sup{π−(xµ,j) : µ < κ+} = δj. (29)

2

Claim 2.13 Assume i, j ∈ σ. If xν,i �ν xν,j then either δi = δj or there is
a ∈ A with xν,i �ν a �ν xν,j.

PROOF. Put xi = xν,i, xj = xν,j. Assume that i, j 6∈ K and δi 6= δj. By
Claim 2.12, we have δi < δj. Since i ∈ L ∪M implies δi = δj, we have that
i ∈ F ∪D, and so π(xi) < δi, cf(δi) = κ+ and J(δi)

+ = δi. We distinguish the
following cases:

Case 1. i ∈ D and j ∈ D ∪ L ∪M .

Since δi < δj, we have that J(δi) isolates xi from xj. Also, note that if j ∈
L ∪ M , then J(δi)

+ = δi < π−(xj). By (P6)(a), we infer that there is an
x = xν,k ∈ Aν such that π(x) = δi and xi ≺ν x ≺ν xj. Now, by Claim 2.3(a)-
(b), we deduce that k ∈ K ∪D. But as δi ∈ Z, by (G), we have that x ∈ A,
and so we are done.

Case 2. i ∈ D and j ∈ F .
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We have that πB(xi) 6= πB(xj). By using (P3), we infer that δi ≤ π−(xj), and
so J(δi) isolates xi from xj. If δi < π−(xj), we proceed as in Case 1. So, assume
that δi = π−(xj). By (P6)(a), we deduce that there is an x = xν,k ∈ Aν such
that π(x) = δi and xi ≺ν x ≺ν xj. By Claim 2.3(c), we infer that k ∈ K ∪ F .
Then as δi ∈ Z, we have that x ∈ A by (G).

Case 3. i, j ∈ F .

We have that πB(xi) = πB(xj) 6= S and J(δi) isolates xi from xj. Since
π−(xi) ∈ Z and we are assuming that i 6∈ K, we infer that π(xi) 6= π−(xi).
Now, applying (P6)(b), we deduce that there is an x = xν,k ∈ Aν such that
π(x) = δi and xi ≺ν x ≺ν xj. Now we deduce from Claim 2.3(a) that k ∈ K∪F .
Then as δi ∈ Z, we have that x ∈ A by (G). 2

Claim 2.14 If x ∈ A and y ∈ Aν, and x and y are compatible but incompa-
rable in rν, then iν{x, y} ∈ A.

PROOF. Indeed, π(iν {x, y}) ∈ o*(x) by (P5) and | o*(x)| ≤ κ. 2

Claim 2.15 Assume that xν,i and xν,j are compatible but incomparable in rν.
Let xν,k = iν{xν,i, xν,j}. Then either xν,k ∈ A or δi = δj = δk.

PROOF. Assume xν,k 6∈ A. Then k 6∈ K. If δk 6= δi, we infer that there is
b ∈ A with xν,k �ν b �ν xν,i by Claim 2.13.. So xν,k = iν{b, xν,j} and thus
xν,k ∈ A by Claim 2.14, contradiction.

Thus δi = δk, and similarly δj = δk. 2

After this preparation fix {ν, µ} ∈
[
κ+
]2

. We do not assume that ν < µ! Let
p = rν and q = rµ. Our purpose is to show that p and q are compatible. Write
p = 〈Ap,�p, ip〉 and q = 〈Aq,�q, iq〉, xpi = xν,i and xqi = xµ,i, δxpi = δxqi = δi.

If s = xpi write s ∈ K iff i ∈ K. Define s ∈ L, s ∈ F , s ∈M , s ∈ D similarly.

In order to amalgamate conditions p and q, we will use a refinement of the
notion of amalgamation given in [5, Definition 2.4].

Let A′ = {xpi : i ∈ F ∪D ∪M ∪ L}.

Let rk : 〈A′,�p� A′〉 −→ θ be an order-preserving injective function for some
ordinal θ < κ.

For x ∈ A′, by induction on rk(x) < θ choose βx ∈ δ as follows:

16



Assume that rk(x) = τ and βz is defined provided rk(z) < τ .

Let

βx = min
((

o(δx) ∩ [γ(δx), γ(δx))) \ sup{βz : z ≺p x}
)
. (30)

Since z �p x implies δz ≤ δx by Claim 2.12, we have βz < γ(δx) for z ≺p x.
Since cf(γ(δx)) = κ and |A′| < κ we have sup{βz : z ≺p x} < γ(δx), so βx is
always defined.

For x ∈ A′ let

yx =

 〈βx, rk(x)〉 if x ∈ L ∪D ∪M,

〈ζ, η, βx, rk(x)〉 if x ∈ F , πB(x) = 〈ζ, η〉.
(31)

Put

Y = {yx : x ∈ A′}. (32)

For x ∈ A′ put

g(yx) = x and ḡ(yx) = x′, (33)

where x′ is the “twin” of x in Aq (i.e. hν,µ(x) = x′).

We will include the elements of Y in the domain of the amalgamation r of p
and q. In this way, we will be able to define the infimum in r of elements s, t
where s ∈ Ap \ Aq and t ∈ Aq \ Ap.

We need to prove some basic facts.

Claim 2.16 If x ∈ A′ then

o(δx) ∩ [γ(δx), γ(δx)) ⊂ o∗(x) ∩ o∗(x′).

PROOF. Let α ∈ o(δx)∩ [γ(δx), γ(δx)). It is enough to show that α ∈ o∗(x).
Note that if x ∈ D, then α ∈ o(π(x)) = o∗(x). If x ∈ M , we have that
α ∈ o(π−(x)) ⊂ oB(πB(x)) ⊂ o∗(x). Also, if x ∈ L then as p is good we have
that α ∈ oB(πB(x)) ⊂ o∗(x). Now, assume that x ∈ F . Since π−(x) ∈ Z, we
have that π−(x) < γ(δx), hence α ∈ o(π(x)) \ π−(x), and so α ∈ o∗(x). 2

Note that we obtain as an immediate consequence of Claim 2.16 that βx ∈
o∗(x) ∩ o∗(x′) for every x ∈ A′.
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Claim 2.17 If x ∈ A′ then

o*(yx) ⊃ (o*(x) ∩ π(yx)) ∪ {βz : δz = δx ∧ z ≺p x}. (34)

PROOF. Note that if I ∈ I and α, β ∈ E(I) with α < β, we have that
α ∈ o(β). By using this fact, it is easy to verify that {βz : δz = δx and
z ≺p x} ⊂ o∗(yx).

Now we prove that o∗(yx) ⊃ o∗(x) ∩ π(yx). Suppose that ζ ∈ o∗(x) ∩ π(yx).
We distinguish the following three cases:

Case 1. x ∈ D.

Then x, yx ∈ BS, and so we have o∗(x) = o(π(x)) and o∗(yx) = o(π(yx)) =
o(βx). Let k = j(δx), i.e. J(δx) ∈ Ik. Since ζ ∈ o(π(x)) ∩ π(yx), we infer that
ζ ∈ E(I(π(x),m)) ∩ π(yx) for some m ≤ k. Note that for m ≤ k we have
I(π(x),m) = I(π(yx),m). So, ζ ∈ o(π(yx)) = o∗(yx).

Case 2. x ∈ L ∪M .

Since ζ ∈ o∗(x) ∩ π(yx), we infer that ζ ∈ oB(πB(x)). Then as yx ∈ BS, we
can show that ζ ∈ o(π(yx)) = o∗(yx) by using an argument similar to the one
given in Case 1.

Case 3. x ∈ F .

We have πB(x) = πB(yx) 6= S. Put (ξ, η) = πB(x) = πB(yx). So,

o∗(x) = oB((ξ, η)) ∪ (o(π(x)) \ π−(x)),

o∗(yx) = oB((ξ, η)) ∪ (o(π(yx)) \ π−(x)).

So we may assume that ζ ∈ o(π(x)) \ π−(x), and then we can proceed as in
Case 1. 2

Claim 2.18 There are no y ∈ Y and a ∈ A such that a �p g(y), g(y) and
π(y) ≤ π(a).

PROOF. Assume that y ∈ Y . Put x = g(y) and I = J(δx). Note that if
x ∈ F ∪D∪M , then since sup(I ∩Z) < γ(δx) we infer that there is no a ∈ A
such that a �p x and π(a) ≥ π(y).

Now, suppose that x ∈ L. Note that there is no a ∈ A such that a ≺p x
and πB(a) = πB(x). Also, as sup(δx ∩ Z) < γ(δx), we infer that there is no
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a ∈ A ∩BS such that a �p x and π(a) ≥ π(y). 2

Claim 2.19 If x ∈ F ∪D∪M , then there is no interval that isolates yx from
x.

PROOF. By Claim 2.7(a), we have cf(δx) = κ+ and π(x) < δx. By Proposition-
2.1, we have j(δx) = n(δx) and δx = J(δx)

+. Then, assume on the contrary
that there is an interval Λ ∈ I that isolates yx from x. Let m < ω such
that Λ = I(π(yx),m). As Λ isolates yx from x and x, yx ∈ J(δx), we deduce
that m > j(δx). But from m > j(δx) and π(yx) ∈ E(J(δx)) we infer that
π(yx) = Λ−. Hence, Λ does not isolate yx from x. 2

However, if x ∈ L it may happen that there is a Λ ∈ I that isolates yx from x.

Now, we are ready to start to define the common extension r = (Ar,≺r, ir) of
p and q. First, we define the universe Ar. Put L+ = {x ∈ L : π(x) 6= π−(x)}.
Then, if x ∈ L+ and x′ is the twin element of x, we consider new elements
ux, ux′ ∈ X \ (Ap ∪ Aq ∪ Y ) such that πB(ux) = πB(x), π(ux) = π−(x),
πB(ux′) = πB(x′) and π(ux′) = π−(x′). We suppose that ux, uz, ux′ , uz′ are
different if x, z are different elements of L+. We put U = {ux : x ∈ L+} and
U ′ = {ux′ : x ∈ L+}. Then, we define

Ar = Ap ∪ Aq ∪ Y ∪ U ∪ U ′.

Clearly, Ar satisfies (P1). Now, our purpose is to define �r. First, for x, y ∈[
Ap ∪ Aq

]2
let

x �p,q y iff ∃z ∈ Ap ∪ Aq [x �p z ∨ x �q z] ∧ [z �p y ∨ z �q y]. (35)

The following claim is straightforward.

Claim 2.20 �p,q is the partial order on Ap ∪ Aq generated by �p ∪ �q.

Next, we define the relation �∗ on Ap ∪ Aq ∪ Y as follows. Let us recall that
A = Ap ∩Aq. Informally, �∗ will be the ordering on Ap ∪Aq ∪Y generated by

�p,q ∪{〈y, g(y)〉 , 〈y, ḡ(y)〉 : y ∈ Y }∪
{〈y, y′〉 : y, y′ ∈ Y, g(y) �p g(y′)}∪

{〈a, y〉 : a ∈ A, y ∈ Y, a �p g(y)}.

The formal definition is a bit different, but its formulation simplifies the sep-
aration of different cases later. So we introduce five relations on Ap ∪ Aq ∪ Y
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as follows:

≺R1p = {〈y, a〉 : y ∈ Y, a ∈ Ap, g(y) �p a},

≺R1q = {〈y, a〉 : y ∈ Y, a ∈ Aq, ḡ(y) �q a},

�R2 = {〈y, y′〉 : y, y′ ∈ Y, g(y) �p g(y′)},

≺R3p = {〈x, y〉 : x ∈ Ap, y ∈ Y, ∃a ∈ A x �p a �p g(y)},

≺R3q = {〈x, y〉 : x ∈ Aq, y ∈ Y, ∃a ∈ A x �q a �q ḡ(y)}.

Then, we put

�∗=�p,q ∪ ≺R1p ∪ ≺R1q ∪ �R2 ∪ ≺R3p ∪ ≺R3q . (36)

The partial order �r will be an extension of �∗. So, we need to prove the
following lemma:

Lemma 2.21 �∗ is a partial order on Ap ∪ Aq ∪ Y .

PROOF. Let s �r t �r u. We should show that s �r u.

We can assume that t /∈ Aq \ Ap.

Case I s ∈ Ap ∪ Aq, t ∈ Ap and s �p,q t.

Without loss of generality, we may assume that u ∈ Y and t ≺R3p u, i.e. there
is a ∈ A such that t �p a �p g(u).

Case I.1 s ∈ Ap.

Then s �p a �p g(u) and so s ≺R3p u.

Case I.2 s ∈ Aq \ Ap.

Then there is b ∈ A such that s �q b �p t �p a �p g(u). Then s �q a �q ḡ(u)
so s ≺R3q u.

Case II s ∈ Y , t ∈ Ap and s ≺R1p t.

Case II.1 u ∈ Ap ∪ Aq and s ≺R1p t �p,q u.

Case II.1.i u ∈ Ap.

Then g(s) �p t �p u hence s ≺R1p u.

Case II.1.ii u ∈ Aq \ Ap.
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Then there is a ∈ A such that g(s) �p t �p a �q u. Hence ḡ(s) �q a �q u and
so ḡ(s) �q u. Thus s ≺R1q u.

Case II.2 u ∈ Y and s ≺R1p t ≺R3p u.

Then there is a ∈ A such that g(s) �p t �p a �p g(u) and so s �R2 u.

Case III s, t ∈ Y and s �R2 t.

Case III.1 u ∈ Ap and s �R2 t ≺R1p u.

Then g(s) �p g(t) �p u so s ≺R1p u.

Case III.2 u ∈ Aq and s �R2 t ≺R1q u.

Then g(s) �p g(t) and ḡ(t) �q u. Thus ḡ(s) �q ḡ(t) �q u so s ≺R1q u.

Case III.3 u ∈ Y and s �R2 t �R2 u.

Then g(s) �p g(t) �p g(u) so s �R2 u.

Case IV s ∈ Ap, t ∈ Y and s ≺R3p t.

Case IV.1 u ∈ Ap and s ≺R3p t ≺R1p u.

Then there is a ∈ A such that s �p a �p g(t) �p u so s �p u.

Case IV.2 u ∈ Aq and s ≺R3p t ≺R1q u.

Then there is a ∈ A such that s �p a �p g(t) and ḡ(t) �q u. So a �q ḡ(t) and
hence s �p a �q u. Thus s �p,q u.

Case IV.3 u ∈ Y and s ≺R3p t �R2 u.

Then there is a ∈ A such that s �p a �p g(t) �p g(u) and so s ≺R3p u.

Case V s ∈ Aq, t ∈ Y and s ≺R3q t.

Only case (3) is different from (IV):

Case V.3 u ∈ Y and s ≺R3q t �R2 u.

Then there is a ∈ A such that s �q a �q ḡ(t) and g(t) �p g(u). Then
ḡ(t) �q ḡ(u), so s �q a �q ḡ(u), thus s ≺R3q u. 2

Informally, �r will be the ordering on Ap ∪ Aq ∪ Y ∪ U ∪ U ′ generated by

�∗ ∪{〈ys, us〉 : s ∈ Ap ∪ Aq} ∪ {〈us, s〉 : s ∈ Ap ∪ Aq}.
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Now, in order to define �r we need to make the following definitions:

≺R4p = {〈s, ux〉 : s ∈ Ap ∪ Aq ∪ Y, x ∈ L+ and s �∗ yx},

≺R4q = {〈s, ux′〉 : s ∈ Ap ∪ Aq ∪ Y, x ∈ L+ and s �∗ yx},

≺R5p = {〈ux, t〉 : x ∈ L+, t ∈ Ap and x �p t},

≺R5q = {〈ux′ , t〉 : x ∈ L+, t ∈ Aq and x′ �q t},

=U = {〈ux, ux〉 : x ∈ L+},

=U ′
= {〈ux′ , ux′〉 : x ∈ L+}.

Then, we define:

�r=�∗ ∪ ≺R4p ∪ ≺R4q ∪ ≺R5p ∪ ≺R5q ∪ =U ∪ =U ′
. (37)

Write x ≺r y iff x �r y and x 6= y.

Lemma 2.22 �r is a partial order on Ar.

PROOF. Assume that s ≺r t ≺r v. We have to show that s ≺r v. Note that
if s, t, v ∈ Ap ∪Aq ∪ Y , then s ≺∗ t ≺∗ v, and so we are done by Lemma 2.21.
Also, it is impossible that two elements of {s, t, v} are in U ∪U ′. To check this
point, assume that s, v ∈ U . Put s = ux, v = uz for x, z ∈ L+. As ux ≺r t, we
have ux ≺R5p t and so x �p t. As t ≺r uz, we have t ≺R4p uz and so t ≺∗ yz.
Hence, x �p t ≺∗ yz ≺∗ z. Since x �p t and x ∈ L, we infer that t ∈ L.
Also, from t ≺∗ yz we deduce that t ≺R3p yz and so there is an a ∈ A such
that t �p a �p z. But since t ∈ L, it is impossible that there is an a ∈ A
with t �p a. Proceeding in an analogous way, we arrive to a contradiction if
we assume that s ∈ U and v ∈ U ′. So, at most one element of {s, t, v} is in
U ∪ U ′. Then, we consider the following cases:

Case 1. s ∈ U .

We have that t, v ∈ Ap ∪ Aq ∪ Y . Put s = ux for some x ∈ L+. Since ux ≺r t,
we have ux ≺R5p t and so x �p t. As t ≺r v, we have t ≺∗ v. So, x �p t ≺∗ v.
But as x ∈ L and x �p t, we infer that t ∈ L . Hence, t ≺p v. Thus x ≺p v,
therefore ux ≺R5p v, and so ux ≺r v.

Case 2. t ∈ U .

We have that s, v ∈ Ap ∪ Aq ∪ Y . Put t = ux for x ∈ L+. From s ≺r ux, we
infer that s ≺R4p ux and so s �∗ yx. From ux ≺r v, we deduce that ux ≺R5p v
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and hence x �p v. So we have s �∗ yx ≺∗ x �p v, and therefore s ≺r v.

Case 3. v ∈ U .

We have that s, t ∈ Ap ∪ Aq ∪ Y . Put v = ux for x ∈ L+. Since t ≺r ux, we
have that t ≺R4p ux and so t �∗ yx. And from s ≺r t we deduce that s ≺∗ t.
So s ≺∗ yx, hence s ≺R4p ux, and thus s ≺r ux. 2

Now note that s ≺R3p t implies π(s) < π(t) by Claim 2.18, and so it is clear
that s ≺r t implies π(s) < π(t). Thus, condition (P2) holds. Also, it is easy to
verify that �r satisfies (P3).

If x ∈ Ap denote its “twin” in Aq by x′, and vice versa, if x ∈ Aq denote its
“twin” in Ap by x′.

Extend the definition of g as follows: g : Ar −→ Ap is a function,

g(x) =



x if x ∈ Ap,

x′ if x ∈ Aq,

s if x = ys for some s ∈ Ap,

t if x = ut for some t ∈ Ap,

t′ if x = ut for some t ∈ Aq.

For {s, t} ∈
[
Ar
]2

we will be able to define the infimum of s, t in (Ar,�r) from

the infimum of g(s), g(t) in p. Now, we need to prove some facts concerning
the behavior of the function g on Ar.

Claim 2.23 Let a ∈ A and x ∈ Ar. Then

(1) x �r a iff g(x) �p a,
(2) a �r x iff a �p g(x).

PROOF. (1) x �r a iff x �p,q a or x ≺R1p a and (1) holds in both cases.
(2) a �r x iff a �p,q x or a ≺R3p x or a ≺R4p x or a ≺R4q x, and (2) holds in
every case. 2

Claim 2.24 If x �r y then g(x) �p g(y) for x, y ∈ Ar.

PROOF. x �r y iff x �p,q y or x ≺R1p y or x ≺R1q y or x �R2 y or x ≺R3p y
or x ≺R3q y or x ≺R4p y or x ≺R4q y or x ≺R5p y or x ≺R5q y, and the

23



implication holds in every case. 2

Claim 2.25 If v �p g(s) then yv �r s for v ∈ Ap \ A and s ∈ Ar.

PROOF. If s ∈ Ap (s ∈ Aq) then g(s) = s (g(s) = s′) and so yv ≺R1p s
(yv ≺R1q s).

If s = yx for some x ∈ Ap then g(s) = x and so yv �R2 yx.

If s = ux for some x ∈ L+ then yv �r yx, and so yv ≺R4p ux. 2

Claim 2.26 If x �r y and δg(x) < δg(y) then there is a ∈ A such that x �r
a �r y.

PROOF. By Claim 2.24 we have g(x) �p g(y). Hence, by Claim 2.13, there is
a ∈ A such that g(x) �p a �p g(y). Then, by Claim 2.23, we have x �r a �r y.

2

Claim 2.27 If a ∈ A and x ∈ Ar, a �r x, then π(a) ∈ o*(x) iff π(a) ∈
o*(g(x)).

PROOF. We can assume that x /∈ Ap∪Aq. If x ∈ Y then Claim 2.17 implies
the statement. If x = uz for some z ∈ L+ then g(x) = z, π(a) < δz and
o*(z) ∩ δz = o*(uz) ∩ δz = oB(πB(z)), and so we are done. 2

Claim 2.28 If x ∈ Ar \ A, v ∈ Ap \ A, v ≺p g(x) and δv = δg(x) then
π(yv) ∈ o*(x).

PROOF. We have π(yv) = βv ∈ o(δv) ∩ [γ(δv), γ(δv)). If x ∈ (Ap ∪ Aq) \ A,

then βv ∈ o*(x) by Claim 2.16.

If x = yz for some z ∈ Ap, we have z = g(x) and then βv ∈ o*(yz) by Claim
2.17.

If x = uz for some z ∈ L+ then βv ∈ o*(z) because p is good. Now as βv < δz
and o*(z) ∩ δz = o*(uz) ∩ δz, the statement holds. 2

Claim 2.29 If s ∈ Ar \ (A ∪ Y ) and v = g(s) then π(yv) ∈ o*(s).

PROOF. We have π(yv) = βv ∈ o(δv) ∩ γ(δv). If s ∈ Ap ∪ Aq then o(δv) ∩
γ(δv) ⊂ o*(s) because p and q are good. If s = ug(s) then the block orbit of s
and the block orbit of g(s) are the same and the block orbit of g(s) contains
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o(δv) ∩ γ(δv) because p is good. 2

Claim 2.30 If w ∈ Ap, s ∈ Ar, w �r s and δw = δg(s) then s ∈ Ap.

PROOF. If s ∈ Aq \ Ap then w �p,q s and so there is a ∈ A such that
w �p a �q s which contradicts δw = δg(s).

If s = yg(s) then w ≺R3p s, i.e. there is a ∈ A with w �p a �p g(s) which
contradicts δw = δg(s).

If s = ug(s) then w ≺R4p ug(s), i.e. w �r yg(s), but this was excluded in the
previous paragraph. 2

Lemma 2.31 There is a function ir ⊃ ip ∪ iq such that 〈Ar,�r, ir〉 satisfies
(P4) and (P5).

PROOF.

If {s, t} ∈
[
Ap
]2

({s, t} ∈
[
Aq
]2

) we will have ir{s, t} = ip{s, t} (ir{s, t} =

iq{s, t}), and so (P5) holds because p and q satisfy (P5).

To check (P4) we should prove that ip{s, t} is the greatest common lower
bound of s and t in (Ar,�r).

Indeed, let x �r s, t. We can assume that x /∈ Ap. Then, we distinguish the
following three cases.

Case i x ∈ Aq \ Ap.

Then there are a, b ∈ A such that x �q a �p s and x �q b �p t. Thus
x �q iq{a, b} = ip{a, b} �p ip{s, t} and so x �p,q ip{s, t}.

Case ii x ∈ Y .

Then x ≺R1p s and x ≺R1p t , i.e. g(x) �p s and g(x) �p t. So g(x) �p ip{s, t}
and hence x ≺R1p ip{s, t}.

Case iii x ∈ U .

Put x = uz for some z ∈ L+. Since x �r s, t, we have that uz ≺R5p s, t, and
thus z �p s, t. So z �p ip{s, t}, and hence x �r ip{s, t}.

Assume now that s, t ∈ Ar are �r-compatible, but �r-incomparable elements,

{s, t} /∈
[
Ap
]2
∪
[
Aq
]2

. Write v = ip{g(s), g(t)}. Note that, by Claim 2.24, g(s)
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and g(t) are compatible in p and hence v ∈ Ap. Let

ir{s, t} =

 v if v ∈ A,

yv otherwise.

Case I v ∈ A.

Then g(s) and g(t) are incomparable in Ap. Indeed, g(s) �p g(t) implies
v = g(s) and so s = g(s) �r t by Claim 2.23.

Thus π(v) ∈ o*(g(s)) ∩ o*(g(t)) by applying (P5) in p. Note that v �r s, t by
Claim 2.23. So, π(v) ∈ o*(s) ∩ o*(t) by Claim 2.27. Hence (P5) holds.

We have to check that v is the greatest lower bound of s, t in (Ar,�r). We
have v �r s, t by Claim 2.23.

Let w ∈ Ar, w �r s, t. Then g(w) �p g(s), g(t) by Claim 2.24. So g(w) �p v.
Then w �r v by Claim 2.23.

Case II v /∈ A.

Then δg(s) = δg(t) = δv by Claim 2.23 and Claim 2.13 if g(s) and g(t) are
comparable in Ap, and by Claim 2.15 if g(s) and g(t) are incomparable in Ap.

If g(s) and g(t) are incomparable in Ap then v ≺p g(s), g(t) and s, t 6∈ A by
Claim 2.14. So, π(yv) ∈ o*(s) ∩ o*(t) by Claim 2.28.

If g(s) ≺p g(t) then s /∈ Y by Claim 2.25 and s 6∈ A because v = g(s) 6∈ A.
Then π(yv) ∈ o*(s) by Claim 2.29. Also, since v = g(s) ≺p g(t) we infer from
Claim 2.23 that t 6∈ A and so we have that π(yv) ∈ o*(t) by Claim 2.28. Hence
(P5) holds.

We have to check that yv is the greatest common lower bound of s, t in (Ar,�r).
First observe that yv �r s, t by Claim 2.25.

Let w �r s, t.

Assume first that δg(w) < δv. Then there are a, b ∈ A with w �r a �r s and
w �r b �r t by Claim 2.26 and so g(w) �p ip{a, b} �p v by using Claim 2.23.
Now since g(yv) = v, we obtain w �r ip{a, b} �r yv again by Claim 2.23.

Assume now that δg(w) = δv. Since {s, t} 6∈ [Ap]
2 ∪ [Aq]

2, we have that w 6∈
U ∪ U ′. Then, by Claim 2.30, w = yz for some z ∈ Ap. Then z �p g(s) and
z �p g(t) by Claim 2.24, and so z �p v. Thus yz �r yv. 2

Now our aim is to verify condition (P6). First, we need some preparations.
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For every x, y ∈ Ar with x �r y let

πx(y) =

 π(y) if πB(x) = πB(y),

π−(y) if πB(x) 6= πB(y).

Note that for every x, y ∈ Ar with x �r y, an interval Λ ∈ I isolates x from y
iff Λ− < π(x) < Λ+ ≤ πx(y).

Claim 2.32 Let a ∈ A and t ∈ Ar, a �r t. If Λ isolates a from t then Λ
isolates a from g(t).

PROOF. The statement is obvious if t ∈ Ap. Assume that t ∈ Aq \ Ap.
Note that since Λ contains an element of A, we have that Λ+ ∈ Z. Now
if t ∈ D ∪ F ∪ M we have that Z ∩ π(t) = Z ∩ π(g(t)) = Z ∩ γ(δt), and
so we are done. If t ∈ L then as a �r t we infer that πB(a) 6= πB(t) and
π(a) < δt = π−(t), hence we have π(a) < Λ+ ≤ πa(t) = πa(g(t)) = π−(t), and
so the statement holds.

If t = yv for some v ∈ Ap, then a ≺p v = g(t) and πa(yv) ≤ πa(v), and so we
are done.

If t = uv for some v ∈ L+, we have a ≺p v = g(t) and πa(uv) = πa(v) = π−(v).
2

Claim 2.33 Let a ∈ A and x ∈ Ar \ (Ap ∪ Aq), x �r a. If Λ isolates x from
a then x = yg(x) and Λ isolates g(x) from a.

PROOF. We have g(x) �p a by Claim 2.23, so as a ∈ A we infer that
g(x) 6∈ L ∪M , and thus x 6∈ U ∪ U ′. Hence x ∈ Y and g(x) ∈ D ∪ F , and so
x = yg(x) and π(g(x)) < δg(x).

Let J(δg(x)) = I(π(g(x)), j) and Λ = I(π(x), `). If ` > j then Λ− = π(yg(x)) =
π(x), which is impossible. If ` ≤ j then J(δg(x)) ⊂ Λ and so Λ− < π(g(x)) <
Λ+, i.e. Λ isolates g(x) from a. 2

Lemma 2.34 (Ar,�r, ir) satisfies (P6).

PROOF. Assume that {s, t} ∈
[
Ar
]2

, s �r t and Λ isolates s from t. Suppose

that π(s) 6= π−(s) if s 6∈ BS. So, s 6∈ U ∪ U ′. We should find v ∈ Ar such that
s �r v �r t and π(v) = Λ+. Note that since s �r t, we have δg(s) ≤ δg(t) by
Claims 2.24 and 2.12.
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We can assume that {s, t} /∈
[
Ap
]2
∪
[
Aq
]2

because p and q satisfy (P6).

Case 1 δg(s) < δg(t).

By Claim 2.26 there is a ∈ A with s �r a �r t. Moreover, g(s) �p a �p g(t)
by Claim 2.23.

Case 1.1 π(a) ∈ Λ.

Then πB(s) = πB(a) and so πs(t) = πa(t). Thus Λ isolates a from t.

If t ∈ Ap (t ∈ Aq) then applying (P6) in p (in q) for a, t and Λ we obtain
b ∈ Ap (b ∈ Aq) such that a �p b �p t (a �q b �q t) and π(b) = Λ+. Then
s �r a �p,q b �p,q t, so we are done.

Assume now that t /∈ Ap ∪ Aq.

By Claim 2.32, the interval Λ isolates a from g(t) . Since π−(a) 6= π(a) if a 6∈
BS, we can apply (P6) in p to get a b ∈ Ap with π(b) = Λ+ and a �p b �p g(t).

Note that as π(a) ∈ Λ, a ∈ A and π(b) = Λ+, we have that π(b) ∈ Z.

If πB(a) = πB(b), we have b /∈M ∪ L because a ∈ A.

If πB(a) 6= πB(b), then π−(b) = π(b) = Λ+ ≤ π(t). Note that if t ∈ U ∪ U ′,
then π(t) = Λ+, and so we are done. Thus, we may assume that t ∈ Y . Then,
we have πB(b) = πB(t) = πB(g(t)) and g(t) ∈ F . Hence b ∈ K ∪ F .

In both cases we have b /∈ M ∪ L, so π(b) ∈ Z implies b ∈ A. Thus b �r t by
Claim 2.23, and so b witnesses (P6).

Case 1.2 π(a) /∈ Λ.

Since p and q satisfy (P6) and Λ isolates s from a, we can assume that s /∈
Ap ∪ Aq.

Hence s = yg(s) and Λ isolates g(s) from a by Claim 2.33. Since π(g(s)) 6=
π−(g(s)) if g(s) 6∈ BS, there is v ∈ Ap with g(s) �p v �p a and π(v) = Λ+.
Since yg(s) �r g(s) by the definition of �r, we have that v witnesses (P6).

Case 2 δg(s) = δg(t).

Case 2.1 s ∈ Ap.

Since s ∈ Ap, s �r t and δs = δg(t) we infer from Claim 2.30 that t ∈ Ap, which
was excluded.

28



By means of a similar argument, we can show that s ∈ Aq is also impossible.

Case 2.2 s = yv for some v ∈ Ap.

We have that δv = δg(t). Note that since Λ− < π(s) < Λ+, we have δv ≤ Λ+.

Thus π(t) ≥ Λ+ ≥ δv = δg(t). Since we can assume that π(t) > Λ+, we have
π(t) > δg(t). If t ∈ Ap ∪Aq and g(t) ∈ F ∪D∪M , or t ∈ Y , or t ∈ U ∪U ′ then
π(t) ≤ δg(t). Thus we have t ∈ Ap ∪ Aq and g(t) ∈ L.

Note that as πB(t) 6= S, if πB(yv) = πB(t) we would infer that v ∈ F and
hence δt = δg(t) < δv. So πB(s) 6= πB(t). Now since Λ isolates s from t, we
deduce that δv = δt = Λ+, and hence Λ = J(δt).

Assume that t ∈ Aq (the case t ∈ Ap is simpler). Then g(t) = t′ ∈ L. Since
π(t) > δt = π−(t) we have π(t′) > π−(t′) and so t′ ∈ L+.

Since yv �r t we have yv ≺R1q t, i.e. v �p t′ and so yv �R2 yt′ . Thus yv ≺R4q ut.
Hence yv �r ut �r t and π(ut) = δt = Λ+, i.e. ut witnesses that (P6) holds.

2

This completes the proof of Lemma 2.5, i.e. P satisfies κ+-c.c. 2
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