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Abstract. We show that if a colouring c establishes ω2 6→
[
(ω1 : ω)

]
2

then c establishes this negative partition relation in each Cohen-generic
extension of the ground model, i.e. this property of c is Cohen-indestructible.
This result yields a negative answer to a question of Erdős and Hajnal:
it is consistent that GCH holds and there is a colouring c :

[
ω2

]2 −→ 2
establishing ω2 6→

[
(ω1 : ω)

]
2

such that some colouring g :
[
ω1

]2 −→ 2
does not embed into c .

It is also consistent that 2ω1 is arbitrarily large, and there is a function
g establishing 2ω1 6→

[
(ω1, ω2)

]
ω1

but there is no uncountable g-rainbow
subset of 2ω1 .

We also show that if GCH holds then for each k ∈ ω there is a k-
bounded colouring f :

[
ω1

]2 → ω1 and there are two c.c.c posets P and
Q such that

V P |= “f c.c.c-indestructibly establishes ω1 6→∗[(ω1;ω1)]k−bdd”,

but

V Q |= “ ω1 is the union of countably many f -rainbow sets ”.

1. Introduction

Anti Ramsey (polychromatic Ramsey, rainbow Ramsey) theory deals with
the following kind of problems: given a colouring f of certain subsets of a
set X can you find a large subset Y of X such that f is inhomogeneous (e.g.
injective) on the coloured subsets of Y ? Obviously, to get positive results
we should have some assumption concerning the colouring f . In the first
part of the paper we will assume that

• f establishes some negative partition relation,

i.e. there are no large f -homogeneous sets, and we will try

• to get large f -inhomogeneous sets,
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or, more generally, we will try

• to show that f is universal for certain colourings,

i.e. a certain class of colourings embeds into f . Let us recall that given two

colourings d :
[
A

]2 −→ λ and f :
[
Y

]2 −→ λ we say that d embeds into f ,
or f realizes d, (d =⇒ f , in short) iff there is a color-preserving injection

Φ : A
1–1−→ Y , i.e.

∀{ζ, ξ} ∈
[
A

]2
d(ζ, ξ) = f(Φ(ζ), Φ(ξ)).

To formulate our results we will use different kinds of “arrow” notation,
so first we recall their definitions.

If A and B are two sets of ordinals let

[A, B] =
{
{α, β} : α ∈ A, β ∈ B

}
and

[A; B] =
{
{α, β} : α ∈ A, β ∈ B, α < β

}
.

Write A ≤ B iff sup A < min B. If |A| = |B| write A / B iff otp(A ∩ α) <
otp(B ∩ α) for each α ∈ A. Define now some negative partition relation as
follows.

Definition 1.1. Let κ, λ, µ and γ be cardinals. We say that a function

f :
[
κ
]2 −→ γ establishes the negative partition relation

• κ6→
[
λ
]2

γ
iff ∀A ∈

[
κ
]λ

f ′′
[
A

]2
= γ,

• κ6→
[
(µ, λ)

]
γ

iff ∀A ∈
[
κ
]µ ∀B ∈

[
κ
]λ

f ′′[A, B] = γ,

• κ6→
[
(λ; λ)

]
γ

iff ∀A, B ∈
[
κ
]λ

if A / B then f ′′[A; B] = γ,

• κ6→
[
(µ : λ)

]
γ

iff ∀A ∈
[
κ
]µ ∀B ∈

[
κ
]λ

if A < B then f ′′[A, B] = γ.

A negative partition relation holds iff there is a function which establishes
it.

If µ < λ ≤ κ then clearly

κ6→
[
(µ : λ)

]
γ

implies κ6→
[
(λ; λ)

]
γ

implies κ6→
[
(λ, λ)

]
γ

implies κ6→
[
λ
]2

γ
,

moreover f establishes κ6→
[
(κ; κ)

]
γ

iff f ′′[A; B] = γ for each A, B ∈
[
κ
]κ

.

For a graph G = 〈V, E〉 define the function χG :
[
V

]2 −→ 2 by the formula

E = χ−1
G {1}. Clearly a graph G is isomorphic to a spanned subgraph of a

graph H iff χG =⇒ χH , i.e.χG embeds into χH .
Using this observation we can translate some results and problems of

Erdős and Hajnal from the language of graphs and spanned subgraphs into
the language of colourings and embeddigs.
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Erdős and Hajnal observed, in [5], that if a colouring g :
[
ω1

]2 −→ estab-

lishes ω1 6→
[
(ω, ω1)

]
2

then g is universal for countable “graphs”, i.e., every

function h :
[
ω
]2 −→ 2 embeds into f . This result can not be generalized

for higher cardinals because of the following result of Shelah [10, Theorem

4.1]: It is consistent that GCH holds, there is colouring g :
[
ω2

]2 −→ which

establishes ω2 6→
[
(ω1, ω2)

]
2
, but some colouring h :

[
ω1

]2 −→ 2 does not
embed into g.

Learning this result Erdős and Hajnal raised the following question in [6,

Problem 6.b]: Assume that a colouring g :
[
ω2

]2 −→ 2 establishes ω2 6→(ω1

.
+

ω)2
2 (i.e. there is no g-monochromatic set of order type ω1

.
+ ω). Do all

colourings c :
[
ω1

]2 −→ 2 embed into g?
We answer their question in the negative in theorem 2.4. The proof is

based on theorem 2.2 which says that the property “g establishes ω2 6→
[
(ω1 : ω)

]
2
”

is indestructible by adding arbitrary numbers of Cohen reals to the ground
model.

Given a colouring f :
[
X

]n −→ C a subset P ⊂ X is called rainbow for f

(or f -rainbow) iff f �
[
P

]n
is one-to-one. We also answer another question

of Hajnal, [9, Problem 4.1], in the negative in theorem 2.6: it is consistent
with GCH that there is a function f which establishes ω2 6→

[
(ω1 : ω)]

]
ω1

such that there is no uncountable f -rainbow set.
In theorem 2.8 we show that it is also consistent that 2ω1 is arbitrarily

large, and a function g establishes 2ω1 6→
[
(ω1, ω2)

]
ω1

such that there is no

uncountable g-rainbow set.
In the second part of the paper we deal with rainbow Ramsey theorems in

which we have a different type of restriction concerning our colourings. In-
stead of establishing negative partition relations we assume that our colour-
ings are “bounded”: a function f :

[
X

]n → C is µ-bounded iff |f−1{c}| ≤ µ
for each c ∈ C.

To formulate our result we should recall one more “arrow” notations:
λ →∗ (α)n

κ−bdd holds iff for every κ-bounded colouring of
[
λ
]n

there is a
rainbow set of order type α.

We say that a function f c.c.c-indestructibly establishes the negative par-
tition relation Φ 6→∗Ψ iff

V P |= “f establishes Φ6→∗Ψ ”

for each c.c.c poset P .
Since ω1 → (α)2

2 holds for α < ω1 by [4], and it was proved by Galvin,
[7], that

(∗) λ → (α)n
k implies λ →∗ (α)n

k−bdd ,
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we have ω1 →∗ (α)2
2−bdd for α < ω1. (A proof of (∗) can be found in [1]

or see the proof of (?) just before theorem 3.5 in this paper). Moreover,
Galvin, [7], showed that

Theorem. CH implies that ω1 6→∗(ω1)
2
2−bdd.

(Lemma 3.3 also gives the result above.) On the other hand, Todorčevič,
[12], proved that

Theorem. PFA implies that ω1 →∗ (ω1)
2
2−bdd.

Abraham, Cummings and Smyth showed that MAℵ1 is not enough to get
ω1 →∗ (ω1)

2
2−bdd. More precisely, they proved the following theorem:

Theorem ([1, Theorem 3]). It is consistent that there is a function c :[
ω1

]2 −→ ω1 which c.c.c-indestructibly establishes ω1 6→∗(ω1)
2
2−bdd.

They also showed that the property “c establishes ω1 6→∗(ω1)
2
2−bdd” is not

automatically c.c.c-indestructible:

Theorem ([1, Theorem 4]). If CH holds and there is a Suslin-tree then

there is a function c′ :
[
ω1

]2 −→ 2 and there is a c.c.c poset P such that

(a) c′ establishes ω1 6→∗(ω1)
2
2−bdd,

(b) V P |= there is an uncountable c′-rainbow set.

We say that the negative partition relation ω1 6→∗[(ω1; ω1)
]
κ−bdd

holds iff

there is a κ-bounded colouring c of
[
ω1

]2
such that for each A, B ∈

[
ω1

]ω1

there is ξ ∈ ran c such that
∣∣{{α, β} ∈ [A; B] : c(α, β) = ξ

}∣∣ = k.
Clearly ω1 6→∗[(ω1; ω1)]2−bdd implies ω1 6→∗(ω1)

2
2−bdd. We show that even

the negative partition relation ω1 6→∗[(ω1; ω1)]k−bdd is consistent with MAℵ1

for each k ∈ ω.
Moreover, Abraham, Cummings and Smyth used two different functions

in their theorems above. We show that a single function can play double
role.

Theorem 1.2. If GCH holds then for each k ∈ ω there is a k-bounded

colouring f :
[
ω1

]2 → ω1 and there are two c.c.c posets P and Q such that

V P |= “f c.c.c-indestructibly establishes ω1 6→∗[(ω1; ω1)]k−bdd”,

but

V Q |= “ ω1 is the union of countably many f -rainbow sets ”.

The following question, however, remained open.

Problem 1.3. Does ω1 6→∗(ω1)
2
2−bdd imply ω1 6→∗[(ω1; ω1)]2−bdd?
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2. On a problem of Erdős and Hajnal.

Given two functions f :
[
X

]2 −→ C and d :
[
Y

]2 −→ C we say that d
embeds into f , (d ⇒ f , in short), iff there is a one-to-one map Φ : Y −→ X

such that d(y, y′) = f(Φ(y), Φ(y′)) for each {y, y′} ∈
[
Y

]2
.

Hajnal, [8], proved that it is consistent with GCH that there is a colouring

establishing ω2 6→(ω1

.
+ ω)2

2. As it turns out, his argument gives following
stronger result:

Proposition 2.1. It is consistent that GCH holds and there is a function

f :
[
ω2

]2 −→ ω1 establishing ω2 6→[(ω1 : ω)]2ω1
.

Since Hajnal’s proof was never published we sketch his argument.

Proof of Proposition 2.1. Assume GCH in the ground model. Define a poset
P = 〈P,≤〉 as follows. The underlying set P consists of triples 〈c,A, ξ〉
where c :

[
supp(c)

]2 −→ ω for some supp(c) ∈
[
ω2

]ω
, A ⊂

[
supp(c)

]ω
is a

countable family and ξ ∈ ω1.
Put 〈d,B, ζ〉 ≤ 〈c,A, ξ〉 iff

(P1) c ⊂ d, A ⊂ B, ξ ≤ ζ,
(P2) for each A ∈ A and for each β ∈ (supp(d) \ supp(c)) ∩min A

ξ ⊂ d′′[{β}, A].

Then P is a σ-complete, ω2-c.c. poset and if G is the generic filter for P
then g = ∪{c : 〈c,A, ξ〉 ∈ G} establishes ω2 6→[(ω1; ω)]2ω1

in V [G]. �

Proposition 2.1 validates the following question of Erdős and Hajnal, [6,

Problem 6.b]: Assume that a graph G establishes ω2 6→(ω1

.
+ ω)2

2. Do all
graphs of cardinality ℵ1 embed into G?

To answer this question in the negative we prove a preservation theorem
which makes us possible to apply Shelah’s method he used to prove [10, the-

orem 4.1]: It is consistent that GCH holds, there is colouring g :
[
ω2

]2 −→
establishes ω2 6→

[
(ω1, ω2)

]
2
, but some colouring h :

[
ω1

]2 −→ 2 does not
embed into g. Shelah actually argued in the following way. He proved two
statements:
(a) Assume that κ, λ and τ are cardinals of cofinality greater than ω and

g :
[
κ
]2 −→ 2. Then the property

(∗) g establishes κ6→
[
(λ, τ)

]
2

can not be destroyed by adding a single Cohen real, i.e. if V |= (∗) then
V Fn(ω,2) |= (∗).
(b) If you add a Cohen real to some model V then in the generic extension

there is a colouring c :
[
ω1

]2 −→ which does not embed into any colouring
g from V .
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Hence starting from a model of GCH the generic extension V Fn(ω,2)

works because any model of GCH contains a colouring g which establishes
ω2 6→

[
(ω1, ω2)

]
2
.

The proof of (a) is based on the observation that if cf(µ) > ω then every
“new” subset A ∈ V Fn(ω,2) of ordinals with cardinality µ contains an “old”
subset A′ ∈ V of size µ. This argument does not give that the property g
establishes ω2 6→

[
(ω1 : ω)

]
2

can not be destroyed by adding a single Cohen

real because there are countable subsets of ordinals in V Fn(ω,2) which does
not contain any infinite set from the ground model.

So, if we want apply (b) in a similar way, we should prove the following
theorem in a different way.

Theorem 2.2. If µ ≤ ω1 and c establishes ω2 6→[(ω1 : ω)]2µ then V Fn(κ,2) |=
“c establishes ω2 6→[(ω1 : ω)]2µ.

Proof. The following lemma is straightforward.

Lemma 2.3. Let µ ≤ ω1 and c :
[
ω2

]2 −→ µ. The followings are equivalent:

(1) c establishes ω2 6→[(ω1; ω)]2µ,

(2) ∀B ∈
[
ω2

]ω ∀ν ∈ µ

|
{
α < min B : ν /∈ c′′[{α}, B]

}
| ≤ ω,

(3) ∀B ∈
[
[ω2]

ω]ω ∀ν ∈ µ

|
{
α < min∪B : ∃B ∈ B ν /∈ c′′[{α}, B]

}
| ≤ ω.

Assume on the contrary that the theorem fails. We can assume that we
add just ω1 many Cohen reals to V , i.e. κ = ω1. We can choose ξ ∈ ω2,
ν ∈ µ, p ∈ Fn(ω1, 2) and names Ȧ and Ḃ such that

p 
 Ȧ ∈
[
ξ
]ω1 ∧ Ḃ ∈

[
ω2 \ ξ

]ω ∧ ν /∈ c′′[Ȧ, Ḃ].

We can assume that Ḃ ∈ V Fn(ω,2) and dom p ⊂ ω. For each q ∈ Fn(ω, 2)
with q ≤ p put

B(q) = {ζ : ∃r ∈ Fn(ω, 2) r ≤ q ∧ r 
 ζ ∈ Ḃ}.
Let B = {B(q) : q ∈ Fn(ω, 2), q ≤ p} and A′ = {α ∈ ω2 : ∃r ≤ p r 
 α ∈
Ȧ}. Then A′ ∈

[
ξ
]ω1 and B ∈

[
[ω2 \ ξ]ω

]ω
. Hence, by lemma 2.3, there is

α ∈ A′ such that ν ∈ c′′[{α}, B(q)] for each q ∈ Fn(ω, 2) with q ≤ p. Pick
s ∈ Fn(ω1, 2) with s 
 α ∈ Ȧ. Then ν ∈ c′′[{α}, B(s � ω)], i.e. there is
β ∈ ω2 \ ξ and r ∈ Fn(ω, 2) such that r ≤ s � ω and r 
 β ∈ Ḃ. Then

s ∪ r 
 α ∈ Ȧ ∧ β ∈ Ḃ ∧ ν /∈ c′′[Ȧ, Ḃ],

but c(α, β) = ν. Contradiction. �
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Theorem 2.4. For 2 ≤ µ ≤ ω1 it is consistent that GCH holds and there

is a colouring f :
[
ω2

]2 −→ µ establishing ω2 6→[(ω1 : ω)]2µ such that g 6⇒ f

for some colouring g :
[
ω1

]2 −→ 2.

Proof. By proposition 2.1 we can assume that in the ground model GCH

holds and there is a function f :
[
ω2

]2 −→ ω1 establishing ω2 6→[(ω1 : ω)]ω1 .
If µ ≤ ω1 and πµ : ω1 → µ is onto then the function fµ = πµ◦f establishes

ω2 6→[(ω1 : ω)]µ.

Then, by [10, Theorem 4.1], in V Fn(ω,2) there is a function d :
[
ω1

]2 → 2
such that d 6⇒ fµ.

Since
V Fn(ω,2) |= fµ establishes ω2 6→[(ω1 : ω)]µ

by theorem 2.2, we are done. �

As it was observed by Hajnal, the construction of theorem 2.4 above left
open the following question which he raised in [9, Problem 4.1]:

Problem. Assume GCH holds and a colouring c :
[
ω2

]2 −→ ω1 establishes
ω2 6→[(ω1 : ω)]ω1. Does there exist a c-rainbow set of size ω1?

Before answering this question let us recall some positive results of Hajnal.
In [9], he proved that

Theorem . (1) If f :
[
ω1

]2 −→ ω1 establishes ω1 6→[(ω1; ω1)]ω1 then d ⇒ f

for each d :
[
ω
]2 −→ ω1.

(2) If f :
[
ω1

]2 −→ ω establishes ω1 6→[(ω1, ω1)]ω then there exists an infinite
f -rainbow set.

When we colour the pairs of ω1 we can not expect uncountable rainbow
sets because of the following fact.

Proposition 2.5. If CH holds then there is a function f :
[
ω1

]2 −→ ω1

such that

(1) f establishes ω1 6→[(ω, ω1)]ω1,
(2) there is no uncountable f -rainbow.

Proof of proposition 2.5. Enumerate
[
ω1

]ω
as {Aα : ω ≤ α < ω1} such that

Aα ⊂ α. By induction on α, ω ≤ α < ω1, define f(ξ, α) for ξ < α such that

(i) β ⊂ {f(ξ, β) : ξ ∈ Aα} for α < β,
(ii) Aα ∪ {β} is not an f -rainbow for α < β.

Let A ∈
[
ω1

]ω
, B ∈

[
ω1

]ω1 and σ ∈ ω1. Then A = Aα for some α < ω1. Let
β ∈ B \max(α, σ). Then σ ∈ f ′′[Aα, {β}] ⊂ f ′′[A, B] by (i). So (1) holds.

If A ∈
[
ω1

]ω1 then choose α < ω1 such that Aα ∈
[
A

]ω
and then pick

β ∈ A \ α. Thus Aα ∪ {β} is not an f -rainbow by (ii), so we have (2). �
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Next we answer [9, Problem 4.1] in the negative.

Theorem 2.6. It is consistent that GCH holds and there is a function

g :
[
ω2

]2 −→ ω1 such that

(1) g establishes ω2 6→[(ω1 : ω)]2ω1
,

(2) there is no uncountable g-rainbow.

Proof of theorem 2.6. Assume GCH in the ground model.
The naive approach is to try to modify the order of the poset P from the

proof of proposition 2.1 by adding a condition (P3) to the definition of the
order:

(P3) for each A ∈ A and for each β ∈ (supp(d) \ supp(c)) the set A ∪ {β}
is not a d-rainbow.

Unfortunately this approach does not work because the modified poset does
not satisfies ω2-c.c.

Indeed, we can construct an antichain of size ω2 as follows. Let f :[
ω
]2 −→ ω be a bijection. Fix a partition {An : n < ω} of ω \ {0, 1}

into infinite pieces such that n /∈ f ′′
[
An

]2 ∪ f ′′[An, {0, 1}] for n < ω. Let
{αν , βν : ν < ω2} ⊂ ω2 \ ω be pairwise different ordinals. For each ν < ω2

define a condition pν = 〈cν ,Aν , 0〉 as follows:

(i) supp(cν) = (ω \ 2) ∪ {αν , βν},
(ii) cν �

[
ω \ 2

]2
= f �

[
ω \ 2

]2
,

(iii) cν(k, αν) = f(k, 0) for k ∈ ω \ 2,
(iv) cν(k, βν) = f(k, 1) for k ∈ ω \ 2,
(v) f(αν , βν) = 0,
(vi) Aν = {An ∪ {αν} : n < ω}.

Assume on the contrary that q is a common extension pν and pµ for some
ν 6= µ < ω2. Let n = q(αν , βµ). Then An∪{αν}∪{βµ} is a q-rainbow which
contradicts (P3) because An ∪ {αν} ∈ Aν .

So we will argue in a different way. Define the poset P as follows. The
underlying set P consists of quadruples 〈c,A, ξ,D〉 where

(i) c :
[
supp(c)

]2 −→ ω for some supp(c) ∈
[
ω2

]ω
,

(ii) A ⊂
[
supp(c)

]ω
is a countable family,

(iii) ω ≤ ξ < ω1,
(iv) D ⊂

[
supp(c)

]ω × ω1 is a countable family,
(v) ∀ 〈D, σ〉 ∈ D (∀γ ∈ supp(c)) |{δ ∈ D : c(γ, δ) < σ}| = ω.

Put 〈d,B, ζ, E〉 � 〈c,A, ξ,D〉 iff

(a) c ⊂ d, A ⊂ B, ξ ≤ ζ, D ⊂ E ,
(b) for each A ∈ A and for each β ∈ (supp(d) \ supp(c)) ∩min A

ξ ⊂ d′′[{β}, A].
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Clearly � is a partial order on P and P = 〈P,�〉 is σ-complete.

Lemma 2.7. P is ω2-c.c.

Proof of the lemma. For subsets A and B or ordinals we write A < B
iff sup(A) < min(B). We say that two conditions, p = 〈c,A, ξ,D〉 and
p′ = 〈c′,A′, ξ′,D′〉, are twins iff there is an order preserving bijection ϕ :
supp(c) −→ supp(c′) such that

(1) K = supp(c) ∩ supp(c′) is an initial segment of both supp(c) and
supp(c′),

(2) K < supp(c) \K < supp(c′) \K,

(3) c(ξ, η) = c′(ϕ(ξ), ϕ(η)) for each {ξ, η} ∈
[
supp(c)

]2
,

(4) A′ = {ϕ′′A : A ∈ A},
(5) ξ = ξ′,
(6) D′ = {〈ϕ′′D, σ〉 : 〈D, σ〉 ∈ D}.
Since CH holds, standard counting and ∆-system arguments give that any
subset of P of cardinality ω2 contains two elements which are twins. So
it is enough to show that if p and p′ are twins then they have a common
extension q = 〈d,B, ρ, E〉. Let B = A ∪A′, ρ = ξ = ξ′ and E = D ∪D′.

We should define d(ν, µ) for ν ∈ supp(c) \K and µ ∈ supp(c′) \K.
We enumerate all “tasks” as follows: Let

T0 = {〈β, A′, ζ〉 : β ∈ supp(c) \K, A′ ∈ A′, A′ ⊂ supp(c′) \K, ζ < ξ′},

T1 = {〈γ, 〈D′, σ′〉 , n〉 : γ ∈ supp(c) \K,

〈D′, σ′〉 ∈ D′ \ D, |D′ \K| = ω, n < ω}

and

T2 = {〈γ′, 〈D, σ〉 , n〉 : γ′ ∈ supp(c′) \K,

〈D, σ〉 ∈ D \ D′, |D \K| = ω, n < ω}.

Since T = T0 ∪ T1 ∪ T2 is countable we can pick pairwise distinct ordinals
{ηx : x ∈ T } such that

(a) if x = 〈β, A′, ζ〉 ∈ T0 then ηx ∈ A′,
(b) if x = 〈γ, 〈D′, σ′〉 , n〉 ∈ T1 then ηx ∈ D′ \K,
(c) if x = 〈γ′, 〈D, σ〉 , n〉 ∈ T2 then ηx ∈ D \K.

Choose a function d :
[
supp(c) ∪ supp(c′)

]2 −→ ω1 such that

(1) d ⊃ c ∪ c′,
(2) d(β, ηx) = ζ for x = 〈β, A′, ζ〉 ∈ T0,
(3) d(γ, ηx) = 0 for x = 〈γ, 〈D′, σ′〉 , n〉 ∈ T1,
(4) d(γ′, ηx) = 0 for x = 〈γ′, 〈D, σ〉 , n〉 ∈ T2.
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Let q = 〈d,B, ρ, E〉. To show q ∈ P we should check only condition (v).
So let 〈D, σ〉 ∈ E and γ ∈ supp(d). Assume that 〈D, σ〉 ∈ D. (The case
〈D, σ〉 ∈ D′ is similar.)

If γ ∈ supp(c) then d � [{γ}, D] = c � [{γ}, D] so we are done. So we can
assume that γ ∈ supp(c′) \K.

If D \K is finite then the set

E = {δ ∈ D ∩K : c(δ, ϕ−1(γ)) < σ}
is infinite because p ∈ P satisfies (v) and for each δ ∈ E we have d(δ, γ) =
c′(δ, γ) = c′(ϕ(δ), γ) = c(δ, ϕ−1(γ)) < σ. So we can assume that D \ K is
infinite.

In this case xn = 〈γ, 〈D, σ〉 , n〉 ∈ T2 for n ∈ ω, so d(γ, ηxn) = 0 < σ and
{ηxn : n ∈ ω} ∈

[
D

]ω
.

So q ∈ P .
It is straightforward that q � p because no instances of (b) should be

checked.
Finally we verify q � p′. Since condition (a) is clear, assume that A′ ∈

A′ and β ∈ supp(c) \ K with β < min A′. Since sup K < β we have
A′ ⊂ supp(c′) \ K. Hence for each ζ < ξ we have x = 〈β, A′, ζ〉 ∈ T0 so
d(β, ηx) = ζ. Thus ξ ⊂ d′′[{β}, A′].

This completes the proof of the lemma. �

Let G be the generic filter for P and put g = ∪{c : 〈c,A, ξ〉 ∈ G}.
Claim: g establishes ω2 6→[(ω1; ω)]2ω1

in V [G].

Indeed, let p = 〈c,A, ξ,D〉 ∈ P . If A ∈
[
supp(c)

]ω
and η ∈ ω1 then

p′ = 〈c,A ∪ {A}, max(ξ, η),D〉 � p and for each β ∈ min A \ supp(c)

p′ 
 η ⊂ g′′[{β}, A].

Claim: There is no uncountable g-rainbow set in V [G].
Indeed, assume that p0 
 Ẋ ∈

[
ω2

]ω1 . Since P is σ-complete there are

p � p0, p = 〈c,A, ξ,D〉, and D ∈
[
supp(c)

]ω
such that p 
 D ⊂ Ẋ.

Let p′ = 〈c,A, ξ,D ∪ {〈D, (sup ran(c)) + 1〉}.〉. Then p′ ∈ P and p′ � p.
Moreover

p′ 
 Ẋ is not a g-rainbow.

Indeed, work in V [G], where p′ ∈ G. Write X = {ξν : ν ∈ ω1}. Then for
each ν < ω there is γν < sup ran(c)+1 and δν ∈ D with g(δν , ξν) = γν . Then
there are ν < µ < ω1 with γν = γµ. Then g(δν , ξν) = γν = γµ = g(δµ, ξµ)
and ξν 6= ξµ, i.e. X is not a g-rainbow.

So, by the claims above, g satisfies the requirements of the theorem. �

In his Ph.D. Thesis, [3], Baumgartner proved that if CH holds, P =

Fn(
[
κ
]2

, ω1; ω1) for some cardinal κ ≥ ω2, and G is the generic filter above
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P , then the function g = ∪G establishes κ6→[(ω1, ω2)]
2
ω1

. The original proof
is not easily available, but a “stripped-down” version of the next proof gives
Baumgartner’s result (just remove the “side conditions”).

Theorem 2.8. If CH holds and κ ≥ ω2 is a cardinal then there is a σ-

complete, ω2-c.c. poset P such that in V P there is a function g :
[
κ
]2 −→ ω1

such that

(1) g establishes κ6→[(ω1, ω2)]
2
ω1

.
(2) there is no uncountable g-rainbow subset of κ.

Proof. Define the poset P = 〈P,�〉 as follows. The underlying set P consists
of pairs 〈c,D〉 where

(i) c :
[
supp(c)

]2 −→ ω for some supp(c) ∈
[
κ
]ω

,

(ii) D ⊂
[
supp(c)

]ω × ω1 is a countable family,
(iii) ∀ 〈D, σ〉 ∈ D (∀γ ∈ supp(c)) |{δ ∈ D : c(γ, δ) < σ}| = ω.

Put 〈d, E〉 � 〈c,D〉 iff c ⊂ d and D ⊂ E .
Then � is a partial order, and P is σ-complete.
We say that two conditions, p = 〈c,D〉 and p′ = 〈c′,D′〉, are twins iff

there is an order preserving bijection ϕ : supp(c) −→ supp(c′) such that

(1) ϕ(ξ) = ξ for ξ ∈ supp(c) ∩ supp(c′),

(2) c(ξ, η) = c′(ϕ(ξ), ϕ(η)) for each {ξ, η} ∈
[
supp(c)

]2
,

(3) D′ = {〈ϕ′′D, σ〉 : 〈D, σ〉 ∈ D}.

Lemma 2.9. Assume that p = 〈c,D〉, p′ = 〈c′,D′〉 are twins. Let q � p,
q = 〈d, E〉, such that supp(d) ∩ supp(c′) = supp(c) ∩ supp(c′). Let A ∈[
supp(d) \ supp(c′)

]ω
, ξ ∈ supp(c′) \ supp(c) and ρ < ω1. Then there is a

common extension r = 〈cr,Dr〉 of q and p′ such that ρ ⊂ c′′r [{ξ}, A].

Proof of the lemma. Write K = supp(c) ∩ supp(c′) and fix the function ϕ
witnessing that p and p′ are twins. Let

T0 = ρ,

T1 = {〈γ, 〈D′, σ′〉 , n〉 : γ ∈ supp(d) \K, 〈D′, σ′〉 ∈ D′, |D′ \K| = ω, n ∈ ω},
T2 = {〈γ′, 〈E, σ〉 , n〉 : γ′ ∈ supp c′ \K, 〈E, σ〉 ∈ E , |E \K| = ω, n ∈ ω}.
Since T = T0 ∪T1 ∪T2 is countable we can pick pairwise distinct ordinals

{ηx : x ∈ T } such that

(a) if x = χ ∈ ρ then ηx ∈ A,
(b) if x = 〈γ, 〈D, σ〉 , n〉 ∈ T1 ∪ T2 then ηx ∈ D \K.

Let cr ⊃ d ∪ cν such that

(i) cr(ηx, ξ) = χ if x = χ ∈ T0,
(ii) cr(ηx, γ) = 0 if 〈γ, 〈D, σ〉 , n〉 ∈ T0 ∪ T1.
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To prove r = 〈cr,D′ ∪ E〉 ∈ P it is enough to check condition (iii).
Assume first that 〈D, σ〉 ∈ D′.
If γ ∈ supp(c′) then cr � [{γ}, D] = c′ � [{γ}, D] so we are done. So we

can assume that γ ∈ supp(d) \K.
If D \K is finite then 〈ϕ−1D, σ〉 ∈ D ⊂ E , and D ∩K = ϕ−1D ∩K, so

the set

H = {δ ∈ D ∩K : d(δ, γ) < σ}
is infinite because q ∈ P satisfies (iii), and H ⊂ {δ ∈ D : cr(δ, γ) < σ}.

So we can assume that D\K is infinite. In this case xn = 〈γ, 〈D, σ〉 , n〉 ∈
T1 for n ∈ ω, so cr(γ, ηxn) = 0 < σ and {ηxn : n ∈ ω} ∈

[
D

]ω
.

Assume now that 〈D, σ〉 ∈ E .
If γ ∈ supp(d) then cr � [{γ}, D] = d � [{γ}, D] so we are done. So we

can assume that γ ∈ supp(c′) \K.
If D \K is finite then γ′ = ϕ−1(γ) ∈ supp(c) ⊂ supp(d) and q ∈ P imply

that the set

H = {ε ∈ D ∩K : d(ε, γ′) < σ}
is infinite. But for each ε ∈ H we have cr(ε, γ) = c′(ε, γ) = c(ε, γ′) =
d(ε, γ′). So we can assume that D \K is infinite.

In this case xn = 〈γ, 〈D, σ〉 , n〉 ∈ T2 for n ∈ ω, so cr(γ, ηxn) = 0 < σ and
{ηxn : n ∈ ω} ∈

[
D

]ω
.

So r ∈ P and clearly r � q, p′.
Finally for each ζ < ρ we have ηζ ∈ A and cr(ξ, ηζ) = ζ. So ρ ⊂

c′′r [{ξ}, A]. �

Lemma 2.10. P is ω2-c.c.

Proof of the lemma. Since any family of conditions of size ω2 contains two
conditions p and p′ which are twins we can apply the previous lemma to
yield that p and p′ are compatible in P . �

Let G be the generic filter for P and put g = ∪{c : 〈c,A, ξ〉 ∈ G}

Lemma 2.11. g establishes κ6→[(ω1, ω2)]ω1 in V [G].

Proof. Assume that p 
 Ẋ = {ξ̇ν : ν < ω2} ∈
[
κ
]ω2 , Ẏ ∈

[
κ
]ω1 .

For each ρ < ω1 we will construct a condition r � p such that r 
 ρ ⊂
g′′[Ẋ, Ẏ ].

Write p = 〈c,D〉. For each ν < ω2 pick pν = 〈cν ,Dν〉 � p such that

pν 
 ξ̇ν = ξν for some ξν ∈ supp(cν). Since CH holds there is I ∈
[
ω2

]ω2

such that

(1) {supp(cν) : ν ∈ I} forms a ∆-system with kernel K,

(2) for each {ν, µ} ∈
[
I
]2

the conditions pν and pµ are twins.
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Since P satisfies ω2-c.c we can assume that ξν ∈ supp(cν) \K for ν ∈ I.
Fix µ ∈ I. Pick a condition q � pµ, q = 〈d, E〉, such that q 
 Z ⊂ Ẏ

for some Z ∈
[
supp(d) ∩ (κ \K)

]ω
. Choose ν ∈ I such that supp(cν) ∩

supp(d) = K.
By lemma 2.9 there is a condition r = 〈cr,Dν ∪ E〉 ∈ P such that r � q, pν

and ρ ⊂ c′′r [{ξµ}, Z]. Then r 
 ρ ⊂ c′′r [{ξν}, Z] ⊂ g′′[Ẋ, Ẏ ]. �

Lemma 2.12. There is no uncountable g-rainbow set in V [G].

Proof. Indeed, assume that p0 
 Ẋ ∈
[
ω2

]ω1 . Since P is σ-complete there

are p � p0, p = 〈c,D〉, and D ∈
[
supp(c)

]ω
such that p 
 D ⊂ Ẋ. Let

p′ = 〈c,D ∪ {〈D, (sup ran(c)) + 1〉}.〉. Then p′ ∈ P and p′ � p. Moreover

p′ 
 Ẋ is not a g-rainbow.

Indeed, work in V [G], where p′ ∈ G. Write X = {ξν : ν ∈ ω1}. Then for
each ν < ω there is γν < sup ran(c)+1 and δν ∈ D with g(δν , ξν) = γν . Then
there are ν < µ < ω1 with γν = γµ. Thus g(δν , ξν) = γν = γµ = g(δµ, ξµ)
and ξν 6= ξµ, i.e. X is not a g-rainbow. �

So, by the lemmas above, g satisfies the requirements of the theorem.
�

3. k-bounded colourings

Definition 3.1. Let X ∈
[
ω1

]ω1 , f :
[
X

]2 → ω1, k ∈ ω.

(a) f is k-bounded iff |f−1{γ}| ≤ k for each γ ∈ ran(f).
(b) Put

D(k)(X) = {D ∈
[[

X
]k]<ω

: d ∩ d′ = ∅ for each {d, d′} ∈
[
D

]2}.

(c) For D ∈ D(k)(X) let

Hom(D, f) = {α : ∀d ∈ D (∀δ, δ′ ∈ d) f(δ, α) = f(δ′, α)}.

(d) Given any cardinal µ let

D(k)
µ (X) = {〈Di : i < µ〉 ⊂ D(k)(X) : (∪Di) ∩ (∪Dj) = ∅ for i < j < µ}.

(e) f is an AR(k)-function iff
(i) f is k-bounded,

(ii) for each 〈Di : i < ω〉 ∈ D(k)
ω (X) there is γ < ω1 such that

X \ γ ⊂ ∪{Hom(Di, f) : i < ω}.

Observation 3.2. An AR(k)-function f :
[
ω1

]2 −→ ω1 establishes the neg-
ative partition relation ω1 6→∗[(ω; ω1)]k−bdd.
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Proof. Assume that A ∈
[
ω1

]ω
and B ∈

[
ω1

]ω1 . Pick pairwise disjoint sets

{di : i < ω} ⊂
[
A

]k
. Write Di = {di} and ~D = 〈Di : i < ω〉. Since ~D ∈

D(k)
ω (ω1) and f is an AR(k)-function there is β ∈ B such that β ∈ Hom(Di, f)

for some i < ω, which means that |f ′′[di, {β}]| = 1. Since di ∈
[
A

]k
we are

done. �

Lemma 3.3. If CH holds then for each k ∈ ω there is an AR(k)-function

f :
[
ω1

]2 → ω1.

Proof. The construction is standard. Let {Cα : ω ≤ α < ω1} ⊂
[
ω1

]ω
be

disjoint sets. Fix an enumeration
〈

~Dα : ω ≤ α < ω1

〉
of D(k)

ω (ω1) such that

∪ ∪ ~Dα ⊂ α.
Let α < ω1 be fixed. For each ξ < α pick iξ ∈ ω such that the sets

{∪( ~Dξ(iξ)) : ξ < α} are pairwise disjoint. Choose a function gα : α → Cα

such that

(∗) gα(δ) = gα(δ′) iff {δ, δ′} ∈
[
d
]2

for some ξ < α and d ∈ ~Dξ(iξ).

For δ < α let f(δ, α) = gα(δ). �

Theorem 3.4. If GCH holds and f :
[
ω1

]2 → ω1 is an AR(k)-function then
there is a c.c.c. poset P such that

V P |= f c.c.c-indestructibly establishes ω1 6→∗[(ω1; ω1)]k−bdd.

We say that ω1 6→∗[(ω, ω1)
]
κ−bdd

holds iff there is a κ-bounded colouring

c of
[
ω1

]2
such that for each A,∈

[
ω1

]ω
and B ∈

[
ω1

]ω1 there is ξ ∈ ran c
such that |{{α, β} ∈ [A, B] : c(α, β) = ξ}| = k.

Although an AR(k)-function establishes ω1 6→∗[(ω; ω1)]k−bdd but there is no
function which c.c.c-indestructibly establishes ω1 6→∗[(ω; ω1)]k−bdd because
Martin’s Axiom implies ω1 →∗ [(ω, ω1)]2−bdd. Indeed, Martin’s Axiom (even
p > ω1) clearly implies ω1 → [(ω, ω1)]2, so it is enough to show that

(?) ω1 → [(ω, ω1)]2 implies ω1 →∗ [(ω, ω1)]2−bdd.

We prove (?) using an argument of Galvin he used to prove that λ → (α)n
k

implies λ →∗ (α)n
k−bdd. Let f :

[
ω1

]2 −→ ω1 be 2-bounded. Then there

is a function g :
[
ω1

]2 −→ 2 such that f(x) = f(y) implies g(x) 6= g(y).

Since ω1 → [(ω, ω1)]2 holds there are A ∈
[
ω1

]ω
and B ∈

[
ω1

]ω1 such that
g′′[A, B] = {i} for some i < 2. Then f � [A, B] is injective. So (?) holds.

Theorem 3.5. If GCH holds and f :
[
ω1

]2 → ω1 is an AR(k)-function then

there is a set X ∈
[
ω1

]ω1 and a c.c.c. poset Q such that

V Q |= X has a partition into countably many f -rainbow sets.
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Before proving the theorems above we need to introduce some notions.
Given a set x denote TC(x) the transitive closure of x. Let κ be a large

enough regular cardinals, (κ = (2ω1)+ works). Put Hκ = {x : |TC(x)| < κ}
and Hκ = 〈Hκ,∈,≺〉, where ≺ is a well-ordering of Hκ.

Definition 3.6. (a) A sequence ~N = 〈Nα : α ∈ A〉 of countable, elementary
submodels of Hκ is called an A-chain iff A ⊂ ω1 and whenever α, β ∈ A
with α < β we have Nα ∈ Nβ.

(b) Suppose that ~N = 〈Nα : α ∈ A〉 is an A-chain and Y ⊂ ω1. We say

that Y is separated by ~N iff for each C ∈
[
Y

]2
there is an α ∈ A with

|Nα ∩ C| = 1.

Lemma 3.7. Assume that f is an AR(k)-function. If 〈Nm : m ≤ n〉 is an

elementary n + 1-chain, f ∈ N0, ~D0, . . . , ~Dn−1 ∈ D(k)
ω (ω1) ∩ N0, and αm ∈

Nm+1 \Nm for m < n then the set

{i < ω : ∀m < n αm ∈ Hom( ~Dm(i), f)}

is infinite.

Proof. We prove the lemma by induction on n. So assume that the set

I = {i < ω : ∀m < n− 1 αm ∈ Hom( ~Dm(i), f)}

is infinite. (If n = 1 then I = ω).
Write I = {ij : j ∈ ω} and for each ` < ω put

~E` =
〈

~Dn−1(ij) : ` ≤ j < ω
〉

.

Let γ` be the minimal ordinal such that

ω1 \ γ` ⊂ ∪{Hom( ~Dn−1(ij), f) : j ∈ ω \ `}.

Since f is AR(k) and ~E` ∈ D(k)
ω (ω1), we have γ` < ω1. So if we take

γ = sup{γ` : ` < ω} then for each α ∈ ω1 \ γ the set

Jα = {i ∈ I : α ∈ Hom( ~Dn−1(i), f)}

is infinite.
Since f, ~D0, . . . , ~Dn−1, α0, . . . , αn−2 ∈ Nn−1 we have I ∈ Nn−1 and so

~E` ∈ Nn−1 as well. Thus 〈γ` : ` < ω〉 ∈ Nn−1 because it is definable there
and so γ = sup 〈γ` : ` < ω〉 ∈ Nn−1 as well. Hence αn−1 ∈ Nn\Nn−1 ⊂ ω1\γ
and so Jαn−1 is infinite.

But

Jαn−1 = {i < ω : ∀m < n αm ∈ Hom( ~Dm(i), f)},
so we are done. �
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Proof of theorem 3.5. Let ~N = 〈Nξ : ξ < ω1〉 be an ω1-chain with f ∈ N0

and let X ∈
[
ω1

]ω1 be ~N -separated.
Let Hω1 be the family of those sets whose transitive closure is countable.

Lemma 3.8. Hω1 ⊂ ∪{Nξ : ξ < ω1} under CH.

Proof of the lemma. Since CH holds we have |Hω1| = ω1. Since N0 is

an elementary submodel of Hκ the family Hω1 has an enumeration ~h =
〈hα : α < ω1〉 ∈ N0. Then

(1) {hα : α ∈ Nµ ∩ ω1} ⊂ Nµ.

For ν < µ < ω1 we have Nν ∈ Nµ and so Nν ∩ ω1 ∈ Nµ ∩ µ. Thus

(2) µ ⊂ Nµ ∩ ω1 for µ < ω1.

(1) and (2) together give the statement of the lemma. �

Let us recall that Fn(X, ω) denotes the family of finite functions mapping
a subset of X into ω. Define the poset Q = 〈Q,≤〉 as follows:

Q = {q ∈ Fn(X, ω) : q−1{n} is f -rainbow for each n ∈ ran q},

and let q ≤ q′ iff q ⊃ q′.

Lemma 3.9. Q satisfies c.c.c.

Proof of the lemma. Assume that {qν : ν < ω1} ⊂ Q.
Let xν = dom qν , Lν = ran qν , and xν,` = q−1

ν {`} for ` ∈ Lν .
For two subsets x and y or ordinals we write x < y iff sup(x) < min(y).
We can assume that

(1) {xν : ν < ω1} forms a ∆ system with kernel x,
(2) x < (xζ \ x) < (xξ \ x) for ζ < ξ < ω1,
(3) Lν = L for each ν < ω1,

(4) there is a q such that qν �
[
x
]2

= q for each ν < ω1.

For ζ ∈ ω1 let

F (ζ) = {ξ < ω1 : f ′′[xζ , xζ \ x] ∩ f ′′[xξ, xξ \ x] 6= ∅}.

Since f is k-bounded, F (ζ) is finite, and so there is an F -free set Z = {ζi :
i < ω1} ∈

[
ω1

]ω1 , i.e. ζj /∈ F (ζi) for i 6= j < ω1.

For x ∈ ω1 let ρ(x) = min{ν : x ∈ Nν}. For each ξ ∈ X pick dξ ∈
[
ω1

]k

such that ξ ∈ dξ and ρ(η) = ρ(ξ) for each η ∈ dξ.
For ζ ∈ Z let Dζ = {dξ : ξ ∈ xζ \ x}.
Let ~D = 〈Dζi

: i < ω〉. Clearly ~D ∈ D(k)
ω (ω1).

Since CH holds there is γ < ω1 such that ~D ∈ Nγ.
Let ζ ∈ Z such that Nγ ∩ (xζ \ x) = ∅.
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Apply lemma 3.7 for n = |xζ \ x|, ~Dm = ~D for m < n and {αm : m <
n} = xζ \ x. Then, there is i < ω such that

(∀m < n) αm ∈ Hom( ~D(i), f).

By the construction it means that

(∀η ∈ xζ \ x) (∀ξ ∈ xζi
\ x) (∀δ ∈ dξ) f(δ, η) = f(ξ, η).

Claim: qζi
∪ qζ ∈ Q, i.e. f is 1–1 on

[
xζi,` ∪ xζ,`

]2
for all ` ∈ L.

Let ξ, η, ξ′, η′ ∈ xζi,` ∪ xζ,` with ξ < η and ξ′ < η′ such that f(ξ, η) =
f(ξ′, η′).

Assume first that {ξ, η}, {ξ′, η′} ∈
[
xζi,`

]2 ∪
[
xζ,`

]2
. Since qζi

, qζ ∈ Q we

can assume that {ξ, η} ∈
[
xζi,`

]2 \
[
xζ,`

]2
and {ξ′, η′} ∈

[
xζ,`

]2 \
[
xζi,`

]2
, (or

f(ξ, η) = f(ξ′, η′) implies {ξ, η} = {ξ′, η′}). Then f(ξ, η) ∈ f ′′[xζi
, xζi

\ x]
and f(ξ′, η′) ∈ f ′′[xζ , xζ \ x], so ζi /∈ F (ζ) implies f(ξ, η) 6= f(ξ′, η′).

So we can assume that e.g. {ξ, η} /∈
[
xζi,`

]2 ∪
[
xζ,`

]2
, i.e. ξ ∈ xζi,` \ x and

η ∈ xζ,` \ x. But we know that

(∀δ ∈ dξ) f(δ, η) = f(ξ, η).

Since f is k-bounded and |dξ| = k we have{
{ξ′, η′} : f(ξ′, η′) = f(ξ, η)

}
=

{
{δ, η} : δ ∈ dξ

}
.

But dξ ∩ (xζi,` ∪ xζ,`) = {ξ} because ρ(δ) = ρ(ξ) for each δ ∈ dξ. Hence
f(ξ′, η′) = f(ξ, η) implies ξ = ξ′ and η = η′. �

Since {q ∈ Q : ξ ∈ dom q} is dense in Q for each ξ ∈ X we have that if G
is the generic filter in Q and g = ∪G, then {g−1{n} : n ∈ ω} is a partition
of X into countably many f -rainbow sets, which completes the proof of
Theorem 3.5. �

To prove theorem 3.4 we need some more preparation. We will use a
black box theorem from [11].

Given a set K and a natural number m let

Fnm(ω1, K)= {s : s is a function, dom(s) ∈
[
ω1

]m
, ran(s) ⊂ K}.

A sequence 〈sα : α < ω1〉 ⊂ Fnm(ω1, K) is dom-disjoint iff dom(sα)∩dom(sβ) =
∅ all α < β < ω1.

Let H be a graph on ω1×K, m ∈ ω. We say that H is m-solid if given any
dom-disjoint sequence 〈sα : α < ω1〉 ⊂ Fnm(ω1, K) there are α < β < ω1

such that

[sα, sβ] ⊂ H.

H is called strongly solid iff it is m-solid for each m ∈ ω.
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Black Box Theorem ([11, Theorem 2.2]). Assume 2ω1 = ω2. If H is a
strongly solid graph on ω1×K, where |K| ≤ 2ω1, then for each m ∈ ω there
is a c.c.c poset P of size ω2 such that

V P |= “H is c.c.c-indestructibly m-solid.”

The theorem above is build on a method of Abraham and Todorčevič
from [2].

We need one more lemma before we can apply the Black Box Theorem
above.

Lemma 3.10. There is a function r : ω1 → ω such that for each A, B ∈[
ω1

]<ω
if r(A) = r(B) then A ∩B is an initial segment of A and B.

Proof. Let D be a countable dense subset of the product space ωω1 . More-

over, for each α < ω1 fix a function fα : α
1−1→ ω.

Let A = {α0, . . . , αn−1} ∈
[
ω1

]<ω
, α0 < . . . αn−1.

Pick dA ∈ D such that dA(αi) = i for each i < |A|. Let

r(A) =
〈
dA,

〈
f ′′αi

(A ∩ αi) : i < |A|
〉〉

.

Since the range of r is countable it is enough to prove that if r(A) = r(B)
then A ∩B is an initial segment of A and B.

Write A = {αi : i < m}, α0 < · · · < αn−1, and B = {βj : j < m},
β0 < . . . βm−1.

Assume that αi = βj. Then dA(αi) = i and dB(βj) = j. Since dA = dB it
follows that i = j. So r(A) = r(B) yields f ′′αi

(A ∩ αi) = f ′′αi
(B ∩ αi). Since

fαi
is 1–1 on αi it follows that A ∩ αi = B ∩ αi. �

We will use the following corollary of this lemma.

Corollary 3.11. There is a function r : ω1 −→ ω such that for each A, B ∈[
ω1

]<ω
if min(A) 6= min(B) and r(A) = r(B) then A ∩B = ∅.

Proof of Theorem 3.4. Let ~N = 〈Nξ : ξ < ω1〉 be an ω1-chain with f ∈ N0.
Fix the function r from corollary 3.11 above.

For ξ ∈ ω1 let ρ(ξ) = min{ν : ξ ∈ Nν}.
Let K =

[
ω1

]k×ω1×ω. For any function c :
[
ω1

]2 −→ ω1 define a graph
Hc on ω1 ×K as follows.

If x, x′ ∈ ω1×K, x = 〈ζ, 〈d, ξ, m〉〉, x′ = 〈ζ ′, 〈d′, ξ′, m′〉〉, ζ < ζ ′, let {x, x′}
be an edge in Hc provided
IF

(1) ρ(ξ) = ζ and ρ(ξ′) = ζ ′,
(2) ζ < min d and ζ ′ < min d′,
(3) r({ζ} ∪ d) = m and r({ζ ′} ∪ d′) = m′,
(4) m = m′
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THEN

(5) c(δ, ξ′) = c(ε, ξ′) for each δ, ε ∈ d.

Lemma 3.12. If Hc is 1-solid for some colouring c :
[
ω1

]2 −→ ω1 then c
establishes ω1 6→∗[(ω1; ω1)]k−bdd for each k < ω.

Proof. We will show that for all X = {ξβ : β < ω1} ∈
[
ω1

]ω1 and for all

disjoint family {dα : α < ω1} ⊂
[
ω1

]k
there are α < β < ω1 such that

max dα < ξβ and |c′′[dα, {ξβ}]| = 1.
By thinning out and renumerating of the sequences we can assume that

(1) ρ(ξα) < min dα < max dα < ρ(ξβ) for α < β < ω1,
(2) r({ρ(ξα) ∪ dα}) = m for some m ∈ ω for each α ∈ ω1.

Let xα = 〈ρ(ξα), 〈dα, ξα, m〉〉 for α < ω1. Since the sequence 〈{xα} : α < ω1〉
is dom-disjoint, and (1)-(4) hold for each α < β < ω1, there are α < β < ω1

such that (5) holds for xα and xβ because Hc is 1-solid, i.e. |c′′[dα, {ξβ}]| = 1,
which was to be proved. �

Lemma 3.13. If c is an AR(k)-function and CH holds then Hc is strongly
solid.

Proof. Let m ∈ ω and 〈xα : α < ω1〉 ⊂ Fnm(ω1, K) be a dom-disjoint se-
quence.

Write xα = {xα,i : i < m}, xα,i = 〈ζα,i, 〈dα,i, ξα,i, nα,i〉〉.
A pair 〈ζ, 〈d, ξ, m〉〉 ∈ ω1 ×K is good iff

(g1) ρ(ξ) = ζ,
(g2) ζ < min d,
(g3) r({ζ} ∪ d) = m.

We can assume that every xα,i is good because if 〈ζ, t〉 ∈ ω1 × K is not
good then {〈ζ, t〉 , 〈ζ ′, t′〉} ∈ Hc for each 〈ζ ′, t′〉 ∈ ω1 × K with ζ ′ 6= ζ. So
we have

(i) ρ(ξα,i) = ζα,i,
(ii) ζα,i < min dα,i,
(iii) r({ζα,i} ∪ (dα,i)) = ni.

By thinning out our sequence we can assume that

(iv) nα,i = ni,
(v) max dα,i < ζβ,j for α < β < ω1 and i, j < m.

Let N = {ni : i < m}. For α < ω1 and n ∈ N put Dα,n = {dα,i : ni = n}.
Claim: Dα,n ∈ D(k)(ω1).

Indeed, if i 6= j < m and ni = nj then r({ζα,i} ∪ dα,i) = ni = nj =
r({ζα,j} ∪ dα,j) but min({ζα,i} ∪ dα,i) = ζα,i 6= ζα,j = min({ζα,j} ∪ dα,j) so
dα,i ∩ dα,j = ∅ by the choice of the function r.
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(iii) and (v) together give max(∪Dα,n) < min(∪Dβ,n) for α < β < ω1 and
n ∈ N .

Thus ~D′
n = 〈D`,n : ` < ω〉 ∈ D(k)

ω (ω1).

Since CH holds by lemma 3.8 there is γ < ω1 such that { ~D′
n : n ∈ N} ⊂

Nγ. Pick α < ω1 such that Nγ ∩ {ζα,j : j < m} = ∅.
Let ~Dj = ~D′

nj
for j < m.

We are going to apply lemma 3.7 as follows: ~M =
〈
Nγ, Nζj

: j < m
〉

is

an elementary m + 1-chain, f, ~D0, . . . , ~Dm−1 ∈ N0 and ξα,j ∈ Nζj
\Nζj−1

for
j < m, where ζ−1 = γ. Hence, by lemma 3.7 there is ` < ω such that for
each j < m

(◦) ξα,j ∈ Hom( ~Dj(`), f).

Claim [x`, xα] ⊂ Hc.
Let i, j < m. We show {x`,i, xα,j} ∈ Hc. (2)-(4) holds by the construction.

If ni 6= nj then (1) fails so we are done. Assume that ni = nj = n ∈ N .

Then d`,i ∈ ~D′
n(`) = ~Dj(`). Thus

(∀δ, δ′ ∈ d`,i) f(δ, ξα,j) = f(δ′, ξα,j)

by (◦). Hence (5) holds and so {x`,i, xα,j} ∈ Hc. �

Now we can easily conclude the proof of 3.4.

Let f :
[
ω1

]2 → ω1 be an AR(k)-function. By lemma 3.13, the graph Hf

is strongly solid. Since GCH holds, we can apply our Black Box Theorem
to find a c.c.c. poset P such that

V P |= Hf is c.c.c-indestructibly 1-solid.

But then, by lemma 3.12,

V P |= f c.c.c-indestructibly establishes ω1 6→∗[(ω1; ω1)]k−bdd.

�

Proof of theorem 1.2. Since GCH holds, by lemma 3.3 there is an AR(k)-

function g :
[
ω1

]2 −→ ω1 . By theorem 3.5 there is a set X ∈
[
ω1

]ω1 and a
c.c.c. poset Q such that

V Q |= X has a partition into countably many g-rainbow sets.

Let h : ω1 −→ X be a bijection and put f = g ◦ h. Then

V Q |= ω1 has a partition into countably many f -rainbow sets.

Since f is an AR(k)-function as well, we can apply theorem 3.4 to obtain
that

V P |= f c.c.c-indestructibly establishes ω1 6→∗[(ω1; ω1)]k−bdd,

for some c.c.c. poset P , which proves the theorem. �
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Lemma 3.3 and theorem 3.4 give immediately

Corollary 3.14. ω1 6→∗[(ω1; ω1)]k−bdd is consistent with Martin’s Axiom for
each natural number k.
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Alfréd Rényi Institute of Mathematics, Budapest, V. Reáltanoda utca
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