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Introduction

In this paper we shall discuss and compare certain quantities which 
are used to measure the strength of dependence (or correlation, in the widest 
sense of this word) between two random variables. We formulate seven ra
ther natural postulates which should be fulfilled by a suitable measure of 
dependence. The maximal correlation introduced by H. G ebelein  [1] (for a 
more general treatment see [2]) fulfils all these postulates. As in our previous 
paper [2] we shall make use of the technique of conditional mean values, as 
developed by A. N. Kolmogorov [3], which is needed to define the different 
measures of dependence and to prove their properties, and the connections 
between them, under much more general conditions than this is usual in 
the literature.

In § 1 we introduce the definitions and notations to be used throughout 
the paper. § 2 contains the definitions and fundamental properties of the 
mentioned measures of dependence. § 3 contains the proof of the main theo
rem of the present paper (Theorem 2), according to which the maximal 
correlation can be attained, provided that the mean square contingency is 
finite.

§ 1. Definitions and notations

Let [fí, 6t, P] be a probability space (see [3]), i. e. 62 an arbitrary 
non-empty set whose elements will be denoted by со, 61 a о-algebra of sub
sets of Í2 whose elements will be denoted by capital letters A, В etc., and 
P =  P(A) a probability measure on 61. We shall denote random variables 
on [62, 61, PJ (i. e. real functions defined on 62 and measurable with respect 
to 61) by Greek letters £, r\ etc. If £ is a random variable, we denote by 
M(£) its mean value and by D'2(£) its variance. If M(£) and D(£) exist and 
D(£)>0, we put

( 1 )
g. I—M(|)

D(D
and call the transformation by which £* is obtained from £ the standardi-
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zation of g. If £ is an arbitrary random variable, let cl  ̂ denote the least 
ст-algebra of subsets of £2 with respect to which £ is measurable. If r\ is 
another random variable with finite mean value, we denote by M(/;|£) the 
conditional mean value of ц with respect to a given value of £; M(?;|£) itself 
is a random variable which is measurable with respect to &£ and is such 
that for any A £ éli we have

(2) | M ( # ) r / P =  | V p ;
A A

of course, M (ij|£) is unique only if we consider two random variables which 
are equal with probability 1 to be identical. In what follows we shall always 
take this for granted. The following two well-known properties (see [3]) of 
conditional mean values will often be used in the sequel: If M(^) exists, then

(3) M(M(7?|g)) =  M(7J)
and
(4) M(^(§)i2||)  =  g'(g)M(i2||)
if g (x ) is a Borel-measurable real function of the real variable x. The curve 
y =  M(i?|£ =  x) is called the regression curve of t] on £.

We shall denote the joint distribution of two random variables £ and 
г] by Qi,,;, i. e. we put for any Borel subset C of the (x ,y )-plane

Ое,ч(С) =  Р ((1 ,ч )€ д
where (£, /;) £ C denotes the set of those со £ £2  for which the point with the 
coordinates £(co), rj(co) belongs to C. We denote, further, by Q;, v the direct 
product of the distributions of £ and r\, i. e. we put for any two Borel sub
sets A and В of the real line

СЬ,(Л*В) Р (^ А )Р ( /; (В )
where A* В denotes the direct product of the sets A and B, i. e. the set of 
all points (x ,y)  for which x £ A and у  $ В. The definition of is extended 
to any Borel subset C of the (x, y)-plane in the usual way (see e. g. [4]).

§ 2. Definitions and fundamental properties of measures
of dependence

Let £ and ц be random variables on a probability space [£2, ŰL, P], 
neither of them being constant with probability 1. In almost every field of 
application of statistics one encounters often the problem that one has to 
characterize by a numerical value the strength of dependence between £ and ij. 
Of course, such a value serves only for comparison, and thus its range is
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arbitrary. It is natural to choose the range [0, 1] and to make correspond 
the value 1 to strict dependence and thus 0 to independence. With these 
conventions the following set of postulates for an appropriate measure of 
dependence, which shall be denoted by d(S,/;), seems to be natural:

A) r)'(£, ;/) is defined for any pair of random variables £ and vt, neither 
of them being constant with probability 1.

B) d ( g ,4 ) =  d (4 , i ) .
C) 0 2gd(£ ,?J)=§ 1.
D) d(£, /j) =  0 i f  and only if  £ and ij are independent.
E) d(£, rj) =  1 if' there is a strict dependence between £ and rt, i. e. either 

£ g(rj) or >, = /(£) where g(x) and f(x ) are Borel-measurable functions.
F) If the Borel-measurable functions f(x) and g (x ) map the real axis 

in a one-to-one way onto itself, d(/(£), g ( / /) )=  d(£, rj).
G) If the joint distribution of £ and i] is normal, then ő (£, rj) =  R(£, rj)\ 

where R(£, /,) is the correlation coefficient of £ and
Let us now consider the most frequently used measures of dependence 

and see which of the above properties they possess.2
1. The correlation coefficient. The correlation coefficient R(£, ij) is defined, 

provided that D(£) and D (rj) are finite and positive, by

(5) m  >,) DGODfo) M(r, h i 

lt has the range [—1, +  1], thus only its absolute value satisfies postulate C). 
\ m  rj) \ has the properties B) and C) (and, of course, G)), but it does not 
have the other properties. As a matter of fact, it is defined only if D(£) and 
D(/;) are finite and positive, it may vanish also if £ and i] are not indepen
dent; moreover, it may vanish in spite of a functional dependence between 
£ and iy, for example, if £ is uniformly distributed in (— 1, + 1 )  and 
/;==5£3 — 3£, we have R(£, /;) =  0; |R(£, ?j)| is equal to 1 if and only if 
there is a linear relation between £ and t].

2. The correlation ratios. The correlation ratio 
fined (see [3]) by

(6) »{(4)
P ( M ( # ) )

D (rj)

Os(>]) of -l] on £ is de-

provided that D(rj) exists and is positive. It has the range [0, 1] but it is

1 It seems at the first sight natural to postulate that <5(g,»;) =  1 only if there is a 
strict dependence of the mentioned type between ? and rh but this condition is rather 
restrictive, and it is better to leave it out.

2 To make the present paper self-contained we repeat some of the results of [2J.

13*
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not symmetric, ff we consider instead of 0 ((O  the quantity

(7) & (I, О  =  max (04 (tj), 0,  (£)),
it still does not satisfy A), D) and F). In fact, 0 0 ,  0  is defined only if $ 
and r; have finite variances. As regards D), 0 0 ,  /;) vanishes e. g. if the 
random point 0 , ?;) is uniformly distributed in a circle. 0 0 , if) satisfies, 
however, postulate E).

As well known, postulate G) is also fulfilled for 0±(O  and 0 0 ,  /,). 
It is easy to show, further, (see [2]) that

(8) 0 (0  sup R(/0), О

where f  f(x )  runs over all Borel-measurable functions for which R(/(S), О  
is defined, i. e. for which / 0 )  has finite positive variance. There can be always 
found a function f„(x) such that

(9) »«(•?) =  R (/o (§ n ) .
In fact, we may, without restricting the generality, consider only such func
tions / f o r  which M(/(S)) =  0 and D ( /(S ) )= 1  and suppose M(^) =  0, 
D (О  =  1; in this case we have by the inequality of Schwarz and by virtue 
of (3) and (4)

R ( /0 ) ,  О  M ( f 0 ) O  =  M ( f 0 ) M ( O m  <  D(M(,, £))

with equality standing if and only if / 0 ) = -fo0 ) =  f°r which
choice of /о therefore (9) holds.

3. The maximal correlation. In view of (8) it is quite natural to con
sider the quantity

(10) S(£, 0  ; sup R(/($), g ( 0 )
f,9

where f(x)  and g(x)  run over all Borel-measurable functions such that 
R (/(?), g ( 0 ) has a sense, i. e. such that /(£) and g/?;) have finite und posi
tive variance. The quantity (10) has been introduced for discrete and absol
utely continuous distributions, respectively, by H. Gebelein [1] (see also [5]) 
and called by him the maximal correlation (Maximal-Korrelation) of £ and it. 
A more general treatment is given in [2]. It is easy to show that S(£, rf) 
has all the properties A) to G) listed above. That S 0 , 0  lias the pro
perties А), В), С), E) and F) is evident.3 That G) is also satisfied for

3 S(£, y) may be equal to 1 not only if 4 =f ( S )  or S = g ( v )• In fact, if f ( ; ) = g ( y )  
where /a n d  g  are Borel-measurable functions, then S (g,»?)  ̂ 1.
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S(§, >/) has been shown in [1]. To show that it has the property D) choose

/(* )  =
1 for x < a, 
0 for x Ш a

and
í 1 for x < b, 

S (x) j q for хШ b.

In contrary to (9), there does not always exist such functions fo(x) and 
go(x) that

( П )  S ( Z , j ) = - R ( f , ( § ) , & ( ' < ) ) ■

If (11) holds for some f 0 and go, we shall say that the maximal correlation 
of § and ц can be attained. An example of two random variables for which 
the maximal correlation can not be 
attained has been found by J. Czipszer 
to whom the author is obliged for 
kindly communicating his example.

Another example constructed by 
the same idea is the following: Let 
the random point (§, tf) be uniformly 
distributed in the domain G shown 
on Fig. 1, bounded by two curves meet
ing each other at the origin where they 
have the straight line y =  x for their 
common tangent. Choose

11 for 0 =£ x =£ f,
m  =£(*)=-- . '' 0 for x > t

and let e —»-0; it follows that S (£ ,4 ;)= 1 , while, evidently, there do not exist 
such functions fo,gu that (11) should hold, as (11) would imply fo(t) =  go(t])y

which is clearly impossible as it would imply ||!/> (x)—go{y)\dxdy —  0 and
G

thus that /o (x )  and go(x) both are equal to the same constant, in which case, 
however, R(/>(§), á^C )̂) is not defined.

Sufficient conditions under which the maximal correlation can be attain
ed will be given in § 3.

4. The mean square contingency. Let us call as in [2] the dependence be
tween the random variables § and r\ regular if their joint distribution Qe,i? is 
absolutely continuous with respect to the direct product Q *̂,, of their dis
tributions. If the dependence between § and q is regular, then according to 
the theorem of Radon—Nikodym (see [4]), there exists a Borel-measurable 
function k(x ,y)  such that if F(x) and G (y)  denote the distribution functions
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of £ and i], respectively, we have for any Borel set C  of the ( x ,  y)-plane

(12) Q ... ( Q  =  i'|'k(x, y ) d F ( x ) d G { y ) .
c

Put
+  0Э -f-CO J _

(13) C(£, О I J J (k(x,  y ) - \ f d F ( x ) d G ( y ) f .
-  CO -C D

We call C(£, if) the mean square contingency of £ and If the joint distrib
ution of £ and i] is either discrete or absolutely continuous, the above defi
nition introduced in [2] reduces to the usual one (see e. g. [6]). C(£, /;) may 
be considered also as a measure of the dependence between £ and tj. 
It satisfies B>, D) and F) but none of A), C) and E). Its range is evidently 
[0, +oo]; this can of course be transformed into [0, 1] by considering e. g.

instead of C(£, if) the quantity /'(£, ■?,)--=------ in which case G) isч у a y 1 + C a(g>4)
also satisfied; but A) and E) remain unfulfilled.

It should be mentioned that the following series of inequalities is valid 
(see [2]):

(14) 0 ^ |  R(£, rf) I g  min (@((rf), © , ( £ ) )  0(£, /,) s  S(£, if) ^  C(£, i,).
Only the last inequality remains to be verified. If

M (/(£ ))  M (g(,,)) 0 and D (/(£ )) ОЦФ ,)) 1,
we have

4 - CO +CD

R(/(£)> £"('/))= I J f ( x ) g ( y ) ( k ( x ,  y ) — \ ) d F ( x ) d G ( y ) .
-  со  -  co

It follows by the inequality of Schwarz that R(/(£), g ( h ) )  =  C(£, if). As this 
holds for any /  and g, the inequality S(£, if) Ш C(£, /,) follows immediately.

5. Som e fu rth er rem arks on the m axim al correlation an d  on other m eas
ures o f  dependence. The quantity &(£., if) introduced above has the property

that it is equal to 1 only if >?= /(£) or £ =  .§•(/,). It follows that  ̂ (S(S, /;) +
i 0(£, //)) has the same property, and it has besides that all properties B) 

to E) and G), but A) and F) are not fulfilled. Of course, there is some 
arbitrariness in taking just the arithmetic mean, as many other mean values 
would do the same. It is more reasonable to say that though the maximal 
correlation is in many respect superior to other measures of dependence, it 
does not make superfluous to consider other measures, e. g. the correlation 
ratios, too. Of course, the drawback of the maximal correlation is that it is
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often difficult to calculate it. It should be, however, added that this is not 
so difficult a task as it may seem at the first sight. We shall return to this 
question in the next § where methods for calculating S(£, //) will be men
tioned. 1 should mention here only that there are already many cases known 
in which S (£ ,/;) can be effectively calculated. For instance, P. BArtfai has 
calculated S(5, /;) for the uniform distribution in a circle, and found

S(g,4) =  y .  P. Csáki and J. Fischer determined the value of S(£, /j) for 
the case when the point (£, rf) is uniformly distributed in the domain 

|x|'J +  \y\v ^  1 where p > 0  and have shown that S(£, if) =  —-j- y . (This in
cludes the result of Bártfai for p= 2.)

A measure of dependence based on information-theoretical considerations
has been recommended recently by E. H. Linfoot [7], namely the quantity 

1
L(£, 7t )  (1— e  - 1^ ’^ ) 2 where 1(5,/,) is the amount of information which £
and 7], resp., contain with respect to the other (see e. g. [8]). If the depend
ence between £ and i] is regular, !(£,»;) can be written in the form

-(-CD 4-CO

I(£. v )= -  J j k (x> У) log k(x, y)dF(x)dG(y).
-  CO -C O

This quantity has all the properties A), B), C), D), E), F) and G). (Linfoot 
has chosen the particular formula by which L(£, ?j) is calculated from I(£, ?;) 
to ensure that postulate G) should be fulfilled.)

§ 3. Conditions under which the maximal correlation 
can be attained

It is easy to see that if (11) holds, i. e. the maximal correlation of £ 
and i] is attained for / 0(£) and g 0(?;)> then we have, provided that M (/0(£)) =  
=  M (g0(7;)) =  0 and D(/u(£)) =  D (g 0(? j))=  1, putting for the sake of bre-
vity 5 =  S(£, 7]),

(15) M (/o(£)b) = Sgo(?])
and

(16) M(go(7i)|£) = = *S/o (£)•

As a matter of fact, if (11) holds, then by the same argument as used in 

proving that (9) holds for / и(£) =  'fj^víf^]!)) » one &ets ( 15) and (16). Thus 

fo(x) and goOO satisfying (11) can — if they exist — be found as solutions
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of the system of equations (15) and (16). These equations can be replaced 
by the equations

(17) M(M(/0( 5 ) |^ )  =  S 2/ 0(S)
and

(18) М(М(Ыч)Ц)|ч) =  5 **о(»г).
It is sufficient to determine fo from (17); if /> is known, g ,, can be obtained 
from (15).

Let £ | denote the Hilbert space of all random variables of the form 
/(£ ) for which M (/(§)) =  0 and D (/(§)) is finite, and similarly £ 2 the Hil
bert space of all those random variables g(rf) for which M(g(r/)) =  0 and 
D (g(y)) 's finite. Let us put for any / = / ( £ )  £ £j

( 1 9 )  Л / = М ( М ( / ( Э | Ч ) | | ) |  

then (17) can be written in the form

(20) Afo — S 2/ , .

Let us define the inner product ( / i , / 2) for f i  = / i ( § )  £ £ |, /2 = /> (§ ) £ £ | by

(21) ( / i , /2 )  =  M (/,(g )/2(D) 

and put for / £  £ |

(22) ii/ll D (/(£)).
Let us investigate the transformation A. As for any random variable £ we 
have M(M2(S|§)) =  D 3(Q © £(0= i D2(£), one obtains ||A /|| ||/||.

Thus it follows that A f  is a bounded linear transformation of the Hil
bert space £ 2 . We shall show that A is self-adjoint, moreover that it is posi
tive definite.

As a matter of fact, one gets for /1 £ £«, /2 € £ f, by using (3) and (4) 
repeatedly,

(23) ( A f u f d =  M (M (/j(§)| »i)M ( / 2(H) I»;)).

Interchanging /1 and /> it follows that

(24) (A f i , />) =  ( / 1, Af>)

which shows that A is a bounded self-adjoint transformation of £ |.  It follows 
also from (23) that

(25) ( A f , f ) =  Щ Щ № \ ч ) ) ^ 0  

and thus A is positive definite.
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Now clearly for any / £ £ f  and g€§.f; with D (/(£)) =  D (gr(/j)) == 1 we 
have by (3) and the Schwarz inequality

М2(/(£)|К*?)) =  М2(М(/(£)|/Д§г(|з)) =  M(M2(/(£)|/i)) =  ('4 /,/),
and thus putting
(26) Я =  sup (Af, f )

I l f l M

we have
(27) S 2 ^  Я.
On the other hand, if / £ £ f  and ||/|| =  1, putting g-(/;) =  M(/(§ ) | /;) we have 
W2(g(>i)) - ^  SV (g(n ))  which implies D(g-(/;)) ^  S; thus it
follows

(A /,/)  =  M (g(/;)M (f(!;)lrj)) M( № g ( n ) )  =i SD (g(n)) Ш S 2 
and therefore
(28) Я ^  S 2.
Thus we have from (27) and (28)
(29) S 2 =  Я =  sup (Л/, / ) .

re£i
l l f l l = i

It is known from the theory of bounded self-adjoint transformations
that in case A is completely continuous (see e. g. [9]), then Я =  sup (A f , f )

I I d  l = i
is the greatest eigenvalue of A and there exists an eigenfunction belonging 
to the eigenvalue Я.

Thus we have proved the following
T h e o r e m  1 .  If the transformation A defined by ( 1 9 )  is completely con

tinuous, then the maximal correlation o f t  and ц is attained for / u(£) and go(r/) 
where f» is an eigenfunction belonging to the greatest eigenvalue S~ =  S2(t, ?j)

of A and £ o(í?) =  ^ tM (/o(§)|/j).

The condition that A should be completely continuous is not easy to 
verify in concrete cases. Therefore the following theorem is useful:

T h e o r e m  2. If  the dependence between £ and /, is regular and the mean 
square contingency C(£, ij) is finite, then the transformation A is completely 
continuous and thus the maximal correlation of  £ and /; can be attained.

P r o o f  o f  T h e o r e m  2. We have by supposition, denoting bv F(x) and 
G(y)  the distribution functions of £ and /,, resp.,

Q i,,(C )=  |'| 'k (x ,y )dF (x)dG (y)
c
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where
4- СО 4 -СО

(30) J J кЧх, y ) d  F(x)dG(y)  =  1 +  C2(§, /,)
-C O  -C O

is finite.
Evidently, in proving that A is completely continuous, we can operate 

on another Hilbert space which is isomorphic to £ | considered above (i. e. 
choose another realization of the same abstract Hilbert space). Now £f is 
clearly isomorphic to the Hilbert space L% of all measurable functions f(x) 
for which

4~ со +00
J f (x)dF(x)  =  0 and j f - (x)dF(x)  <  +

-  CO -  CO

provided that f (x )  corresponds to /(ç), and for / i  £ the inner pro
duct ( f t , / 2) is defined by

+  C0

( f t , / 2)  =  J  ft (x)f2 (x)dF(x).
-  03

In this Hilbert space we have
+ C 0  + 0 3

Af(x)  =  j f (u)  ( J k(u, v)k(x, r)dG{>:)] dF(a)
—  CO -C O

(see  [9]). Now it is well known that an integral operator is completely con
tinuous if the square of its kernel is integrable. Thus A is completely con
tinuous provided that

+  00 +  03 +  CO

(31) _ / =  J J ( J k ( u , r ) k ( x , r )d G (r ) f  dF(u)dF(x)
-  CO -  CO -  03

exists.
As by the inequality of Schwarz

+  C0 + 0 0  +  CO

()  k(u, r)k(x, v)dG(v))~ ^  I k2(u, r )dG(r)-  | k-fx, >)dG(r),
-  00 -  CO -  CO

it follows by (30) that

(32) J ^ ( \  + C 2(g,Tj))-, 
which proves Theorem 2.

It should be mentioned that the condition that C (£,/;) is finite is not 
necessary.

A simple example is furnished by the case when =  in this case, 
of course, S ( £ , /,)=  1 and the maximal correlation is trivially attained for
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f o ( x )  =  go(x) =  x, but the dependence between § and rt is not regular and 
the mean square contingency is not defined.

It should be added that Theorem 2 could also be proved by considering 
the bilinear functional B ( f ,g ) defined for f = f ( x )  £ LÍ  and g  =  g ( y )  € Lb by

- f  CO + c o

(33) - Í J f(x )g (y)k (x ,  y )dF (x)dG (y)
-  со -  CO

and proving directly that if C(S, tj) is finite, В is completely continuous in the sen
se of Hilbert [10], i. e. that if f„ £ L i , g n £ La, ||/„|j ^  l,J !g„ ||^ l (л =  1,2, . . . ) ,  
further f ,  and g„ converge weakly to /  and g  in L i  and Lb, resp., then 
lim ß (/„ , g„) = B ( f ,g ) .  The proof is essentially the same as that for the•n->+co

CO CO

case of a bilinear form £ cjkXjyk of infinitely many variables.
. / = 1 1 '

(Received 8  September 1959)
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