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Our aim is to study the probable structure of a ra.ridom gra.ph r,.N 
which ha.s n given labelled vertices P1, P2, ••• , P, and N edges; we suppose 

that these N edges are chosen a.t random among the (;) possible edges, 

80 tha.t &11 ( r;J) = On,N poosible choices....., supposed to be equiprobable. Thus 

if G,.N den~tes a.ny one of the 0"~ graphs formed from -n given labelled points 
and having N edges, the probability that the random graph r, N is identical 

' . 

with Gn.N is - 1
- . If .A is a. property which a. graph may or may not possess, 

o,,N 
We denote by p .. N (.A) the probability that the random graph F, N possesses . ., A . 
the property .4, i. e. we put P .. N (A) = n,N where AnN denotes the 

~ 0 . 
n,N 

number of those Gn,N which have the property A. 
An other equiva.lent formulation is the following: Let us suppose that 

n labelled vertices P1, P,, ... , P" are given. Let us choose a.t random an edge 

among the [; j possible edges, so that aJl these edges are equiprobable. Mter 

this let us choose an other edge among the remaining ( ~ j- 1 edges, and 

continue this process so that if aJ.rea.dy k edges are fixed, any of the remaining 

{;}-kedges have equal probabilities to be chosen a.s the next one. We shall 

study the "evolution" of such a. random graph if N is increased. In this investi­
gation we endeavour to find what is the "typica.J.7' $tructure a.t a given stage 
of evolution (i. e. if N is equal, o.r asymptotically equal, to a given function 
N(n) of n). By a "typical~' structure we mea.n such a strueture the proba.bility 
of which tends to 1 if n-+ + oo when N = N(n). If A is such a property 
that lim p n,N(n.) (A) = 1, we shall sa.y that ,almost a.ll" graphs Gn,NV.) 

n-+-+ CD 

possess this property. 
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The study of the evolution of graphB leads to rather surprising results. 
For a number of fundamental structuraJ properties A there exists a function 
A(n) tending monotonically to + co for n- + co sueh that 

(I) 

if Urn N(n) = 0 
n~+• A(n) 

if lim N(n) """' +co. 
n-+~ A(n) 

If such a. function A(n) exists we shaU call it a. "tkre&hdd functwn" of the­
property A. 

In many cases besides (1) it is also true that there exists a proba.b'ility 
distrib.utioh function F(z) so that if 0 < z < + = and z Is a. point of conti-· 
nuity of F(z) then 

(2) 

If (2) holds we shall say that A(n) is a. ,.regular tkre11hold functimt" for the 
property A a.nd call the function F(z) the threshold distribution functibn of the 
property A. 

For certain properties A there exist two functions A1(n) and A2(n)· 

both tending monotonically to +co for n-+ oo, and satisfying Jim A2( n) = 0, 
n-+" A1(R) 

1111ch that 

0 if 
r N(n)- A 1(n) 
1m =- oo 

n-+• A 11(n) 
(3) lim Pn.N(n)(A)= 

n-+• 
1 if lim. !f(n) - A 1(n) = + co. 

n.:..+.. A 11(n) 

C1early (3) implies that 

0 if 
. N(n) hm sup--~-- < 1 

(4) lim p ,,N(nl(A) = 
n-+.. A 1(n) 

n•+• 
1 if lim inf N(n) > 1. 

n-+ .. A 1(n) 

H (3) holds we call the pair(A1(n), A,(n))a pa.ir of "sharp thteshold''-funotions 
of the property A. It foJ1ows from (4) that if (A1(n), As(n)) is a pair of sharp 
threshold functions for the property A then A1(n) ls an (ordinary) threshold 
furtction for the property A and the threahold distribution function figuring 
in (2) is the degenerated distribution function 

fO for z~l 
F"(:t) = \ 1 for z > 1 
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and con vergence in (2) takes place for every x 4= 1. In some ca.ses besides 
(S) it is also true that there exists a probability distribution function G(?/) 
defined for -= < y < + oo such that if y is a point of continuity of G(y) then 

(5) 

If (5) holds we shallsa.y that we have a regular sharp threslwld and shall call 
G(y) the aharp-threalwld distribution fumtion of the property A. 

One of our chief aims will be to determine the threshold respectively 
sha.rp threshold functions, a.nd the corresponding distribution func:tions for 
the most obviOUS structural properties, e. g. the presence in r,. N ofsubgra.phs 
of a given type (trees, cycles of given order, complete subgraphs etc.) further 
for cert&in global properties of the graph (connectedness, total number of 
connected components, etc.). 

In a previous paper [7] we have considered a. speoial problem of this 
type; we have shown tha.t denoting by 0 the property that the graph is con-

nected, the pair 01(n) =_!_n log n, 011(n) = n is a. pair of strong threshold 
2 

functions for the property a. and the corresponding sharp-threshold distri­
bution function is e-r-2ll'; thus we have proved1 that putting 

1 
N(n) =- n log n + y n+ o(n) we have 

2 

(6) lim P,.,,.,w(O) = e-•-1
" 

"""""+CD 
(-oo<y<+oo). 

In the present paper we consider the evolution of a. random graph in a. 
more systematic manner and try to describe the gra.dua.l development and 
step-by-step unravelling of the complex structure of the graph r,.,,., when 
N increases while n is a. given large number. 

We succeeded in revealing the emergence of certain structural properties 
of r n N• However a. great deal remains to be done in this field. We shall call in 
§ 10. 'the attention of the reader to certain unsolved problems. It seems to us 
further that it would be worthwhile to consider besides graphs also more 
complex structures from the sa.me point of view, i. e. to investigate the laws 
governing their evolution in a. similar spirit. This may be interesting not only 
from a purely ma.thematica.l point of view. In fact, the evolution of graphs 
may be considered as a. rather simplified model of the evolution of certain 
communication nets (railway, road or electric network systems, etc.) of a. country 
or some other unit. (Of course, if one a.ims at describing such a. real situation, 
one should replace the hypothesis of equiprobability of all connections by 
some more realistic hypothesis.) It seems plausible that by considering the 
random growth of more complicated structures (e. g. structures c:onsisting 
of different sorts of "points" and connections of different types) one could 
obtain fairly reasonable models of more complex reaJ growth processes (e. g. 

1 Partial result on this problem has been obtained already in 1939 by P. ERDI5s 
and H. W&lTllliY but their results have not been published. 
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the growth of a. oomplex communication net consisting of different types of 
connections, a.nd even of organic structures of living matter, etc.). 

§§ 1-3. contain the discussion of the presence of certain components 
in a random graph, while §§ 4-9. investigate certain global properties of a. 
random gra.eh. Most of our investigations deal with the case when N(n) "'e11. 

with c > 0. In fa.ct our results. give a. clear picture of the evolution of rn,NCn) 

when c = N(n) (which plays in a certain sense the role of time) increases. 
1/, 

In § 10. we ma.ke some further remarks and mention some unsolved problems. 
Our investigation belongs to the combinatorical theory of graphs, 

which has a. fairly large literature. The first who enumerated the number 
of possible graphs with a. given structure was A. CAYLEY [ 1]. Next the impor­
tant paper [2] of G. POLY A has to be mentioned, the starting point of which 
were some chemical problems. Among moro recent results we mention the 
papers of G. E. UHLENBE<JK and G. W. FoRD [5] and E. N. GILBERT [6]. 
A fairly complete bibliography will be ghron in a. paper of F. liABABY [8]. 
In these papers the probabilistic point of view was not explicitly emp:hasized. 
This has been done in the paper [9] of one of the authors, but the aim of the 
probabilistic treatment was there different: the existence of certa.in types 
of graphs has been shown by proving that their probability is positive. Random 
trees have been considered in [14]. 

In a recent paper [10] T. L. AusTIN, R. E. FAGEN, W. F. PENNEY and 
J. RIORDAN deal with random graphs from a point of view similar to ours. 
The difference between the definition of a. random graph in [10] and in the 
present paper consists in that in [10] it is admitted that two points should 
be connected by more than one edge ("parallel" edges). Thus in [10] it is 
supposed that after a certain number of edges have already been selected, 

the next edge to be selected may be any of the possible [ :l edges between 

then given points (including the edges already selected). Let us denote such 
a random graph by r~,N . The difference between the probable properties 
of rn,N resp. D;,N a.re in most (but not in a.ll) cases negligible. The correspond­
ing probabilities a.re in general (if the number N of edges is not too large) 
asymptotically equal. There is a third possible point of view which is in most 
cases almost equivalent with these two; we ma.y suppose that for each pair 
of n given points it is determined by a chance process whether the edge 
connecting the two points should be selected or not, the probability for select­
ing any given edge being equal to the same number p > 0, and the decisions 
concerning the different edges being completely independent. In this case of 
course the number of edges is a. random variable, ha.\'ing the expectation 

(;] p; thus if we want to obtain by this method a random graph having in 

N 
the mean N edges we ha.ve to choose the value of p equal to (; 

1

. We shall 

denote such a. random graph by r:~. In many (though not all) of the problems 
treated in the present paper it does not cause any essential difference if we 
consider instea.d of rn,N the random graph ~· 
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Comparing the method of the present paper with that of (10] it should 
be pointed out that our aim is to obtain threshold functions resp. distributions, 
and thus we are interested in asymptotic formulae for the probabilities con­
sidered. Exact formulae are of interest to us onJysofar as they help in determi­
ning the asymptotic behaviour of the probabilities considered (which is 
rarely the case in this field, as the exact formulae a.re in most cases too oompli­
ca.ted). On the other hand in (10] the emphasis is on exact formulae resp. 
on generating functions. The only exception is the average number of connected 
components, for the asymptotic evaluation of which a way is indicated in 
§ 5. of (10]; this question is however more fully discussed in the present paper 
and our results go beyond that of [10). Moreover, we consider not only the 
number but also tho character of the components. Thus for instance · we 

point out the remarkable change occuring at N r-J n . If N ""nc with c < 1/2 
2 

then with probability tending to 1 for n-+ + oo all points except a bounded 
number Of points Of rP,N belong tO COmponents Which are trees, While for 

N r-J nc with c > .!. this is no longer the case. Further for a fixed value of 
. 2 

n the average number of components of rn.N decreases asymptotically in a 

linea.r manner with N, when N s;. n , while for N > n the formula giving 
-2 2 

the average number of components is not linear in N. 
In wha.t foUows we shall make use of the sysmbols 0 and o. As usually 

a(n) = o (b(n)) (where b(n) > 0 for n = 1, 2, ... ) means that lim _la(n)l = 0, 
n-+ ... b(n} 

while a(n) = 0 (b(n)) means that la(n){ is bounded. The parameters on 
b(n) 

which the bound of la(n)l may depend will be indicated if it is necessary; 
b(n) 

sometimes we will indlca.te it by an index. Thus a(n) = 0, (b(n)) mea.ns that 

1;~;1 ~ K(e) where K(e) is a positive constant depending on e. We write 

a(n) ~ b(n) to denoto tha.t lim a(n) = 1. 
n-+m b(n) 

We sha.ll use the following definitions from the theory of gra.phs. (For 
the general theory see [3] and [ 4].) 

A finite non-empty set V of labelled points P 1 , P1, ••. , Pn and a. set 
E of different unordered pairs (P;, P1) with . P1 E V, P1 E V, i =F i i~ called 
a graph ; we denote it sometimes by G = { Y, E} ; the num her n 1s called 
the order (or Bize) of the graph; the points P1, P1, • • • , Pn are oaJled the vertices 
a.nd the p~irs (Pi• P1) the edges of the graph. Thus we consider non-oriented 
finite graph8 wiJ,hout parallel edges and without slings. The set E may be empty, 
thus a collection of points (especially a single point) is also a graph. 

A graph G8 ={V1, E1} is called a. su'6graph of a graph G1 = {V1, E1} 

if the set of :vertices V1 of 02 is a. subset of the set of vortices V1 of G1 and tho 
~et E2 of edges of G2 is a ~ubRot of the set E 1 of edges of G1. 
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A sequence of k edges of a graph such that every two consecutive edges 
and only these ha.ve a. vertex in common is called a path of order k. 

A oycUc sequence of k edges of a graph such that every two 
consecutive edges a.nd only these ha.ve a common vertex is called a cyck of 
order k. 

A graph G is called connected if any two of its points belong to a path 
which is a subgraph of G. 

A graph is called a tree of order (or size) k if it has k vertices, is connected 
and if none of its subgraphs is a. cycle. A tree of order k has evidently k - 1 
edges. 

A graph is called a complete graph of order(:) if it has k vertices and 

(!} edges. Thus in a. complete graph of order k any two points are connected 

by an edge. 
A subgraph G' of a graph G will be called an isolated BUbgraph if all 

edges of G one or both endpoints of whieh belong tu G', belong to G'. A con­
nected isolated subgra.ph 0' of a graph G is ca.lled a component of G. The 
number of points belonging to a. component G' of a graph G will be called the 
me of G'. 

Two graphs shall be called iB011Wrphic, if there exists a one-to-one mapp­
ing of the vertices carrying over these graphs into another. 

The graph G shall be called complementary graph of G if G consists 
of the same verti~ P1, P1, .•• , P, as G and of those and only those edges. 
(P1, P1) which do not occur in G. 

The number of edges starting from the point P of a graph G will be called 
the degree of Pin G. 

A graph G is called a Baturated even graph of type (a, b) if it consists of 
a + b points and its points can be split in two subsets V 1 and V8 consisting 
of a resp. b points, such that G contains any edge (P, Q) with P E V 1 and 
Q E V1 and no other edge. 

A graph is called planar, if it can be drawn on the plane so that no two 
of its edges Intersect. 

We introduce further the following definitions: If a gra.ph G h&e n 
2N 

vertices and N edges, we call the number - the "degree" of the graph. 
n 

2N (As a matter of fact-is the average degree of the vertices of G.) If a graph 
n 

G has the property that G has no subgraph ha.v.ing a. qer degree than G 
itself, '\Ve ca1l G a balanced graph. 

We denote by P ( ... ) the probability of the event in the brackets, by 
M( ~) reap. 01(~) the mean va.lue rasp. variance of the random variable E. 
In cases when it ia not clear from the context in which probability space tho 
probabilities or respeotively the mean values and variances a.re to be under­
stood, this will be expHcitly indicated. Especially Mn.N resp. D~.N will denote 
the mean value reap. variance calculated with respeet to the probabilities 
Pn,N• 
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We shall often use the following elementary asymptotic formula.: 
lc' k' 

(7) ~ valid for k = o(n'l.) . 
[ 
"} nke- 2ii - 6n' 

It k! 

Our thanks are due to T. GALLA! for his valuable remarks. 

§ 1. Thresholds for suhgraphs of given type 

If N is very sma.ll compared with n, na.mely if N = o <Yn) then it is 
very probable that rn.N is a collection of isolated points and isola.ted edges, 
i. e. that no two edges of T11,N have a point in common. As a. matter of fa.(·t 
the probability that at least two edges of rn.N shall have a point in common 
is by (7) clearly 

If however N r-.Jc Vi where c > o is a constant not depending on n, then the 
appearance of trees of order 3 will have a. proba.bility which tends to a posi­
tive limit for n--+- + co, but the appearance of a connected component consist­
ing of more than S points will be still very improbable. If N is increased while n 
is fixed, the situation will change only if N reaches the order of magnitude 
of n2•~. Then trees of order 4 (but not of higher order) will appear with a. pro­
bability not tending to 0. In general, the threshold function for the presence 

k-2 

of t~s of order k is W<-1 (k = 3, 4, ... ). This result is contained in the 
following 

Theorem 1. Let k ~ 2 and l (k -1 .s:;. l.s; r:J l be positive integers. Lee 

9'hz denote an arbitrary 7lOt empty class of connected balanced graph8 conaisting 
of k pointa and l edges. The thre8liold function for the property that the random 
graph comidered -111wvld contain at leaat one subgraph i8011U)rphic with some ele-

2-~ 
ment of $i u ia n ' 

The foHowing spooia.l cases are worth mentioning 

Corollary I. The thTeihold function for the property that the ra1Ulom graplt. 
1<-2 

conto.i1UJ a aubgraph which is a tree of order k i8 nt<-1 (k = 8, 4, ... ) . 

Corollary 2. The threahold fu'liction for the property that a graph contains 
a connected aubgraph consisUng ofl: ~ 3 points and 1c edges (i. e. Containing 
nx£cUy one cycle) is n, for each value of k. 

COl'Ollary 3. The threshold function for the property that a -gr:aph contaim 
a cycle of order 1: is n, for each ·value of 1: ~ 3. 



c.oDary 4. Ths l'h.Tetilwld /vftCtion j(JT the 'fi'Operty tlud 4 (f!YJ.ph conlai'M 

a(•- ~' ) a C()fnpf618 aubgraph of order Je ~ 3 i8 -n lc- • • · 

CoroDary S. T.Ae thTulaold function fot t/uJ properly tAo/, 4 graph conta~a& 
a .Uurated mm aubgrapA of typ8 (4, b) (i. e. a 81./JJgraph coasisting of a + b 

2 _a+b 

point.s P1, ••• , P., Q1• • • • Q, and of the ab edges (P1, Q1) v n • . 
To deduce theae Corollaries one has only ~ verify that all 5 types of 

gra.phs figuring in Corolla.ries 1-5. are balanced, which is easily seen. 

Proof of Theonm I. Let B, 1 ~ 1 denote the number of graphs belong­
ing to the class dakt~ which can be 'formed from ~ given labelled points. Clearly 
if Pn.N (da~c, r) denotes the probability that the ra.ndom gra.ph rn.N conta.ins 
at least one subgraph isomorphic with some element of the class liJk,l• tben 

(1.1) 
((;J -z) 

P (da )~ {n}B N - l -o(~) 
.. N U- 1e t,l (~) - ,.x-t . 

As a matter of .fact if we select k points (which can be done in r:) different 

ways) and form from them a graph isomorphic with some element of the class 
.!il(,l (which ca.n be done In Bit, different ways) then the number of graphs 
Gn.N which contain the selected gr&ph as a aubgra.ph is equal to the number 

of ways the remaining N -l edges can be selected from the I; J-z other 

possible edges. (Of course those graphs, which contain more subgraphs iso-
morphic with some element of ~Au are counted more than once.) . " . 

Now clearly if N = o( n2 -1) then by 

P n.N(a1,~r,r) = o(1) 

which proves the first part of the assertion of Theorem 1. To prove the second 
part of the theorem let ~?, denote the set of all subgr&pbs of the complete 
graph consisting of n points, isomorphic with some element of BJk,t· To a.ny 
BE~'9 let us associate a random variable l(B) such that ~8) = 1 or ~(8) = 0 
according to whether 8 is a subgraph of rn.N or oot. Then clearly (we write 
in wha.t follows for the sake of brevity M instead of Mn,N) 

(1.2) 
(
(;)-') I 

M (""' t(B)) = ~ M(s(B)) = (n) B~r_. N -l' "'Bk.l (2 N) • 
~ ~ i ((nJ) ~ 1 ftU-k St .. (n) SUt(n) 

ll,l lt,l 2 

N 
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On the other hand if 81 and 82 are two elements of SJ<c?1 and if 81 and 
81 do not contain a common edge then 

({;j -21) 
N-2l 

M(•(BJ •(B,)) ~ (~1) . 
If 81 and 8a contain exactly 8 common points and r common edges (l.S: r.s:l-1) 
we ha.ve 

( 
[;)- 2l + ') 

M(s(BJ e(S >) = N- 2Z + r - = 0 (N21.-r l· . (~) ··-· 
On the other hand the intersection of 8 1 and 82 being a subgra.ph of 8 1 (and 82) 

by our supposition that each 8 is balanced, wo obtain : .s;;. ! i. e. 8 :2: r: 
and thus the number of such pairs of subgraphs 81 and 82 does not exceed 

BL i· (n} ~~) {n- ~) = o(n 21r- ~)-
J~~ k ' k- 1 

I 
Thus we. obtain 

(1.3) 

([;)-21) k 

= V M(e(S))+ n!m,, ~-2l +nf(_]f_}z {.(nz-TY). 
~rl) k!2(n-2k)! (fnJ) -tn"ll-k ;':j N-) 
5~~<.1 2 

N, 
Now olea.rly 

( r~J- 2l) (fn) -l)1 

nl ~-2l [n)1l ~-l 
'l'(n-U)! (1~)-~ k (l2)' . 
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If we Ruppo.~e that 

N 
-----,k = w- + 00 ' 

2- ·-
n ' 

it follows that we b&\'e 

(1.4) ( 
(Z M(e(8J)2) 

. SE (nl o•( "'>' s(S)} = 0 .. lc,/ cu • 

s~~ . 

It follows by the inequality o£ Ohebyahelf that 

and thus 

(1.5) P n,N ( ~ e(S) ~ .!. ,Z H(e(S})l = 0 {.!.) . 
sE.t<n) 2 se.-<"l cu 

k,l "·' 

As clearly by (1.2) if cu- + oo then }; M(e(Sl)- + oo it follows not only 
Sf.,fJ(n) 

"·' that the probability that rn N contains at .)east one Bubgra,ph isomorphic 
with an element of 91~c_; tendS to 1, but also that with probability tending 
to I the number of subgre.phs of rn,N isomorphic to some element of fljk 1 
will tend to +oo with the same order of magnitude as w1• ' 

Thus Theorem 1 iB proved. 
It is interesting to compare the thresholds for the appearance of a. sub-· 

graph of a certa..in type in the abov-e sense with probabiJity near to 1, with 
the number of edges which is needed in order that the graph should have 
ntce881Jrily a aubgre.ph of the given type. Such "compulsory" thresholds 
have been considered by ·p, TUBA.N [11] (Bee a.lao [12]) and later by P. EBn5s 
and A. H. STONE (17]). For instance for a tree of order 1c clearly the compulsory 

threshold is f!_~-(k; 2
)] + lj for the presence of at least one cycle the com-

pulsory thres~old is n while according to a. theorem of P. Tn.!N (11] for 
(1-2) 

complete subgraphs of order k the compulsory threshold is (n•- rl) + 
2(.1: -1) 

+I;] where r = n ~ {k- 1) h· n 
1
]. In the paper [13] of T. K5vABI, 

V. T. S6s and P. TuR!N it has been shown that the compulsory threshold 
for the presence of a saturated even subgraph of type (a, a) is of order of magni-

2-.!.. 
tude not greater than n. • . In aU cases the "compulsory" thresholds in 
TUBAN'a sense are of greater order of magnitude as our "proba.ble" thresholds. 
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§ 2. Trees 

Now let us turn to the determination of threshold distribution functions 
for trees of a. given order. We shall prove somewhat more, namely that if 

k-2 

N ~ I? nk-1 where ~ > 0, then the number of trees of order k conta.ined 
in rn.N ha.a in the limit for n- + = a. Poisson distribution with mean value 

(2 e)k-• h"-2 
A = . This implies that the threshold distribution function for 

kl 
trees of .order k is 1 - e-J. 

In proving this we shall count only isolated trees of order k in rn,N• i. e. 
trees of order k whioh are isolated subgra.phs of r n.N' According to Theorem 1. 
this makes no essential difference, because if there would be a. tree of order 
Jc which is 8. subgra.ph but not 8.0 isolated subgr&ph of T rt,N• then Fn,N WOUld 
have a connec~d subgra.ph consisting of k + 1 points a.nd the probability 

of tb.i& is tending to 0 if N = o ( flrc;•J which condition is fulfilled in our 
k-2 

case a.s we suppose N "" e nh-=i • 
Thus we prove 

Theorem 2a. If lim N!~~ = e > o anal' I< denotes the number of iaolated 
n-+• -n"-• 

tree8 of orrkr k in Fn,NCn) then 

(2.1) 

or i =0, 1, ... , where 

(2.2) 

For the proof we need the following 
. Lemma 1. Let enl• e,1 , ... , e111,. be seea of random variahlee on aome pro­

bability apace; 8'Uppwe thD.t e,..(1 5: i ~ l,) takea on only the oaluea 1 and 0. If 

(2.3) 

uniformly in r for r =I, 2, ... , where l. > 0 and the BUmm.atio11. i4 eztended 
over all co'mhinati.ons (i1, it • ... , i,) of orderr of the ~1116gers I, 2, ... , lno eben 

(2.4) . { t. ·] .Ve-1 

hm P ~e,. =1 = -.
1
-

n-+.. 1-1 ,. 
(j=_O, 1, ... ) 

'· -i.e. the distribution of the aum Y.emtendafor n-++ oo to the Poisson-d'istri-
f-"1 

btdion with mean value J.. 



Proof of Lemma 1. Let us put 

(2.5) P,.(1) =pI~."'=;). ,_., 
Olea.rly 

(2.6) 

(2.7) 

uniformly in r. 
It follows that for any z with I z I < 1 

(2.8) lim jf:iP,.(1)[.iJ)z'= j(~)' =eU-1. 
n-+c r=l J~r r ,_, r. 

But 

i (z P ,.(1) (
7)) z'" = Z P ,.(1) (I + z)i - 1. 

r-J J-• r J-O 
(2.9) 

Thus choosing z = z - 1 with 0 < z ~ I it follows tba.t 

+• 

(r = 1, 2, .•. ) 

(2.10) lim ~P,.(1)zi=~ot-•> for 0 <z5:.1. 
n-+·t='o 

It follows easily tha.t (2.10) holds for z = 0 too. As a matter of fact 
+• 

putting G,.{z} = ~ P,.(j) zl, we ha.ve for 0 < :t 5:. 1 
r-o 

[P,.(O)- e-1 j5:.[ G,.(z)- eA<x-1>[ +I G,.(z)- P,.(O} I+ [ ~x-1)- e-A[. 

As however 

a.nd simila.rly 

it follows tha.t 

Thus we ha.ve 

+m 
I G,. (:t)- P,.(O) [5:. z ~ P,.(j) 5:. z 

J-1 

liDI sup I P,.(O}- e-1 [ ~- 2z; 
n-+• 

a.s however z > 0 ma.y be chosen arbitrarily sma.U it foDows that 

lim P"(O) = e-A 
n--+-• 
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i. e. that (2.10) holds for z = 0 too. It follows by a. well-known argument 
that 

(2.11) 
•J .-A 

li P (j• -A "' m n J---.-
n-+• 11 

(j=O,l, •.• ). 

As a. matter of fact, a.s (2.10) is valid for z = 0, (2.11) holds for i = 0. If 
(2.11) is already proved for 1 ~ 8- 1 then it follows from (2.10) that 

(2.12) for O<z~ 1. 

By the same argument a.s used in connection with (2.10) we obtain that 
(2.12) holds for z = 0 too. Substitutiilg z = 0 into (2.12) we obta.in that (2.11) 
holds fOl' 1 =a too. Thus (2.11) is proved by induction and the a.ssertion of 
Lemma. 1 follows. 

Proof of Theon~n 2a. Let T1n> denote the set of all trees of order k which 
are subgraphs of the complete grayh having the vertices P1, P1, ••. , P,.. 
If BET~"> let the random va.ria.ble e(S) be equal to 1 if 8 is an i80lated subgra.ph 
of r;,,n; otherwise e(B) shall be equaJ. to 0. We shall show that the conditions 
of Lemma 1 are satisfied for the sum I e(B) provided that N = N(n) T"-.J 

ser_f,n) 
rc-2 

T"-.J enii- 1 and A is defined by (2.2). As a matter of fact we have for any 
S Ep<,.n) 

More generally if 8 1, 8&~ .. . , 8, (BLE ~>)have pairwise no point in common 
then clearly we have for each fixed k ~ 1 a.nd r ~ 1 provided that n-+oo, 
N-+oo 

( r·- rkl ) 
N r~ I) j2N <k-l)r 

2Nrk( {r2N)) 
(2.14) H(•(BJ •(8,) ••. <(8,)) ~ -(~f ~ IOo) • - .... I + 0 .. 

where the bound of the 0 term depends only on k. If however the 81 (j = 
= 1, 2, ... , r) are not pairwiee disjoint, we ha.ve 

(2.15) M(e(BJ) e(81) ••• e(B,)) = o. 
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Taking into a.ocount that according to a cla.ssica.l formula of C.t.YLBY [1] 
the number of different treee which ca.n be formed from k labelled points is 
equal to kk-2, it follows that 

(2.18) ~M(s(81) e(BJ .•• 8(8,)) = r'~~r:~' l2:r-1 

e-
2

~'" ( 1 +0 (:~J} 

where the summation on the left ha.nd side is extended over all r-tuples of 
trees belonging to the set T<~> and the bound of the 0-te_rm depends only on /e. 
Note that (2.16) is valid independently of how N is tending to +oo. This 
will be needed in the proof of Theorem 8. 

Thus we have, uniformly in .,. 

(2.17) for r =·1, 2, ..• 

where .A is defined by (2.2). 
Thus our Lemma. I ca.n be applied; as T" = :Z 8(8) Theorem 2 is 

proved. StTt> 
We ~d some rema.rks on the formula, resulting from (2.16) for r = 1 

(2.18) 

Te"-2 fl<-1 e-~<t 
Let us investigate the functions mJt) = (k= 1, 2, ... ). Accord-

k! 

ing to (2.18) nmkl !:) isasymptoticallyequaJtotheaver&ge DU11lber of tree& Of 

order kin r,.,N. For a. fixed value of k, considered as a. function oft, the value 
k-1 k-1 

of mtCI) increa.ses for t < -- and decrea.ses for t > ; thus for a. fixed 
k k 

value of n the average number of trees of order k rea.ches its maximum for 

N ~; [1- ~}; the value of this maximum is 

{I- ~ r-1 e-(1<-1) 1;11-2. 
M:......,n kl • 

For large values of k we have evidently 

Mt " ~ V2nk5/J 
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It i8 easy to aee that for any t > 0 we have 

mh(t) ;;:; mlr+1(t) 

81 

(lc: = 1, 2, •.. ). 

The functions y = m,(C) are shown on Fig. 1. 
It is natural to ask what wiJl happen with the number '~'k of i&oJated 

trees of order i contained in rn,N if N!~!-+co. As the Poisson distribution 
n~-1 

ej ;; .. } i& approaching the normal distribution if ). - + co, one ca.n guess 

tba~ l'k wiR be approximately normally distributed. This is in fact true, and 
is expressed by 

Jliqure lo. 

Ji'igur, 1 b. 
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Theorem 211. If 

(2.19) 

but at fhll mme time 

1 k-1 
N(n) - ~ n log 71 - n loglog n 

2l: 2k -------· (2.20) linl =-OQ, 

lhen tlsMti'llfl by ~ k tlte nttmbeT of diBfoinl treBB of order k contai'JUHl u lnibgraplt8 
in Fn,N(n) (k = 1, 2, , •. ), WfJ hiJf16 for - CO < 1.1 < + .,., 

12.21) lim Pn,N(n) ('t'k- Mn.N(n) < z} == ~ (z) 
n-+• V M,..,N(/1) 

wlwre 

(2.2.2) 

(2.23) 

lk-2 (2N)Ii-1 -21cN 
M ··=11.- - e " ,,.. kl fl 

-· 
Proof or 'Daeorem 2.. Note first that the two conditions (2.19) a.nd 

(2 . .20) are equivalent to the single condition Jim Mn,N(n)= + oo, a.nd a.a 
n~+• 

M ('I' a:} ~ Mn.N this means tha.t the assertion. of Theorem 2b can be e:r.preaaed 
by saying that the oum~r of isolated trees of order .1: Js asymptotically .oor­
mally distributed always if n and N tend to +co so, that tbe average number 
of such trees i8 also tending to +oo. Let U8 consider 

Now we ha.ve evidently, using (2.16) 

where Af,,N is defined by (2.22). Now as well known (eee (18], p. 1"16) 

_!_ 2 rl =til) 
jiJ. . -'l,l A.l •. • h1! r 

llj-r, ~~ -· 
(2.24) 
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where~> a.re the Stirling numbers of the second kind (see e. g. [16), p. 168) 
defined by 

r 
(2.25) z' = ~ aSJ>z(:z;- 1) ••. (z- i + 1}. 

Thus we obtain 
J-1 

(2.26) M(~) = (1 + o(:~l} ~o<j>ML,N. 
Now aa well known (see e. g. [16], p. 202) 

+" +• :Jt! l.l • :z;'( r l (!.27) el<<"-•> -1 =~ ~~>-1 = ~- ~,y>V . 
1-• •-1 r. r-1 rl J-t 

Thus Jt follows that 

(2.28) 

We obtain therefrom 

(2.29) M (l'-rk- Mn,N.I'J' = [~ 2-M:;N e-M..,(k- Mn.NY] (1 +O l'2~l). 
VMn,N . Mn.Nir-o 1:. n . 

+• l" 
Now evidently ,Z .. 

1 
e-~ (k- i.)' is the r-th central moment of the Poisson 

It-O~ 

distribution with mean value A. It can be however eaally verified that the 
moments of the Poisson distribution a.ppropriately normalized tend to the 
corresponding moments oftbe normal distribution, i.e. we have for r = 1, 2, .•. 

+" I 

(2.30} lim 1, f~ A• e-l (.I:- .1)'} = - 1 f :z;' e- ~i th. 
l-+• ,ti {k_, k! V2 x __ 

In view of (2.29) this implies the assertion of Theorem 2b. 
1 J:-1 

In the case N (n) = 
2 

k nlog• + ·u n loglog n + p + o{n) wbeu 

the average nwnber of isolated trees of order kin r,.,N(n) is again finite, the 
following theorem is vaJid. 

Theorem 2c. Ld T k derUJtlJ the number of i8olatM/. trfuiB of orfl8r fc in rn,N 
(1:: = 11 2, ... ). Then if 

1 k-1 
(2.31) N(n)=-nlogn+ nloglogn+p+o(n) 

2J: 211 

where - oo < 11 < + co, we haf'JB 
.Ve-l 

(2.S2) lim P,.,N(n) ('t11 = 7) = -.
1

-
n-+oo 1· 

wlu!re 

(2.33) 
e-Zkl' 

A=-. 
1:-11! 

3 A Katem.aUIIai Kalat6 ID&UA ~ Y.A!I-~. 

(j = 0, 1, ••• ) 
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Proof of Theonm 2e. It is easily seen tha.t under the conditions of Theo­
rem 2o 

lim Mn.N<n> ("rt) =A. 
11-+-

Simila.rly from (2.16) it follows t.ba.t for r = 1, 2, ••• 

lim ,Z Mn.N<n>(e(S1) e(SJ .•• e(S,)) = ~: 
n-+· ..Jn) rl 

S,E.lj, 

and the proof of Theorem 2o is completed by the use of our Lemma. 1 es:aetly 
&8 in the proof of Theorem 2&. 

Note th&t Theorem 2o geoera.lizes the results of the paper [ 7], where 
only the case k = 1 is considered. 

I 3. Cyelea 

Let us consider now the threshold function of cycles of a. ginn order. 
The situa.tlon is described by the following 

n-m 3a. 8uppo&e that 

(3.1) N(n)"'cn where c > 0. 

Let Yt denote tM number of~ of order k conlained in Fn,N (k= 3, 4, ... ). 
Then we /taN 

(3.2) 

(3.3) l = (2 e}k. 
2k 

<i = 0, 1, ••• ) 

TAtU tlae tAmlwld di6trlbution COJ're&p0fld$ng UJ the thruhold function .A(n) = n 
- 2. (3~)1 

/or the property that the graph. contains a cycle of order k i8 1 - B 21< 

It is fnteresting to oompa.re Theorem Sa. with the follov.·ing two theorems: 

Theorem 3b, Suppose aga.in that (3.1) holds. Let rf denote the number of 
~cycles of order k CO'IItained in r,.,N (k = 3, 4, ..• ). TMn we have 

(8.4) 

(3.5) 

p)e-" 
lim P n.N(n) (rf = j)= -. -

n-+ • 1 I 
(j = 0, 1, ••. ) 

Remark. Note that according to Theorem 3b for Isolated c:ycles therl'i 
does not exist a. threshold in the ordinary sense, as 1 - e-,. reaches its maxi-

--- 1 ft • ( } mum 1 - e .,_ for c = "'i i. e. for N(n) "'2" and then again deereases; 
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tbua the probability that F,.,N t'Ontains an i8olo.ted cycle of order J: ne~er 
approaches 1. 

'fbeonm Sc. £et ~~~ denote the nU11&bfr of componenla of r,. H C01Uii8tiftg 
of A: 51: 3 poi'llh and A: edge8. If (3.1) holda then we MfHJ ' 

(3.6) 

where 

{3.7) 

wle­
llm P ra.N(n) (&,. =;: '1 = --

n-•+• j! 

CIJ=---- l+A:+-+ ... + . (2 e e-:zc)l< ( k' j;ll-3 ) 

21: 2! (A: - S) I 

<i= 0, 1, .• ,) 

Proof of 'l'beoreme 3a., 3lt. aad 3e. As from k given polota one e&n fonn 

.!. (A: - 1) I cycles of order k we havo evidently for fixed k &nd for N = O(n) 
2 

f;l- k 2 " 

(3.8) 

'll"hile 

(3.9) 
( {n ~ kl) 12N e-a:)• 

1 (n) N-le n 
Mlrll- i k lk -II!"(~)·- --u-·. 

As regard8 Theorem 3c it is known (see [10] and [1Ji]) th&t the number 
of connected graphs Glr,k {i. e. the number of connected graphs t..'OnBISting 
of k labelled vertices and k edges) Js exactly 

(3.10) 1 kS J:k-3 J 
8 11 = - (k - 1) Ill + k +- + ... + . 

2 2 (k-3)! 

Now we ha,·c clearly 



For large values of k we hnc (sec [15]) 

(3.12) 

and thus 

(3.13) 

N 2N 

f
2 1- __ }l'c 
-e " 

ft 
M(d~c) ""'! ·--- . 

4k 

For N ""'·"!.. we obtain by some elementary computation uRing (i) that 
2 

for large values of k (such that k = o (n314). 

Jcl 
e --iii 

(3.14) M{8,~:) ""'-. 
4k 

Using (3.8), (3.9) and (3.ll) the proofs of ThcoreJD8 3a, 3b and 3c follow 
the same lines as that of Theorem 2a, using Lemma I. The details may be 
left to the reader. 

Simila.r results can be proved for other types of subgraphs, e. g. eomplew 
subgraphs of a given order. As howo't'Cr these results and their proofs have 
the same pattern as those given above we do not d"·ell on the subject any 
longer a.nd pass to investigate globoJ propmie8 of the mndom graph F n N . 

§ j,. The ao&al aamlla of poiats heloJ18ill8 to trees 

We begin by proving 

'l'beorem 4&. If N = o(n) the graph rn N is, with probability tending to 
1 fur n- +oo, tAe union of disjoint trees.' 

Proof of 'J'heonm 48. A graph consists of disjoint trees if and only if 
there are no cycles in the graph. The number of graphs. Gn N ll'hich contain 
at least one cycle can be enumerated as was shov.·n in § I for each nluo k 
of the length of this oycle. In this way, denoting by T the property that the 
gr~~oph 1s a union of diJl)ofnt trees, a.nd by T the opposite of this property, 
i. e. that the graph contains at least one cy~lo, we ha\'c 

(4.1) 

It follows that if N = o(n) Yt'O ha.\'C lim p n,N(T) = l v.·hich pro,·es Theorem 4&. 
ft··+• 

If N ia of tho same order of magnitude a.s n I. e. N .....__en with c > 0, 
then the assertion of Theorem 4& is no longer true. Ne,-ertheii'!!S if c < l/2, 
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still almost all points (In fact n- 0(1) points) of r n.N belong to isolated 
t.reoa. There Is however a surprisingly abrapt change in the structure of rn.N 

with N ,.,. en when c surpaBSes the value.!. . If c > 1/2 in the average only a. . 2 
positive fraction of all points Of rn,H belong to isolated trees, and the value 
of this fraction tends to 0 for c - + co • 

Thus 1\'e shall pro\·e 

Theorem '"· Let v n,N denolll the number of thoae points of rn,N which 
belong to an i80lafed tree contained in r n,N· Let US SUppolle that 

. N(n} 
(4.2) hm --·· -- = c > 0 . 

n··-:i·• n 

(4.S) 
for 

for 

c s: 1/2 
1 

c>-
2 

where ;e = ;e(c) is the only root sati8fl#ng 0 < :z: < I of the equation 

(4.4) ze-x- 2ce-:zc, 

wlr.ick can al8Q be obtained aa tAe aum of a aerU!s lUI follows: 

- k"-1 
(4.5) :t(c) = ~- {2 c e-2c)". 

k•l k! 

Proof of Theorem A. We shall need the well known tact that the inverse 
function of tim function 

(4.6) y = z e-x 

has the powl'.r !Jerles expansion, c:onvergcnt for 0 s: y s:..!.. 
tJ 

(4.7) 

Let T,. denote the number of isolated trees of order 1e contained in r" H· Then 
clearly ' 

(4.8) 

and thus 

(4.9) 

By (2.18), 

(4.10) 

if (4.2) holds, we ha.ve 

1 1 k"-a 
lim - M(T,) = - - (2 c e-7.c)lr. 

n-+• n 2c 1:1 



Tbl18 \\"e obtain from (4.10) that for o ~ 1/2 

M(Y ) 1 • lk-l(loe-2t)" 
lim in£ ,.,N(n) ~-z----- f'or any f ~ 1. 
11-+• n 2C~t. 1 k! 

All (4.11) holds for any • ;;;:; I we obtain 

(4.12) 

But according to (4. 7) for c ~ 1/2 we have 

.. l;k-1(2 c e-k)" z- =2c. 
lt•l k! 

Thus it follows from (4.12) tba.t for c ;fi; 1/2 

( 4.18) Jim inf M (Y n,N(n)) i!= 1. 
n-+• n 

As however Y n,N<nl ~ n and thus lim sup .M(V n,N("~ ~ 1 it follows that 
"'-+. fl. 

if (4.2) holds and c :t, 1/2 we have 

(4.14) lim M(Y n.N(n)) = 1, 
n-+• n 

Now let us consider the case c > .!._. It follows from (2.18) that if (4.2) 
2 

holds with c > 1/2 we obtain 

I II l.:ll-1 (2 N( ) ZN(II)J tc 
(4.15) M(Y n.Nf~!J) = ..!!._ Z ~-, te e -,..- +0(1) 

2N •-1 k. n 
where the bound of the term 0(1) depends only on c. As however for N(n) ~ 
""nc with c > 1/2 

i k"-• [2 N(n) e- 2 N(n))rc =O [+) 
l<•n+l k! n n "lo 

it follows tha.t 

(4.16) M(Y n.Mn)) = nl :t: (:N(n)l + 0(1) 
2 N(n) n 

where z = z (N~tt)) ia the only solution with o < z < 1 of the equation 

2N(n) _ZN(II) 
fiJe-z = e 11 • Thus it follows that If (4.2) holds with c > 1/2 

" we have 
Jim M( Y n.N(,,) = :t:(c) 

n-+• n tc 
where zlo) is defined by (4.5), 
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The gra.ph of the function x(c) is shown on Fig. la; its meaning is shown 
by Fig. lb. The function 

is shown on Fig. 2&. 

11------""\ 

I 
1 

for c ~ 1/2 

y = { z~c) 
2c 

for c > 1/2 

Jr---------------------=========-

I 
'i 

g. 6ftJ• t-ff 



Thus the proof of Theorem 4b is complete. Let us remark that in the 
sa.me w&y as we obtAined (4.16) we get that if (4.2) holds with o< 1/2 we h&ve 

(4.18) M(V ,.,N(,.)) = D- 0(1) 

where the bound of the 0(1) term depends only on c. (However (4.18) is not 

true for c =.!., a.s will be shown below.) 
2 

It follows by the well known inequality of Markov 

(4.19) 
1 

P(' > a)~ - M(~) 
a 

valid for any nonnegative random variable ~ and any a > M(;), that the 
following theorem holds: 

Theorem 4e. Let v n.N denale the '11Umber of those poi11t8 of r,.fi wMch 
belong to illdated trees contained in r,. TY· Then if (l),. tenda arbitrarily slowly 
to +co for n- +co and if (4.2) 1wld8 with o < 1/2 we have 

(4.20) lim P( V n.HCn) ~ n - ro,.) = 1 . 
n-•+• 

The <l&8e c > 1/2 is somewhat more involved. We prove 
Theerem 4d. Let v n./'1 deJUJJe the number of th088 point8 of r,.,N which 

belong to an Wolated tree tXmltl.inefl in r n,/11· Let U8 suppo&e that (4.2) hdds with 
c > 1/2. It folJqws tAat if ro,. tends arbitrarily tllowly to +co, we haw 

(4.21) lim P(j'v,..NCn>- ns z(N(n)}I>Ynro,.)=o 
rt-+• 2N(n) n · 

where z = z [N~n)] is the only solulion wUh 0 < z < 1 of the equmton 

2 N{n) - "lN(rt) 

ze-"' = e " 
11. 

Proof. We ha.ve dearly, as the aeries '5.· k!< (2 ce-2t)k is convergent, 
k.:'i kl 

1)2 (V n,IIICn>)= O(n). Thus (4.21) follows by the inequality of 0/zebr6hev. 

Relll8l'k. It follows from (4.21) that we ha.ve for any c > 1/2 and &ny 
E > 0 

(4.22) lim p[ I!' •~oiiiW- .%(c) I < e) = 1 
n-+• I fl. 2c 1 

where z(o) is defined by (4.5). 
As regards the ca.se c = 1/t we formulate the theorem which will be 

needed later. 
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Theorem 4e. Let V n,N(r) denote the number of th.oae points of rn,N which 
belong w isolated tree.t of order ~ rand Tn N(r) the number of iBoltJ,Ud trees oj . . 
order ;;:; r contained in r" N· If N(n) -. n WB hafNif{)f' any b > 0 . 2 

(4.28) 

and 

(4.24) lim P l_!!!!"_<.r!L_ - Y - e-lc < d == 1. 
( 

'1' . (r) - » fel<-2 J 
II··+• l n ~, kl 

The proof follows the same lines as those of the preceding theorems. 

§ 5, The total numher of pointa heloaging to cyelee 

Let us determine first the aYerage number of all cycles in rn.N· We 
prove that this number remains bounded if N(n) "'en a.nd c < 1/1 but not 
if c =1ft· 

Theorem Sa. Let Hn,N denote the 11-Umber of all cyclu contained in rn,N· 

Then we haw i/ N(n} ,..,_.en holds with c < .!_ 
2 

(5.1} lim M(Hn,Mrr>) =.!.log _ _!._ -c- c'l 
n .... +.. 2 l-2c 

while we have for c = .!. 
2 

(5.2) 

Proof. Clearly if Y~t is the number of all cycles of order k contained im 
rn,N We have 

Now (5.1) follows ~ily, taking into account that (see (8.8)) 

(5.3) 
((;!-") [2NJ" 

M( ) = .!_ {nl (k -1)! N- k = n (1 +O ("'J) . •. .. (~l) u • 
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If c = 1/1 we b&Ye by (3.8) 

(6.4) 
l.\0 l -­M(y.J ,.._, -e 2n • 

2l: 

II I -~ l 
As ~-e 2n --v-loga, it follows tba.t (5.2) holds. Thus Theorem 5a 

,._32 k 4 
is proved. 

Lot ns remark that it follows from (5.2) tba.t (4.18) is not true for c = 1}1• 

Similarly as before we can prove corresponding results concerning 
the random variable H, N itself. 

We have for instance in the cue c = 1/~ for any e > o 

(5.5) lim P ( !f "'N(")- !.j < e) = I . 
n-+• Jogn 4 

This can be proved by the same method a.s used above: estima.ting the variance 
and using the inequality of Chebyshev. 

An other related result, throwing more light on the appearance of cycles 
in r .. ~ runs &8 follows. 

Theorem Sit. Let K denote the property tlaatagraph cmalain.t at lea.t one 
C1Jcle. Then we have if N(n) ""nc ltolda with c &; 1

/,.. 

(5.6) lim P,,N(n>(K) = 1- fl- hr+C". 
n-+• 

Th'IU for c =.!.. it " ,.almo.tt IIUre" thtU r n,N(n} conta&m at leallt one cyCle, w'Mle 
2 -

for c <.!..the limit for 1&-+ + oo of t'M probabi.Uty of~~ iB len than I. 
.2 

I 
Proor. Let us suppose first c < 2. By an obvious sieve (taking into 

a.ccount that according to Theorem l the probability that there will be in r n N{n) 

with N(n) """c (c < IJ1) two circles having a. point in common is negligibly 
small} we obta.in 

(5.7) 

Thus (IS.6) follows for c < 1/a· As for c -+ 1/ 1 the function on the right of (5.6) 
tends to I, it follows that (5.6) holds for c = 1/ 3 too. The function y = 
= l - fl - 2c ~+ct i.a shown on Fig. 3. 

We prove oow the following 

Theorem 5c. Let H~.N denote the total number of pMnlll of r 'Yl w.McA 
belo1ag to aome cycle. Then we Aaue for N = N(n) "'an wtth 0 < a < /1 

(5.8) 
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Proof of Thecnem Sc. As according to Theorem 1 the probability that 
two cycles should have a point in common. is negligibly small, we have by (5.3) 

n (2c)' 4c3 
M(H:.N(n))"-" Z kfrc....., -- -·--

le-a 2(1 - 2 c) 1 - 2 c 

The sizo of that part of r n,N which does not oonsillt of trees is still more 
clearly shown by the following 

TLeorem 5L Let {}n.N denot8 the number of those point~~ of rn.N which 
b«ofLg tD c&mponents containing emctlg tme cycle. Then we 1rafl8for N = N(n) ""' 
,...__ cn tn ctUe c =1= 1/a 

(5.9} lim MWn N(n)) =- Y (2 ce-le)" l + - +- + ... + ---1 ..... { k k2 k"-3 I 
n-+• ' 2~c-:3 I! 21 (k-3)1, 

(5.10) 

• 
where r(:~:) rtenotu eke gamma-furu:Uon r<.:~:> = J tx-l e-' tU for z > o. 

0 



Proof of Th-em 5d. (5.9) follows immediately from (3.11); forO= 1/2 
we have by (3.14) 

1 , -~ rj~j 
M(IJ N( )) ,.., - ""5' e ,. ,.._, -- n2/3 

n, n 4 f::i 12 

Remark. Note that for c- 1/ 2 

- 2ce- 1 - + .. . ,.._, . 1 ~- k ( k Jtl<-
3 J 1 

2 e3 ( ZC) + ll + (k - 3) I 4(1' - 2 c)2 

Thus the average number of points belonging to components conta.ining 
1 

exactly one cycle tends to + oo as for c- 1/ 2 • 
4(1- 2c)1 

We now prove 

Theorem 5e. For N(n) ""on witk o < c < 1/a all components of r,..N(n) 
are with probability tending to 1 for n - + oo, either trees or W111ifKn1611t8 contain­
ing er.cactly one cycle. 

Proof. Let V'n,N denote the number of points Of Fn,N belonging to com .. 
ponents which contain more edges tha.n vertices a.nd the number of vertices 
of which is less than Y logn.' We have clearly for N(n) ~en with c < tj1 

( 
log2 _ 1) 

0 n 2 • 

Thus 

P('l'n.N(n) ~ 1) = 0 L 
1 
~lo:~) • 

On the other ha.nd by Theorem 4c the probability that a. component con­
sisting of more than V log n points should not be a tree tends to 0. Thus the 
assertion of Theorem 5e follows. 

§ 6. The niiD:lber of eOPaponents 

Let us turn now to the investigation of the average number of compo­
nents of r,.,N• It will be seen that the a.bove disc\18$ion oonta.ins a. fairly com· 
plete solutiqn of this question. We prove the following 
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'llaeonm 6. If Cn.N tlBnoiiJB ,.,.. nvn&b6r of comporumtl of r ~ lAm W6 haN 

if N(n) --ca 'lloltU tDUh 0 < c <! 
2 

(6.1) M(Cn.Nw) = n- N(a) + 0(1) 
A 

where 1M boutU.l of tlae 0-lenn depefuh 01&171 oa c. If N(n) ,.._,_we Aaw 
2 

(6.2) M(Cn.N(n)) = n- N(n) + O(logn). 

1 f N(n) rv em hold8 tuith c > .!. we haw 
s 

(6.3) lim M(,n.N<n>l- _!_[~(c)- ~(c)) 
II-++ • ft. 2 C 2 

where :r: = z(c) i8 the only 1olutwn Batiafying 0 < x < 1 of 'he eguqUon :z:e-.r = = 2ce-2c, 1. e. · 
• J:k-1 

(6.4} z(c) = z- (2 u-IC)Ic. 
k-l kl 

Proef of Theorem 6. Let us consider first the case c < .!. Clearly if we 
2 

add a new edge to a graph. then either this edge connects two points belong­
ing to different components. in which case the number of components is 
decreased by I, or it connects two points belonging to the aa.me component 
in which case the number of components does not change but at least one 
new cycle ls ora~. Thus' 

(6.5) c .... N - (n - N) ~ Hn.N 

where H~ is the total number of cycles in r n,N· Thus by Theorem 5& it 
follows that ( &.1) holds. 

Similarly (6.2) fQllows aiBo from Theorem ~a. Now we coDSi.der the case 
1 

(; > -. 
2 

It is easy to see that for o ~ 11 ~ ! we have (ttee e. g. [ 14]) 

+• kk-lyk ~ 
(6.6) Y =z--

~. kl 2 
where 

(6.7) 
+• k"-ltJ" 

z=Y-~ 
;:; J:! 

•Iu faot aocQI'ding to a well known theOJ"em of the theory ofgra~ (aee [4]. p. 29) 
beiug a pneralization of EuJer•a theorem on PQlybedra we have N - n + ~n.N = 
= ~'where ~,N - tbe .,cyolomatio number'• of tbe gJ&ph rn.N- ill equal to 
the maximal number of indepeDdeut cyoles, in r,..N (For a definition of independent 
cycles see [4:) p. 28). 



z can be eha.racterized also as the only solution satisfying 0 < x ~ 1 of the 
equation .-x = 1J. 

It foJiows that if N(n) ,.._, nc holds with c < 1/ 1 "·e ha,·e 

(6.8) M(~, N(n)) = ~-- (
2 N(n~- ~V'<!!2) + 0(1) = n- ..V(n) + 0(1) 

' 2...V(n) n 2n1 

which leads to a second proof of the first part of Theorem 6. 
To prove the second part, let us remark first that the n urn her of compo-

nents of order greater than A is clearly ~; . Thus if C,,N(A) denotes the 

number of components of order ~ A of rn,N we ha.ve clearly 

(6.9) 

The average number of components of Oxed order k which contain 

at least 1c edges will be clea.rly ae<:ording to Theorem 1 of order {: J" , i. e. 

bounded for each fbed value of k. As A can be chosen arbitrarily Ja.rge we 
obtain from (6.9) tha.t 

{6.10) 

According to (2.18) it follows that 

(6.11) 
A' +. ~-! 2 N - 2N k 

M(Cn.N) "":) :Z - 1 l- e "J 
.. N rc-• k. n 

and thus, &(,'COrding to (6.6) if N(n) ""en holds "~ith c > 1/1 we have 

16.12) lim M(~n.N(n)) = _..!._ (x(e) - zl(c)) 
n-+• n 2c 2 

whore x(c) is defined by (6.4). Thus Theorem 6 is completely pro"·ed. 
Let us add some remarks. Theorem 6 illustrates also the fundamental 

cha.nge in the structure of r,.,N which takes place if N passes.;. While the 

average number of components of rn,N (as a fun<:tion of N with n fixed) 

decreases linearly if N ~ ; this is no longer true for N > ; ; the average 

number of components decreases from this point onward more and more 
slowly. The graph of 

(6.13) z(c) = Jim 
N(n) 
--c 
" 

1- c for 1 
O~cS.­

- 2 

for c > 1/ 2 
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a.s a. function of c is shown by Fig. 4. 
From Theorem 6 one can deduce ea.sily that in case N(n) ~on with 

c < lj1 we lta.ve for any sequence co, tending a.rbitrarily slowly to infinity 

(6.14} lim P(IC,.Nw- n + N(11)j < w,} = 1 
n-+m 

(6.14) follows easily by remarking tha.t clearly ~n.N ~ n-N. 

z 

0 
I 

Fi(JUt'e 4. 

For the case N(n) ,....., en with c ~ 1/ 1 one obtains by estimating the 
variance of Cn,N(,) &Dd uamg the inequality of Chebyshev that for a.ny e > 0 

(6.16) lim p (I Cn.NC'!2- . .!.. [:~:(c) - ;tll(c} I < eJ = 1 . 
n-+• n 2c 2 

The proof is simila.r to that of (4.21) and therefore we do not go into details. 

§ 7. The size of the pat.est tree 

If N ~en with c < 1/ 2 then a.s we have seen in § 6 a.ll bat a finite num­
ber of points of r,.N belong to components which are trees. Thus in this case 
the problem of determining the size of the largeSt component of r,,N reduces 
to the easier question of determining the greatest tree in F, N· This question 
is answered by the following. ' 

Theorem 7a. Let i!lrr:N denote the nwnber of point8 of thegreate/lt tree whU:h 
ilia oomporumt of r,,N· Bu~e N = N(n) .-...-c-nwdh c =/= 1/ 1• Let(J)11 be a sequence 
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(7.1) lim P (An,N(n) !;: .!.[log n. -_!log log nj + l»n) = 0 
n-+• IX 2 

and 

(7.2) lim P (A n,N<nl ~ .!_ {tog n. - ! log log n) - •n) = 1 
n-+.. a 2 

where 

(7.3) (i e. a. = 2 c - 1 - log 2 c 
and U.us G > 0.) 

Proof of Theorem 1a. We have clea.rly 

(7.4) P(A,,N(n) :a: z) = P (~ '~'t ~ 1) .:s;; ~ M(Tt) 
'-'~1 lc~Z 

and thus by (2.18) 

(7 .5) P(An.NCnl ~ z) = 0 -- . (ne-"i 
za/, 

It followt1 that if ~ = ~ (log n - : loglog n} + con 

we have 

(7.8) 

This proves (7.1). To prove (7.2) we have to estimate the mean and variance 

of Tz, where zt=! (togn-: loglogn)-con. We have by (2.18) 

(7.7) 

a.nd 

(7.8) 

Clea.rly 
P(An.N<n> :a: .;) ~ P(Tz, ~ 1) = 1 - P(-r1, = O) 

a.nd it follows from (7.7) a.nd (7.8) by the inequality of Chebyshev that 

(7 .9) P(Tz, = O) = O(e-"'"•) . 

Thus we obtain 

(7 .10) P(An,Mn) ~ Z11) ~ 1 - O(e---). 

Thus (7 .2) is also proved. 

Bem'P'k. If c < .!.. the greatest tree whloh u a component of r n,N with 
2 

N ........ "" iB - &8 ID8Dtioned above - at the BILIDe time the greatest component 
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of Fn. N• as Fn.,lf OODt&iDa with probability tanding to 1 beside& trees Only com­
ponents oonta.iniDg a. singl.e circle a.nd being of moderate eize. TIDa follows 
evidently from Theorem 4c. As will be seen in what follows (see § 9) for 

c > .! the situation is completely different, as in this case rn.N contains 
2 

a very large component (in fact of size G(c)n with G(c) > 0) whloh is not a. 
. 1 1 I 

tree. Note that if we put c =-log n we have o. =-log n.and- logn ..... k 
2k k a. 

in conformity with Theorem 2c. 
We can prove also the following 

1 . 
'l'heorem a If N "'-'""• where c =I=- aftll e-• = 2cr-.., fh6n tl&e number 

2 

of i8ola.t8d treeB of ortkt h = .!.jtog n - .! loglog n] + l resp. of order~ h (where 
0: . 2 

l i8 an arbit1'f.U'1/ real number BUCh tkat h i8 a po8'Uive ifllsger) contained in 
rn,N Tuzs lor large n apprtnMnately a Poi88CJ11, di8tribution witA the mean oolue 

a_i/11. 6 - .. r a.r.la e-•1 
.l = Jrn:: reap. p. = . 

2e r2n 2eV2n(I-e-•> 

Corollary. The probability that Fn,N(n) with N{n)"'fiC where c=fr ~ 

does not oonta.in a tree of order ~ ! (log A - : loglog n) + l tends to 

( 

a,5/t e -al ) 
e:x:p - Vii for A- +co, where a = 2c - 1 ~ log 2c. 

2c 2:~~(1-e-•) 

The size of the gtea.t.e&t tree which is a. component of Fn.N is fairly large 

if N ~~ . This could be guel88d from the fact that the collSta.nt f&etor in the 
2 

expresaion ! rlog n- : Ioglog n] of the .,probable size" of the greatest compo-

nent of rn.,N figuring in Theorem 7a. becomes infinitely large if c = ~ . 

For the size of the greatest tree in Fn.N with N ...... ~ the following 
2 

result is valid: 

Theorem 7e. If N ....,!!_and L.ln.N denote8 again the number of poi-nU 
2 

of the greatest tree oonlaiftfKl tn F n,N• WB ha'Oe far any ~ COn tending to 
+co for n-+ +oo 

(7.11) lim P(li,.N :<!: ntla con)= o 
n-T• 

and 

(7.12) lim P lln.N ~ - = l . [ 
A111} 

n-+• ton 
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Proof of Theorem 7c. We have by some simple computation using (7) 

(7.13) 

Thus it follows that 

(7.14) P(Lin.N :.<!:: nl/&mn) ~ '5'. M(T:k) =0 {~~) 
k~~... ,w., 

which proves (7.11). 
On the other hand, considering the mean and variance of -r* = z T11, 

ka;~ ... 
it follows that 

M(T*) ii: A wW' where A > 0 a.nd DI(T*) !:::= O(wl'') 

and (7.12) follows by using again the inequality of OAeby&ltetJ. Thus Theorem 
7c is proved. 

The following theorem can be proved by developing further the above 
argument and using l-emma. l. 

11aeonm U. Let 'l'(f.') dtmote th8 number of tTeeB of order~ pn2/3txmtai1U!d 

i'.l r.,,N(,.) w'Aere o < p < +oo and N(n) .-...!.. Plum we haue 
2 

(7.15) 

where 

(7 .16) 

).i e-A 
lim p n.NCnf..T(/A) = j) = -. -

n-+.. ,, 

§ 8. Whea U r n,N a planar paph? 

We ba.ve seen that the threshold for a subgraph containing l points 
:z _ ___!!___ 

and l + d edaes is n rr+<r ; thus if N I'V en the probability of the presence 
of a. subgra.ph ha.viog l points and l + d edges in r n,H t&nds to 0 for ft- +~. 
for each partieula.r pair of nmnbers l ~ 4, tJ ~ 1. This however does not 
imply that the probability of the presence of a. graph of arbitrary order having 
more edge8 tba.n vertices in r.,.lf with N ""'nc tends also to o for fl- +oo. 
In faot thie is not true for c ~ 1/ 1 tOll is BhDwn by the following 
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Theorem 8a. Let Xn,N(d) tleMt8 1M number of cgclea of G,..N of arbim.vg 
ordn which (Jf'8 auch tha~ ~ tl tli4gonals of th8 cytilll belong alto Co r n,N• 

Then if. N(n) =" + J Vn + o(V1i") where -oo < A < +oo, tDWt harJe 
2 

ele-• 
(8.1) lim P(xn.N(n)(d) = i) = -.- Ci = o. 1 •... ) 

n-+• ,t 

(8.2) 

Proof of 'l'heotem a.. We have clearly u the number or dia.goDAls of a. 
} - gon is equal to i(i - 3) 

2 

k(~-3) [;}-[!J 
(8.3) 

and thus if N (n) =" + A y; + o(y;i) 
2 

(8.5) 

The proof can be finished by the &&me method u used in proving Theorem 2a.. 

Remark. Note that Theorem 8a implies tha.t if N(n) =" + fll,. Yft 
2 

with w,. -jlo +co then the probability that r n,N(n) contains oycles with any 

prescribed number of diagonals te.ads to 1, while if N(n) = n - fll,. Yft 
2 

the same probability tends to 0. This shows a.ga.in the fundamental difference 

in the structure of r n.N between the eases N < " &Dd N > .!!. . This differ-
2 2 

ence oan be expre8118d also in the form of the following 
1 'lheonm lit. Let 1U BUppo88 fAtJt N(n) ,.,.,nc, If tJ <-the~ 
2 

,. 
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Jltat I'M gra.p'h r n,N(ra> Is pla:n4T iB ttmding to 1 wl&ile for c > .!_tAw FtiiJtJinZ11J tend& 
2 

fo o. 
Proof ofTheonm 8h. As well known trees and connected graphs contain­

ing exactJy one cycle are pla.nar. Thus the first part of Theorem 8b follows 
from Theorem 6e. On the other band if a graph contains a cycle with 3 dia­
gonals such that if these ~onals connect the pairs of points (P1, Pi) (i = 
= 1, 2, 3) the oyolic order of these points in the cycle is such that each pair 
(P1, Pi) dissect& the cycle into two paths whioh both cont.aJn two of the other 
po(~~~ ~~en) the graph is not planar. Now it is ea.sy to see that among the 

: triples of 3 diameters of a. given cycle of order k there are at least (: l 
triples which h&ve the mentioned property a.nd thus for la.rge v&lues of 1c 
approximately one QUt of 15 choices of the 3 dia.gon&ls will have the mentioned 

property. It follows that if N(n) =!. + W11 yn with ru11 -+- +oo, the proba.-
2 

bility tba.t r n.N<n> is not planar tends to 1 for n-+ + oo. This proves Theorem 

8b. We can show that for N(n) =.!!. + l fn with any real l the probability 
2 

of r n NC,.) not being planar ha.s a positive lower limit, but we c&nnot calculate 
ts v&lue. It may even be I, though this seems unlikely. 

I 9. OD the powdl of lhe peale8l eealpOileat 

We prove in this § (8ee Theorem 9b) that the size of the greatest com­
ponent of !IJ.Nfn}is for N(n) "'"'en with c > 1/1 with probability tending to 1 
approxima.tely G(c)n where 

(9.1) G(o) = 1 - z(c) 
2c 

and ~(c) is defined by (6.4). (The curve y = G(c) is shown on Fig. 2b). 
Thus by Theorem 6 for N(n) L""oJ en with c > lf1 &lmost all points of 

r,,N<ra> (i, e. a.ll but o(n) points) belong either to some small component which 

is a. tree (of size at most 1/a. (lop - .! loglogn) + 0( 1) where a= 2c -1 -log 2c 
2 

by ·Theorem 7a.) or to the single "giant,. component of the size ~(c)n. 
Thus the situation ca.n be summ&rized as follows: the largest component 

of rn,N(n) is of order logn for N(a) "'-'0 < 1/,, of order n.2/3 for N(n) "'"'.!_ a.nd 
" ft 2 

Qf order n forN(ta) ,.._,c > 1/1. This double •cjump" of the size of the la.rgest 

"' 
component when N(n) pa.sses the value 1/1 is one of the moat striking facts • 
concerning random graphs. We prove first the following 
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Theorem '•· Let .Jr' n,N( A) denote the set of those points of r II N which belong 
to components ofrize >A, and let Hn.N(A) denote the number' of eZemem8 of 
tke set Jl'n,N(A). If N1(n) ,....., (c- t) n where e>O, c- t ~ 1J1f and Na(n) ......,.en 
tlum with jJrolxibility tending to 1 for n-+ +co from the n,Nt!n>(A) points 
belongi7UJ to ._A1"11,N,(n)(A) more than (l- 6) Hn.N,eniA) points will be contained 
in the same component of F n,N/.n) for any 6 with 0 < lJ < l prOfJided that 

50 

e' fJ2 

Proof of Theorem 9a. According to Theorem 2b the number of points 
belonging to trees of order $. A is with probability tending to 1 for n- + co 
equal to 

n ~ - [2(c - e)]~-1 e-2(c--•> + o(n) . 
( 

A fcl'-l } 

~ k! 

On the other hand, the number of points of r n,N,(n) belonging to components 
of size ;:;;; A and containing exactly one cycle is according to Theorem 3o 
o(n) forc-e ~ 1/1 (with probability tending to l), while it is ea.sy to see, that 
the number of points of r,.,N,Cn> belonging to components of size 5. A and 
containing more than one cycle is also bounded with probability tending to l.) 

Our Jast statement follows by using the inequality (4.19) from the fact 
that the average number of components of the mentioned type is, as a. simple 

<:alculation similar to those carried out in previous§§, shows, of order 0 ( :J· 
Let DJ> denote the event that · 

(9.3) 1Hn.N1( 11)(A) - nf(A. c- e) I < 'l" nf(A, o- E) 

where .,; > 0 is an arbitrary small positive number which will be chosen later 
a.nd 

1 A kk-1 
f(.A.,c) = l--~-(2ce-ae) > 0 

2Ck-l k! 
(9.4) 

and let »,,t> denote the contrary event. It follows from what has been said 
that 

(9.5) lim P(.E<,l)) = 0. 

We consider only such rn Nt(n) for which (9.3) holds. . 
Now clearly rn,N.W is 'obta.ined fromrn N,(n)bya.dd.ing N.(n)-Nl(n)......,.ne 

new edges at ra.ndom to r n,N,(n)· The probabi'iity that such a. new edge should 

[
Hn,N1Cn)(A) J- N, (n) 

2 I 
connect two points belonging to ~ 11 N,(n>(.A.), is atlea.st , . (; l 
and thus by (9.3) i8 not less than (1 - IJ"t) f' (.A, c - e), if n is sufficiently 
large and 'f sufficiently small. 



Aa these edges are chosen independently from each other, it follows 
by the law of large nUillben that denoting by ~'n the number of those of the 
N1(n)- N1(n) new edges which connect two point& of r.7n,N-I.n> and by ~ 
the event that 

(9.6) "" ~ e(l - S T) /'(A, G - e) n 

and by J:f.1) the contrary event, we ha.ve 

(9.7) 

We coneider no.w only such r n.NrhJJ. for which JJ(,l> ta.kes place. Now let us 
consider the subgra.ph 1'1.Na<n> of r" N..tn> formed by the points of the eet 
~n,Nd!J)(.A) and only of those edges of rn~W!) which connect two such points. 

We shall need now the following elementary 
r 

Lemma 2. Let a:1,llt, ... , a., be positive numbers. 2' a1 = 1. If ma.x a1 ~a 
J•l 1SJS 

tlwn. lhers ctJn be foond. a. mlue J: (1 ~ i ~ r -- 1) .tucl& t114t 

1-a~~a-~1+a 
2 -~ J- 2 J-• 

(9.8) tmd 
1-a " I+a -- .s. ~: tlj~ • 

2 J-lt+l 2 

J 
Proof or ·LeDUIUl I. Put 81 = Y.a, (1 = 1, 2, ... , 7). Let fo denote the 

t!i 
least integer, for which 81 > 1/.. In case sJ. - 1/, > lf. - s,.-1 choose 
k = i.- 1,, while in case s~. - 1/. ~ 1/.- Bla-1 choose i = ;,. In both 

caaes we have !Btc - 1/1 1 ~a;~~; which proves our Lemma. 

Let the Sizes Of the components of r~,Na(n) be denoted by b,, bl, . .• , b,. 
Let ~~) denote the event 

(9.9) 

and J:S.t> the contrary event. Applying our Lemma with a = 1-6 to the 
b -

numbers 41 = '1 it follows that if the event »,.•> takes place, the 
B n.N1(_n)( A) 

set t1t" n,N1(n)( .A) can be split in two subsets ..7~ and ..7: eontaJning H~ and 
H;. points ·auch that H~ + H: = Hn.N,<n>(A) and 

(9.10) Hn.N1(n)(.A) : .S. min (B~. H:J .S: max (H~. H:) .s. Bn.N1<nJCA) (1 - !J 
further no point of ._:r~ is conoected with a. point of ~: in .F:.N.cn> • 

It follows that if a point P of the set ~ !J,NJ.(n)(A) belongs to~~ (resp. 
~~then all other points of the component of I'n,N,<n> to which P belongs are 
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also contained in .7'~ (i'esp. ~~). As the number of components of size >A 
of r,.,N,(n) is clearly < H,..N~,.>(A.) the number of such divisions of the set 

I 
- H,...y>(oti(A) 

·..Yn,N1<,>(A) d06fl not exceed 2" 
If further Efi'> ta.kes place then every one of the ~ ... new edges connect­

ing points of.~ !IA'a(n>(.A) connects either two points of ~~ or two points 
of .Y~. The possible number of such choi<Jes of these edges is clearly 

As by (9.10) 

[H~} + rn:) 
(9.11) 

2 
·
2 

.s:{jt +h-!)'=l--'+,.~1-! 
{~/1) -· 4 l 2 2 - 2 

it follows that 

(9.12) P(i1.'>) ~ 2~ H.,a,co)(A) ( 1 - : r -3r)J"(A,,:-•)n 

and thus by (9.3) and (9.6) 

(9_13) P(E~>) ~ exp[t&f(.A,c: _e) {(1 +11og2 _ e(1- 3'r)f~A.c- e)d }} 

Thus if 

(9.14) 

then 

(9.15) 

A £6(1 - 3 T) /(A, c- t:) > (1 + '1") log 4 

lim P(~>) = 0 . 
rz-+., 

As however in ca.se c - e > 1J1 we ha.ve f(A. c - e} ~ G (c - e) > 0 
for any A, while in case c - e = 1/ 1 

(9.15a) I A, - = 1 - Y- = ~ - :<!: - if A ~ An ( 1] A k/t-l '" k'!-1 1 
2. t=il:! e" ~t:.:t"+tlel e'- 2y:i -

the inequa.lity (9.1S} will be satisfied provided that " < .!.. and A > 50 
. 

10 elhl 
Thus Theorem 9a. is proved. 

Clearly the "giant" component of rn Ne(n) the existence of which (with 
probability tending to 1) has been now proved. contains more tba.n 

(1 -T)(l- 6) n/(A, c-e) 
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points. By choosing e, -r and 6 sufficiently small and A suffjciently large, 
(1 - <J) (I - 6) /(A, c- e) ca.n be brought as near to G(c) as we want. Thus 
we have incidenta.Uy proved also the following 

Theorem 9h. Let {!11 N dfl'Mte the Bize of the greatest component of F n,N 

If N(n) ""'en where c > 'iJ2 we hatJe for any "'' > 0 

(9.16) lim p ( en.N(n) - G(c) I < n) = I 
n-+- n 

x(c) ~ k-'<-1 
where G(c) = 1 - - and x(c) = 2: --

1 
(2c e-:zcyc is the 8olulion BO.ti8fying 

2c h-1 k. 
0 < :t(c) <I offkeequationx(c) e--"<c> = 2ce-2<. 

Remark. As G(c) - 1 for c- + co it follows as a corollary from Theorem 
9b tha.t the size of the largest component will exceed (1 - a)'n if c is suffi­
ciently l&.rge where a> 0 Js arbitrarily smaU. This of course could be proved 
directly. As a matter(}{ fact, if the greatest component of r n N(n) with N(n) "-'nt: 
would not exceed (I - a)n (we denote this event by B, (a, c)) one could by 
Lemma 2 divide the set V of then poi.nts P1 , ••• , Pn in two subsets V' resp. 
V" consisting of n' resp. n" points so that no two points belonging to different 
subaets are connected and 

(9.17) « 
2
n ~ min (n', n .. ) :;, max (n'. n") ~ { 1 - ~} n. 

But the number of such divisions does not exceed 2", and if the n points 
are divided in this way, the number of ways N edges can be chosen so tba.t. 
only points belonging to the same subset V' resp. V" are connected, is 

(f~l: (~l). 
(n'j [n"] n'{ a) As 
2 

+ 
2 

S.. 2' 1 - 2. , it follows 

(9.18) 
( 

Q. )N(ll) N(n)a 
P(B,(a, c)).:::; 211 1 - 2' ~ 2" e-..,--, 

Thus if a c > log4, ihen 

(9.19) lim P(B,.(a, c))= 0 
n-+ez~o 

which implies that for c > log 4 and N(n) ~en we have 
a 

(9.20) lim P(en,N(n) ;;;; (1 -a) n) = 1 . 
n-+e 
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We ha.ve seen tha.t for N(n) ""en. with c > lf• the ra.ndom graph rn.N(tiJ 
consists with probability tending to 1, neglecting o(n) points, only of iaol&ted 

trees (there being approximately~ kk-
2 

(2c e-~).lt trees of order k) a.nd of 
2c kl 

a single gia.nt component of size -G(c)n. 
Clearly the isola.ted trees melt one after another into the giant compo­

nent, the "danger" of being absorbed by the "gia.nt" being greater for la.rger 
1 components. As shown by Theorem 2c for N(n) ,...,_ n log n only isolated 

2k 

trees of order ~k survive, while for !"(n) -lf2 nlogn--+ += the whole 
- n 

gra.ph will with probability tending to 1 be conn~. 
An interesting question is: wha.t is the "life-time" distribution of a.n 

isolated tree of order k which is present for N(n) ""en 1 This question is 
answered by the following 

Theorem 9e. The probability that an isolated tree of order kwMch i8 pre8e'nt 
in r,.N,(n) where N (n) "'en and c > 1/s should 8till remain an iBolated tree 
in r ~ Nt(n? where. G.J,.n) ~ (c + t) n (t > 0) is approzimately e-2kl; thue (he 
,life-time' of a tree of order k has approzimately an ercponential distribvtioB 

with 'ltU!an value~ and is independent of the "age" of the tree. 
2k 

Proof. The probability tha.t no point of the tree in quP.stion will be 
connected with a.ny other point is 

ll "' e-Vtr . 
N~~ ([n 2- kj- j + k) 

J-N,(n)+l (;1- j 

This proves Theorem 9c. 

§ 10. Remarks and some 111l801.'Rid problenl& 

We studied in detail the evolution of r,.,N only till N reaches the order 
of magnitude n log n. (Only Theorem 1 embraces some problems concerning 
the range N(n) ,___na with 1 <a < 2.) We want to deal with the structure 
of rn,N(fl} for N(n) "-'Cfl.a with a> 1 in greater detail in a fortcoming paper; 
here we make in this direction only a. few rem~Uks. 

First it is ea.sy to see that r (") N > is really nothing else, than the 
"· 2 - (n 

complementary graph of r 11 NCnl" Thus ea.ch of our results can be reformula.ted 
to give a re~ult on the probable structure of rn.N with N being not much 

less than (;}. For instance. the structure of r n.N will ha\·e a. second abrupt 

change when N passes the value [;J-;; if N < (;)-en with c > lf2 

then the complementary graph of r,..N will eonta.in a. connected graph of order 
f(c)n, while for c < lf2 this (missing) "giant" will disappear. 
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To show a. less obvious ex.a.mple of this principle of getting result 

for N near to ~) , let us consider the maximal number of pa.irwise independent 

~ints in F n,N· (The vertices P and Q of the graph F are called i1Ulependent 
if they a.re not connected by a.n edge). 

Evidently if a set of k points is independent in r n,N(n) then__!he same 
points form a. complete suhgraph in the oornplementa.ry graph r n,N<ni' As 
however r~ N(n) has the same structure 8.l!l r (") it follows by Theorem 

• 11, 2 - N(n) 

1, that there will be in Fn,N(n) almost Surely DO k independent points if(;)-

__ N(n) = 0 {n2
(•- ... ~,)) L e. if N(n) = {;)- +~,2 (1 - ... ~,))but there will be in 

r,.,N(n) almost surely k independent points if N(n) = [;)- w,n2(t- ~~,)where 
ro11 tends arbitrarily slowly to +oo. An other interesting question is: what 
ca.n be said. about the degrees of the vertices of r rr,N· We prove in this direction 
the followmg 

Theorem.IO. Let Dn,N(n}(Pk) denote the de!JTee a/ the paint pk in r,,N(II) 
(i.e. the number of poimB of rn,N(n) which are connected With PI< by an edge). Put 

!2n =min D,N<n>(P,) and D,. = ma.x D,.,NCn>(P,.). 
I :;/cSIJ ' I g:::;r. 

8uppo8e that 

(10.1) lim _!{(n) = + <X> • 

n--t-• nlogn 

Then we have for any ,; > o 

(10.2) lim P (I D,. - 11 < s} = 1. 
n-+at ll,. 

We have further for N(n) '""en for any k 

. . {2 c)i e-2t 
(10.3) ltm P(Dn,N<nl (P"') = 7) = . 

11-+.. 1 I 
(i= 0, l, .•. ). 

Proof. The probability that a given vertex Ph shall be connected by 
exactly T others in rn,N is 
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thus if N(n) "'en the degree of a. given point has approximately a. Poisson 
distribution with mean val11e 2c. The number of points having the degree r 
is thus in this case approximately 

(2 c)' e-2c 
n (r = 0,1, . •• ). 

r! 
H N(n) = (nlogn)(t)11 with co11 -+ +co then the probability tha.t the degree of 

a point will btf outside the interval 2 N(n) (1- E) a.nd 2 N(n) (1 + E) is ap-
n n 

proximately 
~ (2w"·logn)te-2

-..101
11 = O [ 1 J 

f.t - 21otn•-,.1>•·2lDI11 · •• k! n•._.,, 

and thus this probability is o f! ) , for any e > 0 • 

Thus the probability that the degrees of not all n points will be between 
the limit (1 ± E) 2ro11 log n wlll be tending to 0. Thus the assertion of Theorem 
10 follows. 

An interesting question is: what will be the chroma.tio number of F11 N t 
(The · chromatic number Oh(I') of a. gra.ph r is the least positive integer h such 
that the vertices of the gra.ph can h6 coloured by h colours so tha.t no two 
vertices whlch are connected by an edge should ha.ve the sa.me colour.) 

Clearly every tree can be coloured by 2 colours, a,nd thus by Theorem 
4a. almost surely (Jh (r11 N) = 2 if N = o(n). As however the chromatic 
number of & graph ha viug an equal number of vertices and edges is equal 
to 2 or 3 a.ooording to whether the on1y cycle contained in sueh a. gra.ph-. is 
of e.ven or odd order, it fbllows from Theorem 5e that a.lmost surely Oh (Fn.N) ~ S 
for N(n) "'nc with c < 1/1-

. .... 
For N(n) "'"2 we ha.ve almost surely Oh (rn,N<n>> ~ S. 

As a matter of fact, in the same way, a.s. we proved Theorem :Sb, one 

can prove that r, N'-' contains for N(n) ~" almost surely a. cycle of odd 
' ~ 2 

order. It is an open problem hovdarge Oh (Fn,N(n)) is for N(n) ~en withc>1/1 • 

A further result on the chroma.tio number can be deduced from our 
a.bove remark on independent vertices. If a graph r has the chromatic number 
h, then its points ca.n be divided into h classes, so tha.t no two points of the 

same cJa.ss are connected by a.n edge; as the la.rgest class has a.t least n points 
h. 

it follows that iff is the maximal number of independent vertices of r we ha.ve 

I ""' : . Now W6 ~V6 868n that for N(n) = (; J- o [•.' (• - !) ) almoot surely 

I ~ 1:; it follows tbat for N(n) = [;) - o (• •(•- !)) aJmoat surely Ok Wn.Nlnll > 

n 
> -. 

k 
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Other open problems are the following: for what order of magnitude 
of N(n) has r,,N(n) with probability tending to 1 a. Hamilton-line (i.e. a path 
which passes through all vertices) resp. in ca.se n is even a factor of degree 1 
(i.e. a set of disjoint edges which contain all vertices). 

An other interesting question is: what is the threshold for the appear­
ance of a "topological complete graph of order k" i.e. of k points such that 
any two of them can be connected by a. path and these paths do not inter­
sect. For k > 4 we do not know the solution of this question. For k = 4 

it follows from Theorem Sa that the threshold is n . It is interesting to 
2 

compare this with an (unpublished) result of G. DmAo according to which 
if N ~ 2n - 2 then G,,N contains certainly a topological complete graph 
of order 4. 

We hope to return to the above mentioned unsolved questions in an other 
paper. 

Remark added on May 16, 1960. It should be mentioned that N. V. 
SMmNov (see e. g. MameMamurrecKuii C6opHUK 6(1939) p. 6) has proved a 
lemma which is similar to our Lemma l. 

(Received December 28, 1959.) 
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