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Introdnction

Our aim is to study the probable structure of a random graph I,y
which bas n given labelled vertices Py, F,, ..., P, and N edges; we suppose

that these N edges are chosen at random among the [:' possible edges,

5
so that a.]l( ; == O, 5 possible choices are supposed to be equiprobable. Thus

if G,y denotes any one of the 0, ), graphs formed from n given labelled points
and having N edges, the pmba.bi[?ty that the random graph I,y is identical

with @, y is . If A is s property which a graph may or may not possess,

nN
we denote by P,y (4) the probability that the random graph I, ,, possesses
the property 4, i e. we put P,y (4)= g"'” where A, , denotes the
nN
number of those G, which have the property 4.

An other equivalent formulation is the folowing: Let us suppose that
n labelled vertices Py, B, ..., £, are given. Let us ohoose at random an sdge

:] possible edges, so that all these edges are equiprobable. After

among the

this let us choose an other edge among the rema.ining‘gl —1 edges, and
continue this process so that if already & edges are fixed, any of the remaining
(:] — k edges have equal probabilities to be chosen as the next one. We shall

study the "evolution” of such a random graph if N ia inoreased. In this investi-

gation we endeavour to find what is the "typical” structure at a given stage

of evolution (i. e. if N ig equal, or asymptotically equal, to & given funotion

N(n) of n). By a "typical” structure we mean such a strueture the probability

of which tends to 1 if n —» 4+ o© when N = N(n). If 4 is such a property

that lim P, ;) (4) =1, we shall say that ,.almost all” graphs G,
A=t o

poseess this property.
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The study of the evolution of graphs leads to rather surprising results.
For a number of fundamental structural properties A there exists a function
A(n) tending monotonically to 4+ oo for n—+ 4 <o such that

l 0 if lim —N-@:-

] n-+= A(n)
(1) lim Pn.N(n)(A) = Nin 7
e l 1 it lim M e,
Rt A(ﬂ)

If such a funetion A(n) exists we shall call it a “threshold funciion” of the
property A.

In many cases besides (1) it is also true that there exlsts a probability-
distributionh function F(z) so that if 0 < 2 <« + =c and 2 is a point of conti-
nuity of F(z) then

(2) lim P, yo(4)= Flz) if lim M::ﬂ.
n~dm n-+o A{n)
If (2) holds we shall say that A(n) is a ,regular threshold function” for the
property 4 and call the function F(z) the threshold distribution functior of the
property 4.
For certain properties A4 there exist two functions 4;(r) and Ay(n)

both tending monotonically to 4 oo for r— 400, and satisfying lim Adm) 0,

n~+= 4.(n)
such that
0 if Jim YW -4 __
@) tim P, ver(4) e A
s N(nY = ;
nete 1 i lm YR —AE
n~4m A,(‘n)
Clearly (3) implies that
0 if lim sup-w— <1
. A=+t o A,_(n)
{4) h:n PmN(n)(A) = N
neta 1 if liminf () >1.
A=+ Al{n)

I (3) holds we call the pair(4,(n), 44{n))a pair of “sharp threshold”’-functions
of the property A. It follows from (4) that if { 4,(n), Agn)) is a pair of sharp
threshold functions for the property A4 then A4,(n) is an (ordinary) threshold
furiction for the property JF and the threshold distribution function figuring
in (2) iz the degenerated distribution function

0 for g1
F;cml
1) {1 for =z>1
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and convergence in (2) takes place for every = 4= 1. In some cases besides
(8) it is also true that there exists a probability distribution funection G(¥)
defined for —o0 < g < +4- o such that if y is a point of continuity of Q(y) then

() lim Poy(d) =G(y) if  lim YO~ A4

n—++ o n~+4+ow Aﬁ(")

If (6) holds we shall say that we have a regular sharp threshold and shall call
G(y) the skarp-threshold distribution function of the property A.

One of our chief aims will be to determine the threshold respectively
sharp threshold fumctions, and the corresponding distribution functions for
the most obvious structural properties, e. g. the presence in I', y of subgraphs
of a given type (trees, cycles of given order, complete subgraphs etc.) further
for certain global properties of the graph (connectedness, total number of
connected components, ete.).

In a previous paper [7] we have considered a special problem of this
type; we have shown that denoting by C the property that the graph is con-

nected, the pair C,(n) =—§-nlog r, Cg{n) =n is a pair of strong threshold

functions for the property C, and the corresponding sharp-threshold distri-
bution function is e—¢; thus we have proved! that putting

N(n) =%nlog n 4+ yn+ o{n) we have

(6) Iim P,ne(C) =e " (—oo <y <+ o0).

n+4 o

In the present paper we consider the evolution of a random graph in a
more systematic manner and try to describe the gradual development and
step-by-step unravelling of the complex structure of the graph I, . when
N increases while = is a given large number.

'We succeeded in revealing the emergence of certain structural properties
of I', n. However a great deal remains to bo done in this field. We shall call in
§ 10. the attention of the reader to certain unsolved problems. It seems to us
further that it would be worthwhile to consider besides graphs also more
complex structures from the same point of view, i. e. to investigate the laws
governing their evolution in a similar spirit. This may be interesting not only
from a purely mathematical point of view. In fact, the evolution of graphs
may be considered as a rather simplified model of the evolution of certain
communication nets (railway, road or electric network systems, etc.) of a country
ur some other unit. (Of course, if one aims at describing such a real situation,
one should replace the hypothezis of equiprobability of all connections by
some more realistic hypothesis.) It seems plausible that by considering the
random growth of more complicated structures (e. g. structures consisting
of different sorts of “points” and connections of different types) one could
obtain fairly reasonable models of more complex real growth processes {(e. g.

1 Partiel result on this problem has been obtained already in 1939 by P. Ernés
and H. WarrnrY but their resuits have not been publisbed.

2%
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the growth of a complex communication net consisting of different types of
connections, and even of organic structures of living matter, etc.).

§§ 1—3. contain the discussion of the presence of certain components
in a random graph, while §§ 4—9. investigate certain global properties of a
random graph. Most of our investigations deal with the case when N(n) ~cn
with ¢ > O.‘in fact our results give a clear picture of the evolution of I', n¢,)

when ¢ =l_\’_f(;'.'_zl (which plays in a certain sense the role of time) increases.

In § 10. we make some further remarks and mention some unsolved problems.

Our investigation belongs to the combinatorical theory of graphs,
which has a fairly large literature. The first who enumerated the number
of possible graphs with a given structure was A. Cavrey [1]. Next the impor-
tant paper [2] of G. P6Lya has to be mentioned, the starting point of which
were some chemical problems. Among moro recent results we mention the
pepers of G. E. UnLENBRCK and G. W. Forb [5] and E. N. GieerT [6].
A fairly complete bibliography will be given in a paper of F. Harary [8].
In these papers the probabilistic point of view was not explicitly emphasized.
This has been done in the paper [9] of one of the authors, but the aim of the
probabilistic treatment was there different: the existence of certain types
of graphs has been shown by proving that their probability is positive. Random
trees have been considered in [14].

In a recent paper [10] T. L. Avstiv, R. E. Facen, W. F. PENNEY and
J. RIoOBRDAN deal with random graphs from a point of view similar to ours.
The difference between the definition of a random graph in [10] and in the
present paper consists in that in [10] it is admitted that two points should
be connected by more than one edge (’parallel” edges). Thus in [10] it is
supposed that after a certain number of edges have already been selected,

the next edge to be selected may be any of the possible [:l edges between

the = given points (including the edges already selected). Let us denote such
a random graph by I'fy. The difference between the probable properties
of I', 5 resp.I'% 5 are in most (but not in all) cases negligible. The correspond-
ing probabilities are in general (if the number N of edges is not too large)
asymptotically equal. There is a third possible point of view which is in most
cases almost equivalent with these two; we may suppose that for each pair
of n given points it is determined by a chance process whether the edge
connecting the two points should be selected or not, the probability for select-
ing any given edge being equal to the same number p > 0, and the decisions
concerning the different edges being completely independent. In this case of
course the number of edges is a random variable, having the expectation

i

the mean N edges we have to choose the value of p equal to % . We shall

p; thusif we want to obtain by this method a random graph having in

2
denote such a random graph by I"*%,. In many (though not all) of the problems
treated in the present paper it does not cause any essential difference if we
consider instead of I, » the random graph I'z%,.
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Comparing the method of the present paper with that of [10] it should
be pointed out that our aim is to obtain thl‘ﬁBﬂOld functions resp. distributions,
and thus we are interested in asymptotic formulae for the probabilities con-
gidered. Exact formulae are of interest to us only so far as they help in determi-
ning the asymptotic behaviour of the probabilities considered (which is
rarely the cage in this field, as the exact formulae are in most cases t0o compli-
cated). On the other hand in [10] the emphasis is on exact formulae resp.
on generating functions. The only exception is the average number of connected
components, for the asymptotic evaluation of which a way ig indicated in
§ 5. of [10]; this question is8 however more fully discussed in the present paper
and our results go beyond that of [10]. Moreover, we consider not only the
number but also the character of the components. Thus for instance we

point out the remarkable change occuring at ¥ N-E- If N ~nc with ¢ < 12

then with probability tending to I for n-—» + oo all points except 2 bounded
number of points of I, belong to components which are trees, while for

N ~nc with ¢ > —;- this is no longer the case. Further for a fixed value of

n the average number of components of I', yy decrcases asymptotically in a
linear manncr with &, when N < %, while for ¥ > 321 the formula giving
the average number of components is not linear in N.

In what follows we shall meke use of the sysmbols O and ¢. As usually

a(n) = o (b(n})) (where b(n) > 0 forn =1, 2, .. .) means that lim -h;—((?-‘%l- =0
net+= bin

while a(n) = O (&(=)) means that J-g%’-?l is bounded. The parameters on
n

which the bound of @ may depend will be indicated if it is necessary;
n

sometimes we will indicate it by an index. Thus a(n) = O, (b(n)) means that

L:—((E;—Ié K(e) where K(e) is a positive constant depending on & We write
n
a() ~b(n) to denoto that lim 4™ —)
n~+a b(n)

We shall use the following definitions from the theory of graphs. (For
the general theory see [3] and [4].)

A finite non-empty set V of labelled points Py, P, ..., P, and & set
E of different unordered pairs (F;, P)) with P, €V, P,¢V, igk7 is called
a graph; we denote it sometimes by G ={V, E}; the number = is called
the order (or size) of the graph; the points P,, Py, ..., P, are called the verlices
and the pairs (P;, P;) the edgas of the graph. Thus we consider non-oriented
finite graphs without parallel edges and without slings. The set E may be empty,
thus a collection of points (especially a single point) is also a graph.

A graph G, ={V,, B} is called a subgreph of a graph G, ={V,, E,}
if the set of verticea V; of G, is a subset of the set of vertices V, of G, and the
set B, of edges of G, i3 a subsot of the set E, of edges of G,.
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A sequence of k edges of a graph such that every two consecutive edges
and only these have a vertex in common is called a path of order k.

A oyclic sequence of % edges of a graph such that every two
consec’:ltive edges and only these have a common vertex is called a cycle of
order £.

A graph G is called connected if any two of its points belong to a path
which is a subgraph of G.

A graph is called a ¢ree of order (or size) k if it has k vertices, is connected
and if none of its subgraphs is & cycle. A tree of order k£ has evidently £ — 1
edges.

A graph is called a complete grapk of order (: if it has k vertices and

(:} edges. Thus in a complete graph of order X any two points are connected

by an edge.

A subgraph G’ of a graph G will be called an isolated subgraph if all
edges of G one or both endpoints of whieh belong to ¢’, belong to G'. A con-
nected isolated subgraph (' of a graph G is called a component of G. The
numbefr of points belonging to a component G’ of a graph G will be called the
size of G'.

Two graphs shall be called isemerphic, if there exists a one-to-one mapp-
ing of the vertices carrying over these graphs into another.

The graph G shall be called complementary graph of G if G consists
of the same vertices P;, F,, ..., P, a8 G and of those and only those edges.
(P, P;) which do not occur in G.

The number of edges starting from the point P of a graph G will be called
the degree of P in G.

A graph @G is called & saturated even graph of type (a, b) if it consists of
@ + b points and its points can be split in two subsets V, and V¥, consisting
of @ resp. b points, such that G contains any edge (P, @) with P €V, and
@ € V, and no other edge.

A graph is called planar, if it can be drawn on the plane so that ne two
of its edges intersect.
We introduce further the following definitions: If a graph G has n

vertices and N edges, we call the number ¥ the ‘‘degree’” of the graph.
n

(As a maitter of fa,ctg—l!ls the average degree of the vertices of G.) If a graph

n
G hag the property that @ has no subgraph having a larger degree than G
itself, we call @ a balanced graph.

We denote by P (...) the probability of the event in the brackets, by
M(%) resp. D3(§) the mean value resp. variance of the random variable .
In cases when it is not clear from the context in which probability space the
probabilities or respeotively the mean values and variances are to be under-
stood, this will be explicitly indicated. Especially M, resp. D%,y will denote
;he mean velue resp. variance calculated with respect to the probabilities

miN:
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We shall often use the following elementary asymptotic formula:
K

ke I &m
(7) MBS " vaiid for k=o't
k Y

Our thanks are due to T. Garraz for his valuable remarks.

§ 1. Thresholds for subgraphs of given type

If N is very small compared with #, namely if N =o (Jn) then it is
very probable that I, , is a collection of isolated points and isolated edges,
i. . that no two edges of I', 4 have a point in common. As a matter of fact
the probability that at least two edges of I',,, shall have & point in common
isby (7) clearly

T

2”Nt( 2 )
N

If however N ~ ¢ |'n where ¢ > 0 is a constant not depending on #, then the
appearance of trees of order 3 will have & probability which tends to a posi-
tive limit for 7 - 4 oo, but the appearance of & connected component, consist-
ing of more than 3 points will be still very improbable. If ¥ is increased while #
ig fixed, the situation will change only if N reaches the order of magnitude
of n23. Then trees of order 4 (but not of higher order) will appear with a pro-
bability not tending 1';:;)m().2 In general, the threshold function for the presence

of trees of order kis nk—T (k = 3,4, ...). This result is contained in the
following

Theorem 1, Letk = 2 and 1 h—lélél:]l be positive integers. Let

By denote an arbitrary not emply class of connected balanced graphs consisting
of k points and l edges. The threshold function for the property that the random

graph considered should contain al least one subgraph isomorphic with some ele-
K

ment of By, 18 P
The tollowing special ceses are worth mentioning

‘Corollary 1. The threshold function for the property that the random graph
k-2
cortains a subgraph which is a tree of order k s n*—V(k =3, 4, ...).

Corollary 2. T'he threshold furiction for the property that a graph coniains
a connected subgraph consisting of k = 3 points and k edges (4. e. containing
exacily one cycle) 48 n, for each value of k.

Corollary 3. The threshold function for the property that a graph contains
a cycle of order k is n, for each value of k& > 3.

”n
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Covollary 4. The threshold function for the property that a graph conlains

2l—-l—)

ampldasubgrapho)‘orderkzsan( k=17, -
5. The threshold function for the property that a graph coniains

a salurated even subgraph of lype (a, b) (V. ¢. @ ph consisting of a - b

a+rd
points P,, ..., P,, @, ... @, and of the ab edges (P, @) iz n  ® .
To deduce these Corollaries one has only to verify that all 5 types of
graphs figuring in Corollaries 1—5. are balanced, which is easily seen.

Proof of Theorem 1. 1ot B,, = 1 denote the number of graphs belong-
ing to the class @, , which can be formed from ¥ given labelled points. Clearly
if P, n (B,,) denotes the probability that the random graph I',, contains
at least one subgraph isomorphic with some element of the class &, then

ﬂ‘

CED
(/.

As a matter of fact if we select 2 points (which can be done in [:] different

ways) and form from them a graph isomorphic with some element of the class
&, (which can be done in 3, different ways) then the number of graphs
G, which contain the selected graph as a subgraph is equal to the numier

of ways the remaining ¥ — [ edges can be selected from the :}—l other

posaible edges. (Of course those graphs, which contain more subgraphs iso-
morphic with some element of &, , are counted more than oncs.)

k
Now clearly if N = a(n’—T) then by
Pnﬂ(ﬁgk,l) = o(1)

which proves the first part of the assertion of Theorem 1. To prove the second
part of the theorem let &) denote the set of all subgrapha of the complete

ph consisting of n points, isomorphic with some element of &,;. To any
g?.gg) let us associate a random variable £{§) such that &8)=1 or &&8)=0
according to whether § is a subgraph of I, 5 or not. Then clearly (we write
in what follows for the sake of brevity M instead of M, )

(1.1} Poan(Biy) < {:] B, ,

-
(1.2) "‘(Z s(s)]= > M(e(S))=[:] B,J(N —i/ By @N

([}:‘) Bl g2tk

sealm seal
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On the other hand if 8, and 8; are two elements of %) and if 8, and
8, do not contain & common edge then
2
N —21

n
( 1)
If 8, and §; contain exactly ¢ common points and r commonedges (1< r<--1)
we have
n
— 21
N—2l+r ___O[N""*']

I

On the other hand the intersection of §, and 3, being a subgraph of 8, (and 8,)

by our supposition that each § is balanced, wo obtain -r-_-i- i.e. 82 er
3

M(c(9,) (8y) =

M(s(;g,_) 3(’3:)) =

and thus the number of such pairs of subgraphs §; and §; does not exceed

S LI E =l

M [[Z 8(8))’] -

2% ‘55]

Thus we obtain

(1.3) “‘*(:3
( o) - 21) 2
_ n! Bz.f _.-N — 21 -
= SES?M(G(S)) + k1% — 2 k) ( :I) O{ n?!-k] ( N_] )
Now clearly

)

E3(n — 2 Kk)! [I
2]

]
T ET
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If we suppose that

N T — W + oo,
-
n 1
it followa that we have
(2 M(s(S)y
: sen()
(L4) D'( s9)) =0 —= .
Sen ,2} ®

It follows by the inequality of Chebyshkeff that

Pon 13 o9~ 3 M)l > = M) = of}

sea’) e’ sen’)
and thus
| 1
(1.5) Pon| 2 s~ 2 H(s(S})] =0 [—] :
see(l) 2 seaf) ®

As clearly by (1.2) if @ -+ 4 oo then 3 M(e(8)) — 4 o= it follows not only
sea'D)

that the probability that I' v contains at least one subgraph isomorphic

with an element of &, tends to 1, but also that with probability tending

to 1 the number of subgraphs of I', y isomorphic to some element of &,

will tend to +cc with the same order of magnitude as '

Thus Theorem 1 is proved.

It is interesting to compare the thresholds for the appearance of a sub-
graph of a certain type in the above sense with probability near to 1, with
the number of edges which is needed in order that the graph should have
necessarily a subgraph of the given type. Such ‘‘compulsory’” thresholds
have been considered by P. TurAx [11] (see also [12]) and later by P, Eznés
and A. H. STong [17]). For instance for a tree of order & clearly the compulsory

threshold is [:' (k ; 2) + 1; for the presence of at least one cycle the com-

pulsory threshold is n while according to a theorem of P. Turdw [11] for
complete subgraphs of order ¥ the compulsory threshold 132(‘;;21) (n® — r?) 4

+‘;] where r=n — (k— 1) i:l—l] In the paper {13] of T. K&viri,

V. T. S68 and P. TurAx it has been shown that the compulsory threshold
for the presence of a saturated even subgraph of type (a, a) is of order of magni-
1

tude not greater than % . In all cases the ‘‘compulsory” thresholds in
TorAN's sense are of greater order of magnitude as our “‘probable” thresholds.
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§ 2. Trees

Now let us turn to the determination of threshold distribution funetions
for trees of a given order., We shall prove somewhat more, namely that if

k—2
N ~ g n%=1 where p > 0, then the number of trees of order # contained
in I,y has in the limit for n — 4 <o a Poisson distribution with mean value

o1k : B .
2 = This implies that the threshold distribution function for

trees of order k i3 1 — =4,

In proving this we shall count only 4solated tress of order k in I, y, i. 6.
trees of order k which are isolated subgraphs of I, 5. According to Theorem 1.
this makes no essential difference, because if there would be a tree of order
E which is a subgraph but not an isolated subgraph of I, y, then I, , would
have a connected subgraph consisting of k + 1 points and the probability

of this is tending to 0 if N —-o[ T} which condition is fulfilled in our
k=2
case a8 we suppose N ~ gnk=1,
Thus we prove

Theorem 2a, I} lim % = p>0 and ¥, denotes the number of isolaled

N—tw ur

trees of order k in I', \(, then

. Ale—1
(2.1) im P,y =1) =

Mt o j!
or j =0, 1, ..., where

1= (2 e)k—l kk—2
= _k! -

(2.2)

For the proof we need the following
Lemma 1. Lel e, €p,,. .., 8y, be sels of random variables on some pro-
bability space; suppose "that e (1 < ¢ < 1) takes on only the values 1 and 0. I}

. y
(2.3) lim 2‘ H(Eni, €niy « « - Enily) = —
A=+t o 1Sh<ih<. .. <Gl rl

uniformly in r for r =1, 2, ..., where 1 > 0 and the summation is exlended
over all combinations (i;, %, - .., 3,) 6f order'r of the integers 1, 2, ..., L, then

Ale-3
3!

(2.4) lim Pls'am ==j] = (G=0,1,...)
e |

R4 o

Iy :
1. e. the distribution of the aum;‘ &, tends for n— -+ oo to the Poisson-distri-
-t

bution with mean value A.
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Proof of Lemma 1. Let us put

ln
(2:5) Py =8| Zen =1
-l
Clearly
+w s
2.6 M€ iibo - - 8) = 5|7 | PG
(2.6) e o Mt ) ;__z[r] )
thus it follows from (2.3) that
=T )
2.7) lim 2}!,,(3;' J=--|- r=1,2...)
Nt ® jmp r LR

uniformly in r,
It follows that for any 2 with | 2| < 1

(2.8) ME‘E‘Pn(ﬂ l’ ]z": ‘i'ﬁ')rze"—l.
n~+= 175 r r=t T
But
= (t+= j +e
(2.9) 21 !EP,,U) r])z’: 123 P(HA+2—1.

Thus choosing z =2z — 1 with 0 < 2 < 1 it followes that

-+

(2.10) lim 2 P.(f) zf = e¥x-D foroca<l.
0

Neetw =

It follows easily that (2.10) holds for £ = 0 too. As a matter of fact
putting G, (z) =;2Pn(j‘) 2/, we have for 0 <2< 1
=0

|Pp{0) — e~ < | G(z) — eX5-D| 4| G (x) — P(0)| + | =V — 4.
As however
b
|Ga@) — Pal0)| S 2 2 Poli) < =
and similarly _
le:(x—u —e—? I =z
it follows that
|P(0) — 2| < |Gyl@) — 46D | + 22
Thus we have
lim sup |P,{0) —e 1| < 2%;

Neta=
a8 however 2 > 0 may be chosen arbitrarily small it follows that
lim Z,(0) =e?

Need o
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i. e. that (2.10) holds for z =0 too. It follows by & well-known argument
that

.. Ale—A .
(2.11) lim P, = —— G=0,1,...).

n—e++4+e ?!

As a matter of fact, as (2.10) is valid for z =0, (2.11) holds for j =0. If
(2.11) is already proved for j < ¢ — 1 then it follows from (2.10) that

i o—4
t=Ale

(2.12) lim S‘P,,U):cf"=2 — pf-3 for 0<z< 1.
Bt @ jmg = i

By the same argument as used in connection with (2.10) we obtain that
(2.12) holds for z = 0 too. Substituting # = 0 into (2.12} we obtain that (2.11)
holds for § = s too. Thus (2.11) is proved by induction and the assertion of
Lemma 1 follows.

Proof of Theorem 2a. Let T'{ denote the set of all trees of order ¥ which
are subgraphs of the complete graph havi:f the vertices P}, B, ..., P,.
If 8¢T{™ lot the random variable ¢(8) be equal to 1 if § is an isolated subgraph
of I', n; otherwise e(8) shall ba equal to 0. We shall show that the conditions
of Lemma 1 are satisfied for the sum J e(8) provided that N= N(n) ~

ser{m
k=2
~ pn*=T and 1A is defined by (2.2). As a matter of fact we have for any
SeTp
{n —k
— k-1 _2Nk
@13)  ME®)=2_k+! =[2N 'em (140 E}]
nt n®

i

More generally if 8,, 8,, ..., 8, (8,¢ T{) have pairwise no point in common
then clearly we have for each ﬁxeé k21 and r = 1 provided that n—»4 oo,
Nodoo

(N — r(270 — l)) 2N ](k-l)re_ !’L“[l +O[£v]]
nt

— n
n | 2
N
where the bound of the O term depends only on . If however the S, (j =

=1,2,..., r) are not pairwise disjoint, we have
(2.15) M(e(Sy) 8(9;) ... (S)) =0.

Y

(2-14) M(e(8,) &(8;). - -=(8,)) =
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Taking into account that according to a classical formula of Cavrey [11
the number of different trees which can be formed from k labelled points is
equal to k*-2, it follows that

k=35 pkr (0 Ny rk—1 . INrk

(2.16) 2"(&(80:(3,)...3(8,)):[__ il e h [1_}_0(*%{')

k! rl | n?

where the summation on the left hand side is extended over all r-tuples of
trees belonging to the sat 74P and the hound of the O-term depends only on k.
Note that (2.18) is valid independently of how N is tending to +o=. This
will be needed in the proof of Theorem 3.

Thus we have, uniformly in »

(2.17) Lim > M(e(8,) 6(8y) - - - &(8,)) = LS for r =1,2, ..
Nin) r!

—

k1

where 4 is defined by (2.2).
Thus our Lemma 1 can be applied; as v, = F &(8) Theorem 2 is

proved. ser{V
We add some remarks on the formula, resulting from (2.16) for r =1
N
o P
2.18 M(r,) = — > 1+0[=||.
(2.18) () 2N P ( + ﬂ,]

Jr—2 k=1 gkt
k!
o
ing to (2.18) nm, (ﬁ] is asymptotically equal to the average number of trees of
n

Let us investigate the functions m () = (=1, 2, ...). Accord-

order kin I, ... For a fixed value of %, considered as a function of ¢, the value
of m,(¢) increases for { < ; thus for a fixed

and decreases for¢ >

value of n the average number of trees of order k reaches its maximum for
N N%[l—%]; the value of this maximum is

1)%-1
[1 — _] e—k—1) Lr~2
k

ME~n i .

For large values of  we have evidently

M~ Tomen
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It is easy to see that for any t > 0 we have
my(t) = m,4,(t) k=12...).

The functions y = m.{t) are shown on Fig. 1
It is natural to ask what will happen with the number t,, of isolated

trees of order % contained in I', y if —— N(n) ——5—* 1 °°. As the Poisson distribution
”’l l

je—1
{‘1 ;! } is approaching the normal distribution if 4 —+ 4 ©°, one can guess
that r, will be approximately normally distributed. This is in fact true, and
is expressed by

Nigure Ia.

@~

At g e

P o e v e

x{c) /

N
L)

Pigure 1b.
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Theorem 2b. If

(2.19) N,Efl—» + oo

=

but at the same time
N(n)——l';ulogu —-k_klnloglogn
(2.20) lim 2 2 = — o9,

LES X ] "

then denoting by z, the number of disjoint trees of order k contained as subgraphs
% Ly (8 =1, 2, ...), we have for —o© <2 < 4 @

(2.21) lim P,nes 'm <=:} =P (2)
f~+e VMH-N(I'I)
where
-2 k-1 _ %N
(2.22) Mw:ﬂ"_i_[?ﬁ] o
kil | n
and
1 ¢ -2
(2.23) B(2) =V"2=nje 7 du.

Proof of Theorem 2b. Note first that the two conditions (2.19) and
{2.20) are equivalent to the single condition lim M, yiy= + <o, and as

n-++o
M (z,) ~ M, this means that the assertion of Theorem 2b can be expressed
by saying that the number of isolated trees of order k is asymptotically nor-
mally distributed always if # and N tend to + oo s0, that the average number
of such trees is also tending to +oo. Let us consider

M) =M(Z «3)).
seri™

Now we have evidently, using (2.16)

nm=[1+°[§])§| = hllh,!rf..h,! Lﬁﬂ

_‘hl-'t"lz‘

where M,  is defined by (2.22). Now as well known (see [16), p. 176)

1 rl
(2.24) A, 2 R o
gé!u-r. hext
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where o/? gre the Stirling numbers of the second kind (see e. g. [16], p. 168)
defined by

r

(2.25) ::",.—..‘Z;ay):(a:wl)...(z—i+l).
Thus we obtain !
(2.26) M =[1+0{'-'¥§]- S Ml
L =1
Now as well known (see e. g. [18], p. 202)
® +w I a r
(2.27) s _1=3 TSPl f'l.[ > oou].
=T T -1 T -
Thus it follows that =t e
2 98 4 gl = £ ghle=—1) = k3¢ E Y
(2.26) 2% az’ 2 k!e .
Jt -0 k=0
We obtain therefrom
v, — M i 4o pAfk 2
(2.29) H( %T'g’ﬂ j: . > 2N g ten (b — M) (1 +o[’—;’- )
AN | nN k=0 K° _
+ ™ 1&

Now evidently 3 Y e~ (k — ) 15 the r-th central moment of the Poisson
k=0

distribution with mean value 1. It can be however easily verified that the
moments of the Poisson distribution appropriately normalized tend to the
corresponding moments of the normal distribution, i. e. we have forr =1, 2,...

4=
1 (+=2ke-2 1 x5
2‘30 ].i — k—ir":—-——_;_— r 2d3.
(2-80) a_fllgg.‘ T )] Vznj'”

In view of (2.20) this implies the assertion of Theorem 2b.

k—;; LI loglog % + yn + o(n) when

the average number of isolated trees of order k in I', \,) is again finite, the
following theorem is valid.

Theorem 2c. Let , denote the number of isolated trees of order k in I',
(k=12 ...). Then %

In the case N (n) =2—l£nlogn+

k—1

(2.91) N(n)=;—knlogn+ 2—k n loglog n + yn + o(n)
where —o0 < y < 4 oo, we have
. Al g1 .
(2.32) Lim P, ey (T =) = “: G=0,1,...)
R+t a ]

where
(2.33) I

' T

3 A Matematiuai Kutaté Intéset Koslvményel ¥, A2,
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Proof of Theorem 2c, It is easily seen that under the conditions of Theo-
rem 20
lim M, ) (7)) = A.
Redw

Similarly from (2.16) it follows that forr =1, 2, ...

lim 3 Moo (e(S,) (S)) ... &(8) =
n~+e S,-ETi")

and the proof of Theorem 2¢ is completed by the use of our Lemma 1 exactly
ag in the proof of Theorem 2a.

Note that Theorem 20 generalizes the results of the paper [7], where
only the case k — 1 iz considered.

lr
r!

§ 3. Cycles

Let us consider now the threshold function of ¢ycles of a given order.
The situation is described by the following
Theorem 3a. Suppass that

(3.1) N(n) ~cn where ¢ > 0.

Let y, denole the number of cycles of order k contained in I',  (k=3, 4, ...).
Then we have

A Ae-1 .
(3.2) n-lol:-“n Pn.N{n) (y,‘ = ’-) = ,'[ (7 =0,1,.. .)
where
(2¢)*
3 A= .
{(3.3) ok

Thus the threshold distribulion corresponding to the threshold funclion A{n) =n
1
Jor the property that the graph contains a cycle of order k is 1 —p % ®
It is {nteresting to compare Theorem 3a with the following two theorems:

Theorem 3b, Suppose again that (3.1) holds. Let y¥ denote the number of
tsolated cycles of order k contained in I' (K =3, 4, ...). Then we have

Jg—n
(3.4) lim Py (== ;, G=01,...)
where
X
(3.5) _Zoe )
2k

Remark. Note that according to Theorem 3b for isolated cycles thers
does not exist a threshold in the ordinary sense, as 1 — e—* reaches its maxi-

1
mum 1 —¢ 2 for ¢ =-12- i. e. for N(n) Ng-] and then again decreases;
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thus the probability that I',  contains an isolaled cycle of order & never
approaches 1.

Theorem 3c. Let 3, denote the number of comﬁnenta of Iy n consisting
fk;aposmandkedgea If (3.1) holds then we

(3.6) Tim P (8 =) ="”;’," (G=0,1,...)
where
@ ce"")" -3
3.7 _=——— k .
8.7 0= [ + + + T

Proof of Theorems 3a., 3b. and 3e. As from & given points one can form
él—(k — 1) I cycles of order ¥ we have evidently for fixed ¥ and for N=0(n)

[32)

(3.8) My |‘J % — Y=k
5)

S g
(3.9) H(ﬂyg.;_[:] & —1) ( ] ‘ ]

(.

As regards Theorem 3¢ it is known (see [10] and [15]) that the number
of connected graphs @, , {i. e. the number of connected graphs consisting
of k labelled vertices and k edges) iz exactly

-3
(3.10) 9u=%(k—l)!ll+k+-‘-;—a+...+ L ]

(k —3)1)°

Now we have clearly

([ ”k}) l?;_, Tr s

@.1) H(a.)— ([;) e, [1+ + -+ +m].

3
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For Jarge values of k£ we have (sco [15])

(3.12) 8, ~ V% TR
and thus
N |-?ﬁ’]k
— n
n
3.13 M(3,) ~ e
{3-13) (1) 1P

For N N% we obtain by some elementary computation using (7) that

for large values of k (such that k =o (r¥).
ke

e N
4k
Using (3.8), (3.9) and (3.11) the proofs of Theorems 3a, 3b and 3¢ follow
the same lines as that of Theorem 2a, using Lemma 1. The details may be
Jeft to the reader.

Similar results can be proved for other types of subgraphs, e. g. complete
subgraphs of a given order. As however these results and their proofs have

the same pattern as those given above we do not dwell on the subject any
longer and pass to investigate global properties of the random graph I',, \ .

(3.14) M(d,) ~

§ 4. The total number of points helonging to trees
We begin by proving
Theorem 4a. If N =o(n) the grapk I, \ is, with probability lending to
1 Jor n— oo, the union of disjoint irees.
Proof of Theorem 4a. A graph consists of disjoint trees if and only if
there are no cycles in the graph. The number of graphs. G, 5 which contain

at least ane cycle can be enumerated as was shown in 3‘: for each value k&
of the length of this cycle. In this way, denoting by T property that the

graph Is a union of disjoint trees, and by T the Oﬁosite of this property,

i. e, that the graph contains at least one cycle, we have
( n‘ . k]
2]
o n N—-% N
41 PP = ["] k— I z—_--=o_.|
(4.1) - )_% v ( ) -

)

It follows that if N = o(n) wo have lim P, (T} = 1 which proves Theorem 4a.

If N is of the same order o’lt'.;;gnitudb asni e N~cn withe >0,
then the assertion of Theorem 4a is no longer true. Nevertheless if ¢ <1/2,
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still almost all points (in fact » — O(1) points) of I, 5 belong to isolated
trees. There i3 however a surprisingly abropt change in the structure of I',

with ¥ ~ ¢n when ¢ surpasses the value%. If ¢ > 1/2 in the average only a

positive fraction of all points of I', y belong to isolated trees, and the value
of this fraction tends to 0 for ¢ » 4 oo.
Thus we shall prove

Theorem 4b. Let V, \ denofe the number of those points of I, n which
belong to an isolated tree contained in T, ). Let us suppose that

(4.2) im ¥ oo
e @ n
Then we have
1 for ¢e< 12
(4.3) tim TV ane) =l z(c) 1
AR n e ’Of c > -~
2e 2
where x = z(c) is the only root salisfying 0 < = < 1 of the equation
(4.4) ze X=2ce"%,
which can also be obiained as the sum of a series as follows:
-_‘ k.—l _ X
(4.5) z(c) =%—k!-(2«:e 2k

Proof of Theorem 4h. Wo shall need the well known fact that the inverse
function of the function

(4.6) y=xze* 0=zl
has the power series expansion, convergent for 0 < g g—l-
e
+ = . ¥
(4.7) - Y s
e 1

Iiet ?‘ denote the number of isolated trees of order k contained in I, 5. Then
clearly

(4.8) Von=Skr,
=

and thus

(4.9) M{¥ .~ =2n'k M(z,).
=

By (2.18), if (4.2) holds, we have

~-2
nete R 2c kl
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Thus we obtain from (4.10) that for 0 < 1/2

MV o) _ 1 2 BBk
——ggcz ol for any ¢ = 1.

(4.11) lim inf
n++a= n

As (4.11) holds for any s = 1 we obtain
) -1 w2eh
(4.12) lim inf M) > izw.. .
n—=+4w n 203_1 k!
But according to (4.7) for ¢ £ 1/2 we have
D‘ E—’(z ¢ e—k)*

=2¢.
P k!
Thus it follows from (4.12) that for ¢ < 1/2
(4.18) tim inf IV an0) =1.

Lt n

As however ¥,y < » and thus lim sup —(!-‘1'-’1"-‘"—’)5_ 1 it follows that

n+~+a n
if (4.2) holds and ¢ 5 1/2 we have
(4.14) tim M) _
flej o n

Now let us consider the case ¢ > -2- It follows from (2.18) that if (4.2)

holde with ¢ > 1/2 we obtain
(4.15) M o) = o 3 5 ] +0(1)
k—l

where the bound of the term o depends only on c. As however for N(n) ~
~ e WIth c > 112

k-1 [2 N(ﬂ) - m(ﬂl

n

= =1 [2 Nm), — 2N(ﬂ)]" -

kang1 k! x'h

it follows that

(4.16) MV, ) = —1

2 N(n)

[ ""] +0(1)
n

where z =xl‘-!—(-'—'-)-] is the only solution with 0 < 2 < 1 of the equation
n
2N(u)e_m(-'l}

pe~* = n ., Thus it follows that if (4.2) holds with ¢ > 1/2
n

we have

(4.17) tim M any) _ 2()

neto n 2c
where 216) is defined by (4.5).
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The graph of the function z{c) is shown on Fig. 1a; its meaning is shown
by Fig. 1h. The funoction

1 for ¢ < 12
y= 52(%) for ¢ > 1/2

is shown on Fig. 2a.

!
! foresth
e 5= porcsh
¢ 4
7
Figure Po.
J
Y,

g 6cre1-48

LT L

Figura 2b.
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Thus the proof of Theorem 4b is complete. Let us remark that in the
same way as we obtained (4.16) we get that if (4.2) holds with ¢< 1/2 we have

(4.18) MV i) =5 — 0(1)
where the bound of the 0(1) term depends only on ¢. (However (4.18) is not

true for ¢ m-;- as will be shown below.)

It follows by the well known inequality of Markov
(4.19) P(E > a) 5 — M(@)

valid for any nonnegative random variable £ and any e > M(%), that the
following theorem holds:

Theorem 4c. Let V,y dernofe the number of those points of I',  whick
belong to tsolated trees contained in I', . Then i} o, tends arbu!man slowly
to +co for pn— oo gnd if (42)holdsw¢tho<ll2 we have

(4.20) lim P(V, 22 —@)=1.

Aria

The case ¢ > 1/2 is somewhat more involved. We prove

Theorem 4d. Let V, denole the number of those points of I,y which
belong to an isolated tree contamad in I, . Let us suppose that (4.2) hdd’s with
¢ > 1/2. It follows that if o, tends arbctmrdy slowly to +oo, we have

(4.21) lim P “V,,,m,,, -3 1:(,.) a:[N ::")” >n m") =0

-4 o

where £ =z [Eﬂ(ﬂ! i3 the only solulion with 0 < = < 1 of the equalion
n

2 Nm) -5

n.

x2e—¥ =

Proof. We have clearly, as the series } (203"") is convergent,
k=1

D2 (V, ney)= O(n). Thus (4.21) follows by the inequality of Chebyahev.

Remark. It follows from (4.21) that we have for any ¢ >1/2 and any
£E> 0

(4.22) lim P 'V":"" — “’2('2)
nedm [

where z{¢) is defined by (4.5).
As regards the case ¢ =1!f, we formulate the theorem which will be
needed later.

<e]=l
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Theorem 4e. Let V,, (r} denote the number of those paints of I, \ which
belong to isolated trees of order 2 r and v, \(r) the number of wolated irees of

order 2 r conlained in I, . If N(n) —-vz:;-we have for any 6 > o

. —1
(4.28) lim P V’LM’T? K ] ca) =1
Asyo ; n Ker k! J
and
(4.24) lim P [[2re _ SET ] g] <1
n-te || = =y k! )

The proof follows the same lines as those of the preceding theorems.

§ 5. The total number of points belonging to cycles

Let us determine first the average number of all cycles in I, ;. We
pfrove tl[mt this number remainz bounded if ¥(n) ~cn and ¢ < Y, But not
.i ¢ = 1 g

Theorem Sa. Let H,, \; denote the number of all cycles contained in I', x.
Then we have if N(n) ~ cr holds with ¢ < %

1 1
(5.1 lim M(H, ) = — log —~— — ¢ — ¢t
} am (42 () 5 BT

while we have for ¢ m%.

1
(5.2) MH i) ~ — 108‘"-

Proof. Clearly if y, is the number of all cycles of order ¥ contained in
I, n we have

n
Hn.N = 27&-
k=1
Now (5.1) follows easily, taking into account that (see (3.8))

1]

B2 er
Nuk - :k 1+OF£] '
) +ob)

(5.3) — 1!

2
N
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If ¢ =Y, we have by (3.8)

1] ¥
~~ e
(6.4) My, 3 T

n .
As 2‘21—‘; n N%-log n, it follows that (5.2) holds. Thus Theorem 5a
k=l
is proved.
Lot us remark that it follows from (5.2) that (4.18) is not true for ¢ —1/,.
Similarly as before we can prove corresponding results concerning
the random variable M\ ftself.
We have for instance in the case ¢ =1/, for any £ > o

HH'N(H, o _l__

(5.5) lim P
logn 4

Retw

<g|l=1.

This can be proved by the same method as nsed above: estimating the variance
and using the inequality of Chebyshev.

An other related result, throwing more light on the appearance of cycles
in I', y runs as follows.

'ﬂmrem Sb. Let K denote the properly thatagraph containa at least one
cycle. Then we have if N(n) ~ ne holds with ¢ £ Y/,

(5.6) lim P ao(B) =1 — VT —2cet,

n—-+o
Thus for ¢ =% it 48 ,,almost sure” that l“,wm contains at least one cycle, while
for ¢ < %the limil for n—v+ coof the probability of this is less than 1.
1
Proof. Let us suppose first ¢ < = By an obvious sieve (taking into

account that according to Theorem 1 the probability that there willbein I,
with N(n) ~nc (¢ < 1) two circles having & point in common is negligibly
small) we obtain

- lm M(He )

(5.7) lim P, p(E) =e "~+= =1 —2cete,
A-+m
Thus (5.8) follows for ¢ < Y/, As for ¢ 1/, the function on the right of (5.6)
tends to 1, it follows that (5.6) holds for ¢ =1/, too. The function y =
= 1— }J1 — 2¢es+* is shown on Fig. 3.
We prove now the following

ThmmmhMHﬁ'NdemtetkaWnumbero]poimolfwwM
belong to some cycle. Then we have for N = N(n) ~on with 0 < ¢ < 1f;
(5.8) lim M(ES ) =25 .

Neto 1—2¢
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y=t-Vr2z .08

— Y ——

a — e

hoja

Figure 3.

Proof of Theorem Sc. Asaccording to Theorem 1 the probability that
two cycles should have a point in common is negligibly small, we have by (5.3)

(2cP 4¢c®
M(H* ~ 3k =. .
(H3 NG ign Ve~ 201 —20) I—2¢

The size of that part of I', , which does not consist of trees is still more
clearly shown by the following

Theorem 5d. Let 8, ,, denote the number of those poinis of I', \ which
belong to components containing exactly one cycle. Then we have for N = N (n) ~
~cn iR case ¢ =1,
Fre
(k — 31

(5.9) lim M{¥, N[n)) = -2— \‘ (2 ce"-aﬂ)k {1 + = + + -4

[ T

while for ¢ =1, we have
r[l
81 o

(5.10) M@, ne) ~

where I'(x) denotes the pamma-function I'(z) = ft"—‘ etdt for = > 0.
o
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Proof of Theorem 5d. (5.9) follows immediately from (3.11); for 0= 1/2
we have by (3.14)

M$ )N_Zn' Ly F‘ J n2l?
n,N(n).

Remark. Note that for ¢ — 1/,

1= k k=3 1
— 2 — k — ] —~ .
5 2, e [1+ gttt (k—a)r] MI — 2¢p

Thus the average number of points belonging to components containing
exactly one oycle tends to 4 o as 1 for c—1, .
4(1 — 2¢)f
We now prove

Theorem Se. For N(n) ~on with 0 < ¢ < 1y all components of I',, ny
are with probability tending to 1 for n — 4 oo, cither trees or components contain-
ing exactly one cycle.

Proof. Let y, 5 denote the number of points of I', v belonging to com-
ponents which contain more edges than vertices and the number of vertices

of which is less than |/ logn. We have clearly for N(n) ~en with ¢ < 1,

n—k
[Flogn] ( [ 2 ] )
$4fy ke

g

-
PWrnin 2 1) =0 [_l_?i?_z) .
“ 2

logd _ I]

--——O[n 2

My, nve) S
kmd

Thus

‘On the other hand by Theorem 4c¢ the probability that a component con-

sisting of more than | log » points should not be a tree tends to 0. Thus the
assertion of Theorem 5e follows.

§ 6. The nnmber of components
Let us turn now to the investigation of the average number of compo-

nents of I', y. It will be seen that the above discussion contains a fairly com-
plete solution of this question. We prove the following



ON TRR BAVOLUTION OP RANDUM GRAFHS 46

Theorem 6. I} {, \ denoles the number of components of I'y y then we Bhave
sf N(n) ~mmm‘tho<c<—;-

(6.1) M .~} =n — N(n) + 0(1)
where the bound of the O-term depends only on ¢. If N(n) N-’—;—ws have
(6.2) M(Gnpe0) = 2 — N() + Oflog ).

1f N(n) ~ on holds with ¢ >-§~wehaw

{6.3) lim "(CmN )) = _1_ @(c) — 3‘(5)'
L n Be 2 )

where £ = x(c) is the only solution satisfying 0 < z < 1 of the equation ze—* =
=2ce %, |, eo. '

= Lk-1
(8.4) x(c) = 2‘ TR (2 ce™*)x,
Kol

Proof of Theorem 6. Lot us consider first the case ¢ < -;— Clearly if we

add a new edge to a graph, then elther this connects two points belong-
ing to different components, in which case the number of components is
decreased by 1, or it connects two points belonging to the same component
in which case the number of components doee nmot change but at least one
new cysle 18 created. Thust

(6-5) ban—(0—N)< H,y

where H, 5, is the total number of cycles in I', . Thus by Theorem Sa it
follows that (6.1) holds.

Similarly (6.2) follows also from Theorem 5a. Now we consider the case
¢>.
2

It is easy to ses that for oéyé%we bave (see e. g. [14]

= Lk-1
(6.8) yR 2
i k! 2
where
+@ LR-1
6.7 r= s‘ —
@D P

* In faot according to a well known theorem of the theory of grapha (see [4], p. 28)
bemg. 8 ganeralizstiun of Eulor’s theorem on polyhedrs we havepl;’—-n[+ Inn=
= upn, Where x5y — the ,oyolomatio number” of the graph Ihw — 18 equal to
the maximal namber of independent cyoles, in Yy (For e deE:it.i:'n of ind:]?endent
cycles ses [4] p. 28).
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z can he characterized also as the only solution satisfying 0 < z £ 1 of the
equation ze—* =y.
It follows that if N(n) ~ nc holds with ¢ <{*/, we have

n  (2N(n) N 3n)
2 N(n) n

which leads to a second proof of the first part of Theorem 6.
To prove the second part, let ua remark first that the number of compo-

nents of order greater than 4 is clearly < -—E- Thus if {, y(4) denotes the

(6.8) "(Cn,Mn)) =

] +0(1) =1 — N(n) + 0(1)

number of components of order £ 4 of I', 5 we have clearly

(6.9) M(,) = M(Cp(4) + 0 [i— .

The average number of components of fixed order ¥ which contain
k
at least ¥ edges will be clearly according to Theorem 1 of order ;:- , 1. .

bounded for each fixed value of k. As 4 can he chosen arhitrarily large we
obtain from (0.8) that

{6.10) M)~ 2" M(z,).
b1

According to {2.18) it follows that

at iz prgN B
6.11 M)~ Y e "
(6.11) {(€an) SN R% T l a ‘
and thus, according to (6.8) if N(n) ~c¢n holds with ¢ > !/, we have
2
(6.12) tim Mane) _ [:c() 2e)
el n 2

whore z(c) is defined by (6.4). Thus Theorem 6 is completely proved.
Let us add some remarks. Theorem 6 illustrates also the fundamental

change in the structure of I', , which takes place if ¥ passes 32‘-. While the
average number of components of I', 5y (a8 a function of ¥ with n fixed)
decreases linearly if ¥ < —723 this is no longer true for ¥ > %; the average

number of components decreases from this point onward more and more
slowly. The graph of

l 1—c¢ for 0565—;—

(6.13) 2(6) = lim ﬂﬁﬂz

M- I;—[ﬂcl—ﬂ for ¢>1,
¢
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as a funotion of ¢ is shown by Fig. 4.
From Theorem 6 one can deduce eagily that in case N(2) ~ on with
¢ < Yy we have for any sequence w, tending arbitrarily slowly to infinity

(6.14) lim P(|{pnem —n+N@)| <o) =1

Nn—4o

(6.14) follows easily by remarking that clearly {,y 2 n—N.

1-c for 0gcs

o542 o o>

Za2Zlc)a

1] 5 ’ £

Figure 4.

For the case N(n) ~ocn with ¢ = 1, one obtains by estimating the
variance of {, y(,y and using the inequality of Chebyshev that for any ¢ > 0

,._1

The proof is similar to that of (4.21) and therefore we do not go into details.

Sty 1 lz(c) — x“(c)
n 2¢

N4 x

(6.1b) lim P (

8§ 7. The size of the greatest tree

If N ~ on with ¢ < V/; then as we have seen in § € all but a finite num-
ber of points of I, y belong to components which are trees. Thus in this case
the problem of debermimng the size of the largest component of I, 5 reduces
to the easier question of determining the greatest tree in I', y. This question
is answered by the following.

Theorem 7a. Lot 4, denote the number of poinis of the greatest tree which
is @ component of T', . Suppose N = N(n) ~ cn with ¢ 3= 1. Letw, be a sequence
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tending arbitrarily slowly to 4 co. Then we have

\
(7.1) lim P (d,.,m,.) < L {Iog n —iloglogn +w,|=0
n++w a 2 J
and
. 1 5, )
(7.2) Hm P(Anlw, = —(logn — -—loglogn] —o, =1
A~t® a 2 )
where
(7.8) ¢~ = Jee’~¥ (Le. a=2¢—1—1log2¢
and thus a > 0.)
Proof of Theorem Ta. We have clearly
(1.4) Pl 29 =P (3 %2 1) < 5 Mis)
=1 kT
and thus by (2.18)
1.5) P 2 7) =o[“:%).
It follows that if z, — - [logﬂ. - %loglog'n +w,
a
we have
(1.6) P(d, v 2 2) = Ofe—9) .,

This proves (7.1). To prove (7.2) we have to estimate the mean and variance
of r, where z, =1
a

logu—-%loglogn] —w,. We have by (2.18)

7 7 M ) a‘]l e'm.
( ‘ ) (t'l ~28V2_“
and

(1.8) Dz} = O(M(1y,)).
Clearly

Pty 2 2) 2 P(5, 2 1) = 1 — P(r,, = 0)
and it follows from (7.7) and (7.8) by the inequality of Chebyshev that

(1.9) Pis,, = 0) = Ole—2=) .
Thus we obtain
(7.10) P, e = 2) = 1 — Ofs—).

Thus (7.2) is also proved.
Remark. If ¢ < 1 the greatest tree which is & component of I, ,, with
2
N ~ en is — as mentioned above — at the same time the greatest component
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of I, y, a8 I, )y contains with probabil.it{etonding to 1 besides trees only com-
ponents containing a single circle and being of moderate size. This follows
evidently from Theorem 4c. As will be seen in what follows (see § 9) for

¢ > %the situation is completely different, as in this case I,y contains

& very large component (in faet of size G(c)n with G(c) > 0) which is not a

tree. Note that if we put ¢ :;—klog 7 we have a _—.%log nand 1 logn~k
a

in conformity with Theorem 2c.
We can prove aleo the following

Theorem Th. If N~ cn, where c:#é— and e~° — 2ce'* then the number

of isolated trees of order h =—1- logn — :—loglogn -1 resp. of order Z h (where
al

i i3 an arbilrary real number such that h is a posilive snieger) coniained in

I, n has for large n approzimately a Potsson distribution with the mean valus

ab/2 g—al @b/t g—al
2¢ |2x TP A= 2¢f2n (1l —e-)
Corollary. The probability that I7, ., with N{(n)~no where c#:%

does not contain & treo of order 2 l[logn —%loglogn 417 tends to
@
p [

" 2c)2A0 —e)
The saize of the greatest tree which is & component of I', y is fairly lazge

itN N% . This could be guessed from the fact that the constant factor in the

]for n— 490, where @ =2¢ — 1 — log 2¢.

expression 1 [log n— _:-log]ogn of the ,,probable size’’ of the greatest compo-
«

nent of I',  figuring in Theorem 7a becomes infinitely large if ¢ =-;-.

For the size of the greatest tree in I, with N ~{;- the following

result is valid:
Theorem 7c. If N N% and 4,y dencles again the number of poinis

of the greatest tres contasned tn I', y, we have for any sequence w, tending to
<+-oe for n— 420

(1.11) lim P,y 2 70 w,) =0
nN-r=-o
and
v
(1.19) lim P[4 2™ ]=1.
Neda wl‘l

d A Matems ksl Eniaté Intézet Edslomséngel V. All—3,
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Proof of Theorem 7¢c. We have by some simple computation using (7)

[ [ —
b)) e
_— 2o~k _ R
(1.13) M(ry) =% W —k+1] ke -,
(7 k!
N
Thus it follows that
(7.14) Pdnzatto)< 3. M(t*)mO( 1 ]
kZnray, (0"

which proves (7.11).
On the other hand, considering the mean and variance of * = >
,l..

k2T
it follows that
M(r*) & Aw)® where A > 0 and D*(r*) = O(w}?)

and (7.12) follows by using again the inequality of Chebyshev. Thus Theorem
Tc is proved.

e following theorem can be proved by developing further the above
argument and using Lemma 1.

Theorem 7d. Lzt <(u) denole the number of trees of order > un®B3 contained
n I, nin) tohere 0 < 5 < 49 and N(n) ~-;;. Then we have

AMe—3

(7.15) Jim P efv() =)= i G=0,1,...)
where
1 Fexde
7.18 l=— | £ .
(7.19) Vizn 23/
oy

§ 8. When is I', ;, a planar graph?
We have seen that the threshold for a subgraph containing & points
Kk

and k 4 d fsn  F+4; thus If N ~on the probability of the presence
of & subgraph having k points and & + d edges in I",,  tends to 0 for # — -2,
for each particular pair of nombers £ = 4, & = 1. This however does not
imply that the probability of the presence of a graph of arbitrary order having
more edges than vertices in I' y with N ~ nc tends also to 0 for n— oo,
In faot this is not true for ¢ z f; &8 is shown by the following
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Theorem 8a. Let x, y(d) denote the number of cycles of G,  of arbitrary
order which are such that exactly d diagonals of the cyols belong also 1o I'y .

Then if N{(n) 22-'—'-;—[@ + o(yn) where —e= < 1 < 4o, we have

8.1) Jim Pt =) = £ G=0.L...)
where
1y r g -3
8.2 = -1473, .
8.2 o=y | ¥ e Tay

Proof of Theorem 8a, We have clearly as the number of diagonals of a
k — gon is equal to é-(ii"—;.‘_—ﬂ)l

R

(8.) M(xnﬂtd))=2"-;;{:
&

and thus if N(n)-_-.“"'”;+o(y;)

2
{8.4) M(x, (d))N_..I:..._.. . W—1(1+_‘."_te"%§
. AN ga+1, g) ”‘g ﬁ] .
It follows from (8.4) that
1 " » ¥
. . 1 V3 2
(8.0 ol M@Y= oo I poiat T

0
The proof can be finished by the same method as used in proving Theorem 2a.
Remark. Note that Theorem 8a implies that if N(n) =3;-+ w, fn
with @, — 4¢o then the probability that T, y(, contains oycles with any
presoribed number of diagonals temds to 1, while if N(n) =2 _ a, fn
the same probability tends to 0. This shows again the funda.manta.lzdifferenw
in the structure of 'y, ; between the cases Neloaumd N> -E This differ-

2
ence can be expressed alse in the form of the following
Theorem 8b. Let 13 suppose that N(n) ~ne. If o<-;-the probability

Fi
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that the graph I, iy ss planar i tending to 1 while for ¢ > %lhiapmbabdaytendc

o 0.

Proof of Theorem 8b. As well known trees and connected graphs contain-
ing exactly one cycle are planar, Thus the first part of Theorem 8b follows
from Theorem Se. On the other hand if a graph contains a cycle with 3 dia-
gonals such that if these nals connect the pairs of points (P, P)) (§ =
=1, 2, 3) the oyclic order of these points in the oycle is such that each pair
(P, P}) dissecta the cyole into two paths which both contain two of the other
points then the graph is not planar. Now it is easy to see that among the

k( — 3)

k
: triples of 3 diametem of a given oycle of order k there are at lea.st[ 6]

triples which have the mentioned pmtﬁerty and thus for large values of &
approximately one out of 15 choices of the 3 diagonals will have the mentioned

property. It follows that if N(n) .—_% + o, }n with @,— 4o, the proba-
bility that I', v, is not planar tends to 1 for # —» +o=. This proves Theorem
8b. We can show that for N(n) =-§- + AYn with any real 1 the probability

of [, sy Dot being planar has & positive lower limit, but we cannot caleulate
ts value, It may even be 1, though this seems unlikely.

§ 9. On the growth of the greatest eemponent

We prove in this § (sse Theorem 8b) that the size of the greatest com-
ponent of I', yi,) is for N(r} ~cn with ¢ > 1/, with probability temding to 1
appmximate‘iy (¢)n where

(8.1) Gle)=1— z(c)
2¢

and &{c) Is defined by (6.4). (The ourve ¥ = ((¢) is shown on Fig. 2b).
Thus by Theorem & for N(n) ~ on with ¢ > 1/, almost all points of
L'y nn (ic e. all but o(n) points) belong either to some small component which

is a tree (of size at most 1/a. (logn — -:—loglogﬂ) + O(1l)where a=2¢ —1 —log 2¢

by Theorem 7a) or to the single *giant’’ component of the size ~G{c)n.
Thus the siteation ean be summarized as follows: the largest component
Nn) 1

of [,y 18 of order logn for @ ~¢ < Y, of order a?F for ﬂ ry aavd
of order n for Nm ~¢ > .. This double *“jump’’ of the size of the largest

n
component when @ passes the valuve 1/, is one of the most striking facts
concerning random graphs. We prove first the following
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Theorem 9a, Let ¥, \( A) denote the set of those points of I, \; which belong
to components of size > A, and let H, \(A) denole the number of clements of
the set K, n(A). I Ny(m) ~ (¢ — €) = where £>0, ¢ — & = Yy and Ny(n) ~cn
then with probability tending to 1 for n-—» +oo from the H, n.(.(A4) points
belonging to -, naaXA) more than (1 — 8) H, o A) points will be contained
in the same component of I', ) for any & with 0 < & < | provided that

50
826
Proof of Theorem 9a. According to Theorem 2b the number of points
belonging to trees of order £ 4 is with probability tending to 1 for n — 4 co
equal to
A Lk-1
&5
On the other hand, the number of points of I', 5, belonging to components
of size £ A and containing exactly one cycle is according to Theorem 3¢
o(n) for c—& = 3 (with probability tending to 1), while it is easy to see, that
the number of points of I', vy belonging t0 components of size < 4 and
containing more than one cycle is also bounded with probability tending to 1.)

Our Jast statement follows by using the inequality (4.19) from the fact
that the average number of components of the mentioned type is, as a simple

[2(c — e)]*- e-“‘-ﬂ] +o(n) .

calculation similar to those carried out in previous §§, shows, of order O [l .
ul

Lot E® denote the event that
(9.3) | Hvy(ui(A) — nf(A,c —&)| < Tnf(4d,¢ — &)

where T > 0 is an arbitrary small positive number which will be chosen Iater
and

0.4 4 1 ¥
(9.4) H ,0)—1“‘55 Y

and let E® denote the contrary event. It follows from what has been said
that

(9.5) lim P{EW) =0.

-+ o

(20e7%) > 0

We consider only such I', y, for which (9.3) holds. :
Now clearly I', v, is obtained from I',, ¢, by adding Ny(n)—N,(n) ~ne
new edges at random to I', ¢y The probability that such a new edge should

H A
H.Nl;ﬂ)( ) l _ N’(n)
connect two points belonging to ¥, y,.{4), is at least s
L
2

and thus by (9.3) is not less than (I — 27)f2(4, ¢ — &), if n is sufficlently
large and t sufficiently small.
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As these edges are chosen independently from each other, it follows
b}y the law of large numbers that denoting by s, the number of those of the
af

») — N,(n) new edges which connect two points of ¥, and by E®
the event li.hn.t. e v

(0.6) v, 26l —87)MA4d,6—&n
and by E{® the contrary event, we have

(9.7) lim P(E®) =0.

Mg o

We consider now omly such I', v, for which E® takes place. Now let us

consider the subgraph I . of I, vy, formed by the points of the set

Hn g 4) and only of those edges of I', y,; Which connect two such points.
o shall need now the following elementary

r

Lemma 2. Let @,,ay, . . ., a, bs positive numbers, ¥a;=1. If max g;< a
| 1isr
thew there can be found o value k(1 < k < r — 1) such that

l—a < 1+a
—_— > & e ——
s o5

J=
(9.8) and
l - < 2" a}£.1+a.
2 Jok+1 2

Proof of Lemnma 2, Put §; = $ a, (=12 ...,r). Let j, denote the

-]
least integer, for which §,> 1), In case §, —1. >, — 8§, _, choose
E=f,—1, while in case 8, —Y,<1,— 8, , choose k=7 In both

cases we have |8, — Y, | < %é %whioh proves our Lemme.

Let the sizes of the components of I'$ ..., be denoted by b, b;, ..., b,-
Let E® denote the event N )

(9.9) mex b > H, nmi(d)(l —38)

and B® the contrary event. Applying our Lemme with @ =1 — 8 to the

numbers a; = E—EI_(F) it follows that if the event E® takes place, the
1)
sot ¥ iy 4) &n be split in two subsets ¥, and ¥ 5 containing H; and

(9.10) H,,,H,(,,)[A)%é win (H,, HY) < max (H,, H;) < H, 5 A) ll —%]

further no point of ., is connected with & point of 3 in I}y -
It follows that if a point P of the set ¥, y,m(4) belongs to ¥, (resp.
¥ ;) then all other points of the component of I": Ny to which P belongs are



ON THE EVOLUTIOR OF BANDOM GRAPHS 55

also contained in S, (tesp. J¥;). As the number of components of size > 4
of Iy, I8 clearly < y—'-‘ffm—-’m the number of such divisions of the set

1
H ol A) does not exceed 24 "M

If further £® takes place then every ome of the », new edges connect-
ing points of ¥, y,m(4)connects either two points of ¥ or two points
of ¥ .. The possible number of such choices of these edges is clearly

(1=1+15))

As by (9.10)
F ] H'
31+ (5}
2 ) 2 & 88 A 3
| ! ‘Hn] T4 +[ 2] + 9 = 2
2
it follows that
; - -
(9.12) P(Ef'.')) < oA Haxtm(A) 1 — % ]l(l I AL—nn

and thus by (9.3) and (8.6)

©.13) PE®M = exp[.,f(d,c —8) [(1 +:1)1082 _&1—37) fg(A,c — s)ol]_
Thus if

(9.14) Aed(l —37)f(4d,c—¢e)> 1+ 7)logd
then
(9.15) lim P(E®) =o0.

n~+a«

As however in case ¢ — &>, we have f(d,c —e) 2 G(c —¢e) >0
for any A, while in case ¢ — ¢ =1,

(9.158) f’A,l]=1—;‘ﬂ= 2' B L a4,
2] Skl e* ST kle 2)4 '
the inequality (9.18) will be satisfied provided that ¢ < -ﬁ—i and 4 > ;’5%

Thus Theorem 9a is proved.
Clearly the “giant’’ component of I, v, the existence of which (with
probability tending to 1) has been now proved, contains more than

(1 —s%)(1—8)nf(d,c—e¢)
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points. By choosing ¢, T and & sufficiently small and 4 sufficiently large,
A—7)(1 — & /A, ¢c — £) can be brought as near to G(c) as we want. Thus
we have incidentally proved also the following

Theorem 9b. Let o, ), dencte the size of the grealest component of I, o
If N(n) ~ cn where ¢ > X, we have for any 5 > 0

(9.18) Lim P

n—~=+4w

<n]=l

€n.(n) — G(c)
n

© =1

where G{c) =1 — %c) and z(c) = Z’ E;-T (2¢ e~ 2)% i3 the solution satisfying
¢ =l K

0 < 2(c) < 10fthe equation z(c) e~ = 2ce~2¢.

Remark. As G(¢c) = 1 for ¢ = 4 o it follows as a corollary from Theorem
9b that the size of the largest component will exceed (1 —am if ¢ is suffi-
ciently large where a > 0 Is arbitrarily small. This of course could be proved
di i'ect{y. As a matter of fact, if the greatest component of I", y,,,, with N¥(n) ~ne
would not exceed (1 —a)n (we denote this event by B, (z, ¢)) one could by
Lemma 2 divide the set ¥ of the n points P, ..., P, in two subsets ¥’ resp.
V*’ consisting of »’ resp. »”* points so that no two points belonging to different
subsets are connected and

(9.17) a?n < min (p',n") < max (n’, =% :{_[1 — %] n.

But the number of such divisions does not exceed 27, and if the n points
are divided in this way, the number of ways N edges can be chosen so that
only points belonging to the same subset ¥’ resp. ¥* are connected, is

(543

N

As {n’l + (ﬂu = 15.[1 - E—] , it follows
2 2 2 2
o \N(n) _ Nimja
(9.18) P(B.(a,e))< 2" {l - ;] < 2"g 2
Thus if ac > logs, then
(8.19) lim P(B,(a,c))=0
R4
- log 4
which implies that for ¢ > —2—and N(n) ~cn we have
[rd
(9.20) km Plg, v 2 (1 —a)m) = 1.

ﬂ—o-!rﬂ
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We have seen that for N(n) ~ ¢n with ¢ > 3/; the random graph Iy,
consists with probability tending to 1, nezglecting o(n) points, only of isola

trees (there being a.pproxima,telyf— k’;——!(% e~ %)% trees of order k) and of
¢

a single giant component of size ~G(s)n.
Clearly the isolated trees melt one after another into the giant compo-
nent, the “danger” of being absorbed by the “giant” being greater for larger

components. As shown by Theorem 2c¢ for N(») NEIIn log = only isolated
N(n) — 1/2nlogn

trees of order <k survive, while for — -0 the whole

n
graph will with probability tending to 1 be connected.
An interesting question is: what is the “life-time’’ distribution of an
isolated trees of order ¥ which is present for N(n») ~en 7 This question is
answered by the following

Theorem 9%c. The probability that anisolated tree of order k which is present
in Iy yyny where Ny(n) ~cn and ¢ > Yy should still remasn an isolated tree
in I nyny Wwhere ﬁg(n) ~(c+tyn(t > 0) is approzimalely e-*; thus the
life-time’ of a tree of order k has approzimalely an exponential distribution

with mean wlue;’%and iz independent of the “age” of the tree.

Proof. The probability that no point of the tree in question will he
connected with any other point is

n—=k
| ~j+k

~ et

J=Nm+1 ‘"’ —7
» 2| ]
This proves Theorem 9ec.

§ 10. Remarks and some uneolved problems

We studied in detadl the evolution of I, 5 only till ;V reaches the order
of magnitude n log #. (Only Theoremn 1 embraces some problems concerning
the range N(n) ~=n* with 1 < a < 2.) We want to deal with the structure
of I, ymy for N(n) ~cn® with @ > 1 in greater detail in a fortcoming paper;
here we make in this direction only a few remarks.

First it is easy to see that I"’l n is really nothing else, than the

2 ) — Nen)
complementary graph of I', y..,. Thus each of our results can be reformulated
to give a result on the probable structure of I', y with N being not much

less than [:} For instance, the structure of I', ,, will have a second abrupt

n——’l;if.N-(n
2 2

then the complementary graph of I',  will contain a connected graph of order
ficin, while for ¢ < 1f; this (missing) “giant” will disappear.

change when N passes the value —¢n with ¢ > 3],
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To show a less obvious example of this principle of getting result
for N near to r] let us consider the maximal number of pairwise independent

points in I', 5. (The vertices P and @ of the graph I' are called independent
if they are not connected by an edge).

Evidently if a set of k points is independent in I', v, then the same
points form a complete subgraph in the complementary graph T, ... As

however I', y, has the same structure as T (n (2) - e it follows by Theorem

1, that there will be in I', ., almost surely no k¥ independent points if : —

-~ N(n) =0

‘n’('—k_-l-t)] i. e. if N(n) = [:

’ 1
_ o[n’(‘ - m)l but there will be in
1
I\, n(ny 8lmost surely k independent points if N{n) = [:] —w, n’(’ ~ %=1/ where

o, tends arbitrarily slowly to 4oc. An other interesting quastlon is: what
can be said about the degrees of the vertices of I, y. We prove in this direction
the following

Theorem 19. Let D, o, }gP,,) denole the degree of the paint P, in I, ..
(4. e. the number of pamts n,N(n) Which are connected with Py by an edge) "Put

D, = min D, yy(P) and D,= max D,y (Fy).
1.gksn 15k<n

Suppose that
. N(n)
(10.1) lim — = + oo
n~+=nlogn

Then we have for any € > o
(10.2) liml’“—-———ll = 1.

n—+a
We have further for N(n) ~cn for any &

. 2 —2 .

(10.3) Tim P(D 0 (Fa) = 1) = L%%_ (G=0,1,...).

Proof. The probability that a given vertex P, shall be connected by
exactly r others in I, \ is

o) e L
B
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thus if N(r) ~ cn the degree of a given point has approximately & Poisson
distribution with mean value 2¢c. The number of points having the degree r
is thus in this case epproximately

n (2 c)r a—ic

r!
If N(») = (nlogn)w, with w,— 4o then the probabxhty that the degree of
a point will be outaide the interval 2Nm) (L — 2N(u) (L4 &) is ap-

(r=0,1,...).

proximately

{(2w,- log u)* g—2usl0gn -0 1
[t*?lﬂn-zs.Z[ggn.-. E' nl'ﬂ.

and thus this probability is o (l
n

, for any ¢ > 0.

Thus the probability that the degrees of not all # points will be between
the}il:iﬂt. (1 1 &) 2w, log » wlll be tending to 0. Thus the assertion of Theorem
10 follows.

An interesting question is: what will be the chrometio number of I, v
(The chromatic number CAI") of a graph I" is the least positive integer A such
that the vertices of the graph can be coloured by A colours so that no two
vertices which are connected by an edge should have the same colour.)

Clearly every trees can be co'loureg by 2 colours, and thus by Theorem
4 almost surely Ch (I, y) =2 if N = o(n) As however the ohromatic
number of & graph ha.vmg an e ual number of vertices and edges is equal
to 2 or 3 according to whether t cycle contained in such a graph is

of even or odd order, it follows from Theoram be that almost surely Ch (17, ) < 3
for N(»} ~n¢ w:t.h ¢ <

For N(n) ~ —2- we have almost surely Ck (I', v 2 8.
As a matter of fact, in the same way, as we proved Theorem 5b, one

can prove that I, \(y contafns for N(n) wi almost surely a cycle of odd

order. It is an open problem how large Ch (I" )) is for N(n) ~ en withc>1,.

A further result on the chromatio nur‘:l%er can be deduced from our
above remark on independent vertices. If a graph I" has the chromatic number
A, then its points can be divided into A classes, so that no two points of the

same class are connected by an edge; as the largest class has at lea.st-;; points

it follows that if f is the maximal number of independent vertices of I” we have
I

f= %. Now we have seen that for N(n) :[:] ——a[nz(] —‘k)] almost surely

'
f < k; it follows that for N(n) = [:] —o [‘nz(l - “)] almost surely Ch (17, pay) >

-

a3
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Other open problems are the following: for what order of magnitude
of N(n) has I', v, with probability tending to 1 a Hamilton-line (i.e. a path
which passes through all vertices) resp.in case n is even a factor of degree 1
(i.e. a set of disjoint edges which contain all vertices).

An other interesting question is : what is the threshold for the appear-
ance of a ‘“topological complete graph of order X’ i.e. of k points such that
any two of them oan be connected by a path and these paths do not inter-
sect. For £ > 4 we do not know the solution of this question. For k¥ =4

it follows from Theerem 8a that the threshold is % It is interesting to

compare this with an {(unpublished) result of G. Dmrac according to which
if ¥ 2 2n—2 then @,y contains certainly a topological complete graph
of order 4.

We hope to return to the above mentioned unsolved questions in an other

paper.

Remark added on May 16, 1960. It should be mentioned that N. V.,
SMIRNOV (see e. g. Mamemamuueckuti COopHux 6(1939) p. 6) has proved a
lemma which is similar to our Lemma 1.

(Received December 28, 1959.)
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0 PA3BEPTHIBAHUE CNYUYAAHBIX I'PA®OB
P. ERDOS u A. RENYI

Pesome

Mycrs gassl n T0uku Py, Py,. . ., P, 1 suibipaes cnyvailHo apyr 3a gpyrom
n
N n3 BOSMOXKHHX '2} pebep (P;, P;) TaK 4to nochie Toro uro BeibpaHH k pefpa

KaXxulhk 3 Apyrux

;) — k pefep umeeT 0RHHAKOBYK BepOSTHOCTb OBITH BHI-

fOpaHHnM Kak cnepyompu. PaGota 3anumaerca sepostHoM crpyxrypo#h Tax
nonyuaemoro ciaysaiiHoro rpajga I, ) npu ycnoeun, yro N = N(rn) usecrHas
QYHKUHA OT 1t M n oyeHb Oonpwoe yuceno. OcobeHHO MCCeRAyerca M3MeHeHme
3TOi CTPYKTYpH ecnu N HapacTaeT IpPH HaHHOM OYeHbh Oonpurom 7. Cnygaiino
pasgépThiBaloini rpad moxker OHTL paccMOTPeH KaK YNPOIeHHK! Moelb pocTa
peanbHbXx cerefi (Hanpumep ceTeil CBA3BL).



