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On the supremum of iterated local time
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Dedicated to the memory of Professor B. Gyires

Abstract. We obtain upper and lower class integral tests for the space-wise supre-

mum of the iterated local time of two independent Wiener processes. We then establish

a strong invariance principle between this iterated local time and the local time process

of the simple symmetric random walk on the two-dimensional comb lattice. The latter,

in turn, enables us to conclude upper and lower class tests for the local time of simple

symmetric random walk on the two-dimensional comb lattice as well.

1. Introduction and main results

Let {W (t); t ≥ 0} be a standard Wiener process (Brownian motion), i.e., a

Gaussian process with

E(W (t)) = 0, E(W (t1)W (t2)) = min(t1, t2), t, t1, t2 ≥ 0.

The local time process {η(x, t); x ∈ R, t ≥ 0} is defined via

∫

A

η(x, t) dx = λ{s : 0 ≤ s ≤ t, W (s) ∈ A} (1.1)
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for any t ≥ 0 and Borel set A ⊂ R, where λ(·) is the Lebesgue measure, and η(·, ·)
is frequently referred to as Wiener or Brownian local time.

Let η1(x, t) and η2(x, t) be two independent Brownian local times. The iter-

ated local time is defined by

Υ(x, t) := η1(x, η2(0, t)).

Denote

Υ∗(t) := sup
x∈R

Υ(x, t). (1.2)

First we give asymptotic values for the upper and lower tails of the distribu-

tion of Υ∗(t).

Theorem 1.1. As z → ∞

P (Υ∗(t) > zt1/4) ∼ 211/3z2/3

(3π)1/2
exp

(

−3z4/3

25/3

)

(1.3)

and as z → 0,

P (Υ∗(t) < zt1/4) ∼ 4z2

(2π)1/2

∫ ∞

0

G(s)

s3
ds, (1.4)

for all t > 0, where

G(s) := P

(

sup
x∈R

η(x, 1) < s

)

.

Note that an explicit formula for G(s) in terms of Bessel functions is given

in Csáki and Földes [9].

The following integral tests are obtained.

Theorem 1.2. Let f(t) > 0 be a non-decreasing function and put

I(f) :=

∫ ∞

1

f2(t)

t
exp

(

− 3

25/3
f4/3(t)

)

dt.

Then

P (Υ∗(t) > t1/4f(t) i.o. as t → ∞) = 0 or 1

according as I(f) converges or diverges.

Theorem 1.3. Let g(t) > 0 be a non-increasing function and put

J(g) :=

∫ ∞

1

g2(t)

t
dt.

Then

P (Υ∗(t) < t1/4g(t) i.o. as t → ∞) = 0 or 1

according as J(g) converges or diverges.
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In particular, we have the following law of the iterated logarithm:

lim sup
t→∞

Υ∗(t)

t1/4(log log t)3/4
=

25/4

33/4
a.s.

To compare the above results with similar integral tests for Υ(0, t), note that

{η(0, t); t ≥ 0} has the same distribution as {sup0≤s≤t W (s); t ≥ 0}. Conse-

quently, {Υ(0, t); t ≥ 0} has the same distribution as {sup0≤s≤t W1(η2(0, s)); t ≥
0}, or, as easily seen, the same distribution as {sup0≤s≤t W1(W2(s) ∨ 0); t ≥ 0}.
From Bertoin [2] we obtain the following integral tests.

Theorem A. Put

Î(f) :=

∫ ∞

1

f2/3(t)

t
exp

(

− 3

25/3
f4/3(t)

)

dt,

Ĵ(g) :=

∫ ∞

1

g(t)

t
dt.

Then

P (Υ(0, t) > t1/4f(t) i.o. as t → ∞) = 0 or 1

according as Î(f) converges or diverges. Moreover,

P (Υ(0, t) < t1/4g(t) i.o. as t → ∞) = 0 or 1

according as Ĵ(g) converges or diverges.

In particular, we have the same law of the iterated logarithm as for Υ∗(t):

lim sup
t→∞

Υ(0, t)

t1/4(log log t)3/4
=

25/4

33/4
a.s.

In the subsequent sections the proofs of Theorem 1.1, 1.2 and 1.3 will be

given. In Section 5 we apply the results for the local time of the simple random

walk on the 2-dimensional comb.

In the proofs unimportant constants of possibly different positive values will

be denoted by c, c0, c1, c2.

2. Proof of Theorem 1.1

Since
Υ∗(t)

t1/4
=

η∗
1(η2(0, t))

(η2(0, t))1/2

√

η2(0, t)

t1/2
,
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it has the same distribution as η∗
1(1)

√

|N |, where η∗
1(s) = supx∈R

η1(x, s) and N

is a standard normal random variable independent of η∗
1(1). Hence, denoting by

ϕ the standard normal density,

P (Υ∗(t) > zt1/4) = 2

∫ ∞

0

(

1 − G

(

z√
u

))

ϕ(u) du. (2.1)

For the upper tail of G we have (see Csáki [5])

1 − G(z) ∼ 4

√

2

π
z exp

(

−z2

2

)

, z → ∞. (2.2)

Now split the integral in (2.1) into three parts:

∫ ∞

0

=

∫ z2/3/2

0

+

∫ 2z2/3

z2/3/2

+

∫ ∞

2z2/3

= I1 + I2 + I3.

Using (2.2), it is easy to see that

I1 ≤ c(1 − G(21/2z2/3)) ≤ cz2/3 exp(−z4/3),

I3 ≤ c

∫ ∞

2z2/3

ϕ(u) du ≤ c exp(−2z4/3),

so I1 and I3 are negligible compared to (1.3). For I2 we can use (2.2) and hence

I2 ∼ 8

π

∫ 2z2/3

z2/3/2

z√
u

exp

(

− z2

2u
− u2

2

)

du

=
16z4/3

π

∫

√
2

1/
√

2

exp

(

−z4/3

2

(

1

v2
+ v4

))

dv.

The asymptotic value of this integral can be obtained by Laplace’s method (cf.,

e.g., de Bruijn [3])

∫ b

a

exp(−λh(v)) dv ∼
√

2πe−λh(v0)

√

λh′′(v0)
, λ → ∞,

where v0 is the place of the minimum of h in (a, b), i.e., h′(v0) = 0. Applying

this, a straightforward calculation leads to (1.3).

To see (1.4), we have similarly

P (Υ∗(t) < zt1/4) = 2

∫ ∞

0

G

(

z√
u

)

ϕ(u) du = 4z2

∫ ∞

0

G(s)

s3
ϕ

(

z2

s2

)

ds.
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This integral is finite, since

G(s) ∼ c exp

(

−2j2
1

s2

)

, s → 0,

where j1 is the smallest positive zero of the Bessel function J0(·) (cf. Csáki and

Földes [9]).

Since ϕ(z2/s2) ≤ ϕ(0), we have

P (Υ∗(t) < xt1/4) ∼ 4z2ϕ(0)

∫ ∞

0

G(s)

s3
ds, z → 0

by the dominated convergence theorem. This completes the proof of Theorem

1.1. �

3. Proof of Theorem 1.2

From Shi [13] we have the following result.

Lemma A. Let f be a function as in Theorem 1.2. Put T1 = 1,

Tk+1 = Tk

(

1 +
1

f
4/3
k

)

, k = 1, 2, . . . ,

where fk = f(Tk). Then I(f) < ∞ if and only if

∞
∑

k=1

f
2/3
k exp

(

− 3

25/3
f

4/3
k

)

< ∞.

First we prove the convergence part of Theorem 1.2. Assume that I(f) < ∞
and define the events

Ak = {Υ∗(Tk+1) > T
1/4
k fk}.

It follows from Theorem 1.1 that

P (Ak) ≤ cf
2/3
k exp



− 3

25/3

(

1 +
1

f
4/3
k

)−1/3

f
4/3
k



 .

Using the inequality

(1 + u)−1/3 ≥ 1 − u

3
, 0 ≤ u ≤ 1,
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with u = f
−4/3
k , we obtain further

P (Ak) ≤ cf
2/3
k exp

(

− 3

25/3
f

4/3
k

)

,

which is summable by Lemma A. Hence P (Ak i.o.) = 0, i.e., for large k we have

almost surely

Υ∗(Tk+1) ≤ T
1/4
k f(Tk).

But for Tk ≤ t ≤ Tk+1, i.e., for large t

Υ∗(t) ≤ Υ(Tk+1) ≤ T
1/4
k f(Tk) ≤ t1/4f(t),

proving the convergence part.

For the divergence part, we follow the proof in [5]. Without loss of generality

we may assume

(log log t)3/4 ≤ f(t) ≤ (2 log log t)3/4

and, as easily seen,

(log k/2)3/4 ≤ fk ≤ (2 log k)3/4.

In the proof we also use the inequality

Tk

Tℓ
≤
(

1 +
1

f
4/3
ℓ

)−(ℓ−k)

, k < ℓ.

Now assume that I(f) = ∞, and define the events

Bk = {T 1/4
k fk ≤ Υ∗(Tk) < T

1/4
k+1fk},

where fk = f(Tk). It follows from Theorem 1.1 that

P (Bk)

≥ cf
2/3
k exp

(

−3f
4/3
k

25/3

)[

1 −
(

Tk+1

Tk

)1/6

exp

(

−3f
4/3
k

25/3

(

(

Tk+1

Tk

)1/3

− 1

))]

.

It is readily seen that limk→∞ Tk+1/Tk = 1, and

lim
k→∞

f
4/3
k

(

(

Tk+1

Tk

)1/3

− 1

)

=
1

3
,
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so there is a positive constant c such that

P (Bk) ≥ cf
2/3
k exp

(

−3f
4/3
k

25/3

)

,

and hence by Lemma A we have
∑

k P (Bk) = ∞.

Next we estimate P (BkBℓ). Let k < ℓ and

Υ∗(Tk, Tℓ) = sup
x∈R

(η1(x, η2(0, Tℓ)) − η1(x, η2(0, Tk))) .

Then, similarly to the proof in [5],

Υ∗(Tk, Tℓ) ≤ Υ∗(Tℓ) ≤ Υ∗(Tk) + Υ∗(Tk, Tℓ)

and

P (BkBℓ) ≤ P (T
1/4
k fk ≤ Υ∗(Tk) < T

1/4
k+1fk, Υ∗(Tℓ) − Υ∗(Tk) ≥ T

1/4
ℓ fℓ − T

1/4
k+1fk)

≤ P (Bk)P (T
1/4
ℓ fℓ − T

1/4
k+1fk ≤ Υ∗(Tk, Tℓ) ≤ T

1/4
ℓ+1fℓ).

But Υ∗(Tk, Tℓ) has the same distribution as Υ∗(Tℓ − Tk), or (Tℓ − Tk)1/4Υ∗(1),

hence

P (BkBℓ) ≤ P (Bk)P

(

Υ∗(1) ≥
fℓT

1/4
ℓ − fkT

1/4
k+1

(Tℓ − Tk)1/4

)

≤ P (Bk)P

(

Υ∗(1) ≥ fℓ

T
1/4
ℓ − T

1/4
k+1

(Tℓ − Tk)1/4

)

≤ cP (Bk)f
2/3
ℓ H

2/3
k,ℓ exp

(

−
3f

4/3
ℓ H

4/3
k,ℓ

25/3

)

, (3.1)

where

Hk,ℓ =
T

1/4
ℓ − T

1/4
k+1

(Tℓ − Tk)1/4
.

Using the inequality

(1 − u)3/4

4
≤ 1 − u1/4

(1 − u)1/4
≤ 1, 0 < u < 1,

we get

1

4

(

1 − Tk

Tℓ

)3/4 T
1/4
ℓ − T

1/4
k+1

T
1/4
ℓ − T

1/4
k

≤ Hk,ℓ ≤ 1.
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For k + 2 ≤ ℓ we have, by straightforward calculation,

T
1/4
ℓ − T

1/4
k+1

T
1/4
ℓ − T

1/4
k

≥
T

1/4
k+2 − T

1/4
k+1

T
1/4
k+2 − T

1/4
k

∼ 1

1 +
(

fk+1

fk

)4/3
,

from which

c

(

1 − Tk

Tℓ

)3/4

≤ Hk,ℓ ≤ 1

with certain constant c > 0. Consequently,

P (BkBℓ) ≤ cP (Bk)f
2/3
ℓ exp

(

−c1f
4/3
ℓ

(

1 − Tk

Tℓ

))

.

Now, for fixed k, let

L1 = {ℓ : k + 2 ≤ ℓ ≤ k + f
4/3
ℓ },

L2 =
{

ℓ : k + f
4/3
ℓ < ℓ ≤ k + 4f

4/3
ℓ log f

4/3
ℓ

}

,

L3 =
{

ℓ : k + 4f
4/3
ℓ log f

4/3
ℓ < ℓ

}

.

If ℓ ∈ L1, then

1 − Tk

Tℓ
≥ 1 −

(

1 +
1

f
4/3
ℓ

)−(ℓ−k)

≥ ℓ − k

2f
4/3
ℓ

,

i.e.,

P (BkBℓ) ≤ cP (Bk)f
2/3
ℓ e−c2(ℓ−k),

consequently
∑

ℓ∈L1

P (BkBℓ) ≤ KP (Bk). (3.2)

If ℓ ∈ L2, then

1 − Tk

Tℓ
≥ 1 −

(

1 +
1

f
4/3
ℓ

)−(ℓ−k)

≥ c

with some c > 0. We have

P (BkBℓ) ≤ cP (Bk)f
2/3
ℓ e−c0f

4/3

ℓ ≤ cP (Bk)(log ℓ)1/2ℓ−c0/2
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≤ cP (Bk)(log k)1/2k−c0/2.

But

ℓ − k ≤ 4f
4/3
ℓ log f

4/3
ℓ ≤ ℓ

2
,

i.e., ℓ ≤ 2k, hence

ℓ − k ≤ 4f
4/3
2k log f

4/3
2k .

Consequently,

∑

ℓ∈L2

P (BkBℓ) ≤ cP (Bk)(log k)1/2k−c0/2f
4/3
2k log f

4/3
2k ≤ cP (Bk). (3.3)

If ℓ ∈ L3, then

T
1/4
ℓ − T

1/4
k+1

(Tℓ − Tk)1/4
≥ 1 −

(

Tk+1

Tℓ

)1/4

≥ 1 −
(

1 +
1

f
4/3
ℓ

)−(ℓ−k−1)/4

.

Hence, using (3.1),

P (BkBℓ) ≤ cP (Bk)f
2/3
ℓ exp






−3f

4/3
ℓ

25/3



1 −
(

1 +
1

f
4/3
ℓ

)−(ℓ−k−1)/4




4/3





.

It can be seen that

3f
4/3
ℓ

25/3









1 −
(

1 +
1

f
4/3
ℓ

)−(ℓ−k−1)/4




4/3

− 1







∼ −21/3f
4/3
ℓ

(

1 +
1

f
4/3
ℓ

)−(ℓ−k−1)/4

= −21/3f
4/3
ℓ exp

(

− ℓ − k − 1

4
log

(

1 +
1

f
4/3
ℓ

))

∼ −21/3f
4/3
ℓ exp

(

− ℓ − k − 1

4f
4/3
ℓ

)

≥ −21/3f
4/3
ℓ exp

(

− log f
4/3
ℓ

)

≥ −21/3.

It follows that

P (BkBℓ) ≤ cP (Bk)f
2/3
ℓ exp

(

−3f
4/3
ℓ

25/3

)

≤ cP (Bk)P (Bℓ). (3.4)
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On using (3.2), (3.3), (3.4) together with P (BkBℓ) ≤ P (Bk) for ℓ = k, k + 1,

we obtain

lim inf
n→∞

∑n
k=1

∑n
ℓ=1 P (BkBℓ)

(
∑n

k=1 P (Bk))
2 > 0,

hence from Borel-Cantelli lemma and 0-1 law we obtain P (Bk i.o.) = 1, completing

the proof of Theorem 1.2. �

4. Proof of Theorem 1.3

First assume that J(g) < ∞. Let tk = ek and define the events

Bk = {Υ∗(tk) < t
1/4
k+1g(tk+1)}.

Then

P (Bk) ≤ cg2(tk+1),

which is well-known to be summable if J(g) < ∞. Hence for large k we have

almost surely

Υ∗(tk) ≥ t
1/4
k+1g(tk+1),

and for tk ≤ t < tk+1

Υ∗(t) ≥ Υ∗(tk) ≥ t
1/4
k+1g(tk+1) ≥ t1/4g(t),

proving the convergence part.

Now assume that J(g) = ∞. Put tk = 2k and define the events

Ak = {η2(0, tk) ≤ t
1/2
k g2(tk)},

Bk = {η∗
1(t

1/2
k g2(tk)) ≤ t

1/4
k g(tk)}.

Then P (Ak i.o.) = 1 (cf. Csáki [4], the proof of the divergent part of Theorem 2.1

(i) on p. 211) and, by scaling property, P (Bk) = p > 0, independently of k. It

follows from Lemma 3.1 of Csáki et al. [7] that P (AkBk i.o.) ≥ p. Consequently,

P (Υ∗(tk) ≤ t
1/4
k g(tk) i.o.) ≥ p > 0. Now the proof of the divergence part is

complete by 0 − 1 law. �
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5. Simple random walk on 2-dimensional comb

We consider a simple random walk C(n) on the 2-dimensional comb lattice

C2 that is obtained from Z2 by removing all horizontal lines off the x-axis.

A formal way of describing a simple random walk C(n) on the above 2-

dimensional comb lattice C2 can be formulated via its transition probabilities as

follows: for (x, y) ∈ Z
2

P (C(n + 1) = (x, y ± 1) | C(n) = (x, y)) =
1

2
, if y 6= 0, (5.1)

P (C(n + 1) = (x ± 1, 0) | C(n) = (x, 0))

= P (C(n + 1) = (x,±1) | C(n) = (x, 0)) =
1

4
. (5.2)

Unless otherwise stated, we assume that C(0) = 0 = (0, 0). The coordinates

of the just defined vector valued simple random walk C(n) on C
2 will be denoted

by C1(n), C2(n), i.e., C(n) := (C1(n), C2(n)).

For a recent review of some related literature concerning this simple random

walk we refer to Bertacchi [1] and Csáki et al. [8]. In the latter paper we estab-

lished a strong approximation for the random walk C(n) = (C1(n), C2(n)) that

reads as follows.

Theorem B. On an appropriate probability space for the random walk

{C(n) = (C1(n), C2(n)); n = 0, 1, 2, . . .}

on C2, one can construct two independent standard Wiener processes

{W1(t); t ≥ 0}, {W2(t); t ≥ 0} so that, as n → ∞, we have with any ε > 0

n−1/4|C1(n) − W1(η2(0, n))| + n−1/2|C2(n) − W2(n)| = O(n−1/8+ε) a.s.,

where η2(0, ·) is the local time process at zero of W2(·).

Define now the local time process Ξ(·, ·) of the random walk

{C(n); n = 0, 1, . . .} on the 2-dimensional comb lattice C
2 by

Ξ(x, n) := #{0 < k ≤ n : C(k) = x}, x ∈ C
2, n = 1, 2, . . . (5.3)

We now introduce our next result that concludes a strong approximation of

the just introduced local time process Ξ((x, 0), n).
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Theorem 5.1. On a suitable probability space we can define a simple ran-

dom walk on C2 and two independent Wiener local times η1(·, ·), η2(·, ·) such that

as n → ∞, we have for any ε > 0

sup
x∈Z

|Ξ((x, 0), n) − 2η1 (x, η2(0, n))| = O(n1/8+ε) a.s. (5.4)

Proof. As in [8], start with two independent simple symmetric random

walks on the line

{S1(n), S2(n); n = 0, 1, . . .}

with respective local times

ξi(x, n) := #{j : 1 ≤ j ≤ n, Si(j) = x}, i = 1, 2, x ∈ Z, n = 1, 2, . . .

and inverse local times

ρi(N) := min{j > ρN−1 : Si(j) = 0}, i = 1, 2, N = 1, 2, . . .

with ρi(0) = 0. Assume that on the same probability space we have an i.i.d.

sequence of random variables G1, G2, . . . with geometric distribution,

P (G1 = k) =
1

2k+1
, k = 0, 1, 2, . . . ,

that is independent of S1(·), S2(·). We may construct a simple random walk on

the 2-dimensional comb lattice C2 as follows. Put TN = G1 + G2 + . . . GN ,

N = 1, 2, . . . For n = 0, . . . , T1, let C1(n) = S1(n) and C2(n) = 0. For n =

T1 + 1, . . . , T1 + ρ2(1), let C1(n) = C1(T1), C2(n) = S2(n − T1). In general, for

TN + ρ2(N) < n ≤ TN+1 + ρ2(N), let

C1(n) = S1(n − ρ2(N)),

C2(n) = 0,

and, for TN+1 + ρ2(N) < n ≤ TN+1 + ρ2(N + 1), let

C1(n) = C1(TN+1 + ρ2(N)) = S1(TN+1),

C2(n) = S2(n − TN+1).

Then it can be seen that, in terms of these definitions for C1(n) and C2(n),

C(n) = (C1(n), C2(n)) is a simple random walk on the 2-dimensional comb lattice

C2.

First we approximate the local time Ξ((x, 0), n) by iterated simple symmetric

random walk local time.
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Proposition 5.1. On a suitable probability space we can define a simple

random walk C on C2 with local time Ξ and two simple random walks S1, S2 on

Z with local times ξ1, ξ2 such that as n → ∞, we have for any ε > 0

sup
x∈Z

|Ξ((x, 0), n) − 2ξ1 (x, ξ2(0, n))| = O(n1/8+ε) a.s. (5.5)

Proof. Introduce the following notations. For the random walk C(·) let

H(n) be the horizontal steps on the x-axis up to time n and let V (n) be the

number of vertical steps up to time n. Moreover, let B(n) be the number of

vertical visits to the x-axis up to time n. Put

Ξ(h)((x, 0), n) :=

#{0 < k ≤ n : C(k) = (x, 0), |C1(k) − C1(k − 1)| > 0, C2(k − 1) = 0}

and

Ξ(v)((x, 0), n) = Ξ((x, 0), n) − Ξ(h)((x, 0), n),

i.e., the horizontal, resp. vertical, visits to the point (x, 0) up to time n. Then,

we have clearly

Ξ(h)((x, 0), n) = ξ1(x, H(n)),

B(n) = ξ2(0, V (n)) = ξ2(0, n − H(n)) = O(n1/2+ε) a.s.,

H(n) = G1 + G2 + . . . + GB(n) = O(B(n)) = O(n1/2+ε) a.s.,

|H(n) − B(n)| = |G1 + G2 + . . . + GB(n) − B(n)|

= O((B(n))1/2+ε) = O(n1/4+ε) a.s.,

as n → ∞. Using the increment property of simple symmetric random walk local

time (cf. Révész [12], Theorem 11.15), we get

ξ2(0, n) − ξ2(0, n − H(n)) = O((H(n))1/2+ε) a.s., n → ∞,

and

Ξ(h)((x, 0), n) = ξ1(x, H(n)) = ξ1(x, B(n) + O(B(n)1/2+ε))

= ξ1(x, B(n))+O(B(n)1/4+ε) = ξ1(x, ξ2(0, n−H(n)))+O((ξ2(0, n−H(n))1/4+ε)

= ξ1(x, ξ2(0, n)) + O((H(n))1/4+ε) = ξ1(x, ξ2(0, n)) + O(n1/8+ε),

almost surely, where we used that H(n) = O(n1/2+ε) a.s., n → ∞.

Now we show that Ξ(h) and Ξ(v) are close to each other.
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Lemma 5.1. As n → ∞, we have almost surely

sup
x∈Z

|Ξ(h)((x, 0), n) − Ξ(v)((x, 0), n)| = O(n1/8+ε). (5.6)

Proof. By the law of the iterated logarithm we have C1(n) = O(n1/4+ε)

almost surely, as n → ∞, and hence it suffices to show

sup
|x|≤n1/4+ε

|Ξ(h)((x, 0), n) − Ξ(v)((x, 0), n)| = O(n1/8+ε) a.s. (5.7)

as n → ∞.

Let κ(x, 0) be the time of the first horizontal visit of C(·) to (x, 0), and for

ℓ ≥ 1 let κ(x, ℓ) denote the time of the ℓ-th horizontal return of C(·) to (x, 0).

Then

Ξ(v)((x, 0), κ(x, ℓ)) =

ℓ
∑

j=1

(

Ξ(v)((x, 0), κ(x, j)) − Ξ(v)((x, 0), κ(x, j − 1))
)

,

which is a sum of i.i.d. random variables with geometric distribution

P (Ξ(v)((x, 0), κ(x, j)) − Ξ(v)((x, 0), κ(x, j − 1)) = i) =
1

2i+1
, i = 0, 1, 2, . . .

By exponential Kolmogorov inequality (see Tóth [14])

P (max
ℓ≤m

|Ξ(v)((x, 0), κ(x, ℓ) − ℓ| > u) ≤ 2 exp

(

− u2

8m

)

.

Hence, we have also

P ( max
|x|≤m

max
ℓ≤m

|Ξ(v)((x, 0), κ(x, ℓ) − ℓ| > u) ≤ 2m exp

(

− u2

8m

)

.

Putting u = m1/2+ε, Borel-Cantelli lemma implies

max
|x|≤m

max
ℓ≤m

|Ξ(v)((x, 0), κ(x, ℓ)) − ℓ| = O(m1/2+ε) a.s.

as m → ∞.

Since

Ξ(h)((x, 0), n) = O(n1/4+ε) a.s., n → ∞,

with m = n1/4+ε, we have the Lemma. �
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This also completes the proof of the Proposition. �

Now Theorem 5.1 follows from strong invariance principle for local time (cf.

Révész [11]) quoted as Theorem C below, and increment results for Wiener local

time (cf. Révész [12], Theorem 11.11).

Theorem C. On a suitable probability space one can define a Wiener process

with local time η and a simple symmetric random walk on Z with local time ξ such

that as n → ∞, for any ε > 0 we have almost surely

sup
x∈Z

|ξ(x, n) − η(x, n)| = O(n1/4+ε).

The proof of Theorem 5.1 is complete. �

Theorems 1.2, 1.3 and 5.1 imply the following Corollary.

Corollary 5.1. Let a(n) be a non-decreasing sequence of positive numbers.

Then

P (sup
x∈Z

Ξ((x, 0), n) > n1/4a(n) i.o.) = 0 or 1

according as
∞
∑

n=1

a2(n)

n
exp

(

−3a4/3(n)

25/3

)

< ∞ or = ∞.

Let b(n) be a non-increasing sequence of positive numbers. Then

P (sup
x∈Z

Ξ((x, 0), n) < n1/4b(n) i.o.) = 0 or 1

according as
∞
∑

n=1

b2(n)

n
< ∞ or = ∞.
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