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1 Introdu
tion and main resultsIn this paper we 
ontinue our study of a simple random walk C(n) on the 2-dimensional 
omblatti
e C
2 that is obtained from Z

2 by removing all horizontal lines o� the x-axis (
f. Csáki et al.[16℄).A formal way of des
ribing a simple random walk C(n) on the above 2-dimensional 
omb latti
e
C

2 
an be formulated via its transition probabilities as follows: for (x, y) ∈ Z
2

P(C(n+ 1) = (x, y ± 1) | C(n) = (x, y)) =
1

2
, if y 6= 0, (1.1)

P(C(n + 1) = (x± 1, 0) | C(n) = (x, 0)) = P(C(n+ 1) = (x,±1) | C(n) = (x, 0)) =
1

4
. (1.2)The 
oordinates of the just de�ned ve
tor valued simple random walk C(n) on C

2 are denotedby C1(n), C2(n), i.e., C(n) := (C1(n), C2(n)).A 
ompa
t way of des
ribing the just introdu
ed transition probabilities for this simple randomwalk C(n) on C
2 is via de�ning

p(u,v) := P(C(n+ 1) = v | C(n) = u) =
1

deg(u)
, (1.3)for lo
ations u and v that are neighbors on C

2, where deg(u) is the number of neighbors of u,otherwise p(u,v) := 0. Consequently, the non-zero transition probabilities are equal to 1/4 if u ison the horizontal axis and they are equal to 1/2 otherwise.This and related models have been studied intensively in the literature and have a number ofappli
ations in various problems in physi
s. See, for example, Arkhin
heev [1℄, [2℄, [3℄, Cassi andRegina [12℄, Dean and Jansons [23℄, Durhuus et al. [25℄, Reynolds [38℄, Zahran [43℄, Zahran et al.[44℄, and the referen
es in these papers. It was observed that the se
ond 
omponent C2(n) behaveslike ordinary Brownian motion, but the �rst 
omponent C1(n) exhibits some anomalous subdi�usionproperty of order n1/4. Zahran [43℄ and Zahran et al. [44℄ applied Fokker�Plan
k equation todes
ribe the properties of 
omb-like model. Weiss and Havlin [42℄ derived the asymptoti
 form forthe probability that C(n) = (x, y) by appealing to a 
entral limit argument. Berta

hi and Zu

a[8℄ obtained spa
e-time asymptoti
 estimates for the n-step transition probabilities p(n)(u,v) :=
P(C(n) = v | C(0) = u), n ≥ 0, from u ∈ C

2 to v ∈ C
2, when u = (2k, 0) or (0, 2k) and

v = (0, 0). Using their estimates, they 
on
luded that, if k/n goes to zero with a 
ertain speed,then p(2n)((2k, 0), (0, 0))/p(2n)((0, 2k), (0, 0)) → 0, as n → ∞, an indi
ation that suggests that theparti
le in this random walk spends most of its time on some tooth of the 
omb. Berta

hi [7℄ notedthat a Brownian motion is the right obje
t to approximate C2(·), but for the �rst 
omponent C1(·)the right obje
t is a Brownian motion time-
hanged by the lo
al time of the se
ond 
omponent.More pre
isely, Berta

hi [7℄ on de�ning the 
ontinous time pro
ess C(nt) = (C1(nt), C2(nt)) bylinear interpolation, established the following remarkable joint weak 
onvergen
e result.2



Theorem A For the R
2 valued random elements C(nt) of C[0,∞) we have

(

C1(nt)

n1/4
,
C2(nt)

n1/2
; t ≥ 0

)

Law−→ (W1(η2(0, t)),W2(t); t ≥ 0), n→ ∞, (1.4)where W1, W2 are two independent Brownian motions and η2(0, t) is the lo
al time pro
ess of W2at zero, and Law−→ denotes weak 
onvergen
e on C([0,∞),R2) endowed with the topology of uniform
onvergen
e on 
ompa
t subsets.Here, and throughout as well, C(I,Rd), respe
tively D(I,Rd), stand for the spa
e of R
d-valued,

d = 1, 2, 
ontinuous, respe
tively 
àdlàg, fun
tions de�ned on an interval I ⊆ [0,∞). R
1 willthroughout be denoted by R.In Csáki et al. [16℄ we established the 
orresponding strong approximation that reads as follows.Re
all that a standard Brownian motion {W (t), t ≥ 0} (
alled also Wiener pro
ess in theliterature) is a mean zero Gaussian pro
ess with 
ovarian
e E(W (t1)W (t2)) = min(t1, t2). Itstwo-parameter lo
al time pro
ess {η(x, t), x ∈ R, t ≥ 0} 
an be de�ned via

∫

A
η(x, t) dx = λ{s : 0 ≤ s ≤ t, W (s) ∈ A} (1.5)for any t ≥ 0 and Borel set A ⊂ R, where λ(·) is the Lebesgue measure, and η(·, ·) is frequentlyreferred to as Brownian lo
al time.Theorem B On an appropriate probability spa
e for the simple random walk

{C(n) = (C1(n), C2(n));n = 0, 1, 2, . . .} on C
2, one 
an 
onstru
t two independent standard Brow-nian motions {W1(t); t ≥ 0}, {W2(t); t ≥ 0} so that, as n→ ∞, we have with any ε > 0

n−1/4|C1(n) −W1(η2(0, n))| + n−1/2|C2(n) −W2(n)| = O(n−1/8+ε) a.s.,where η2(0, ·) is the lo
al time pro
ess at zero of W2(·).The strong approximation nature of Theorem B enabled us to establish some Strassen type al-most sure set of limit points for the simple random walk C(n) = (C1(n), C2(n)) on the 2-dimensional
omb latti
e, as well as the Hirs
h type liminf behaviour (
f. Hirs
h [29℄) of its 
omponents.Here we extend Theorem B for more general distributions along the horizontal and verti
aldire
tions. More pre
isely, let Xj(n), n = 1, 2, ..., j = 1, 2, be two independent sequen
es of i.i.d.integer valued random variables having disributions P1 = {p1(k), k ∈ Z} and P2 = {p2(k), k ∈ Z}respe
tively, satisfying the following 
onditions:
• (i)

∑∞
k=−∞ kpj(k) = 0, j = 1, 2,

• (ii)
∑∞

k=−∞ |k|3pj(k) <∞, j = 1, 2,

• (iii) ψ(θ) :=
∑∞

k=−∞ eiθkpj(k) = 1, j = 1, 2, if and only if θ is an integer multiple of
2π. 3



Remark 1 Condition (iii) is equivalent to the aperiodi
ity of the random walks
{Sj(n) :=

∑n
l=1Xj(l);n = 1, 2, . . .}, j = 1, 2 (see Spitzer [39℄, p. 67).The lo
al time pro
ess of a random walk {S(n) :=

∑n
l=1X(l); n = 0, 1, 2, . . .} with values on Z,is de�ned by

ξ(k, n) := #{i : 1 ≤ i ≤ n, S(i) = k}, k ∈ Z, n = 1, 2, . . . (1.6)Keeping our previous notation in the 
ontext of 
onditions (i), (ii) and (iii) as well, from now on
C(n) will denote a random walk on the 2-dimensional 
omb latti
e C

2 with the following transitionprobabilities:
P(C(n + 1) = (x, y + k) | C(n) = (x, y)) = p2(k), (x, y, k) ∈ Z

3, y 6= 0, (1.7)
P(C(n + 1) = (x, k) | C(n) = (x, 0)) =

1

2
p2(k), (x, k) ∈ Z

2, (1.8)
P(C(n+ 1) = (x+ k, 0) | C(n) = (x, 0)) =

1

2
p1(k), (x, k) ∈ Z

2. (1.9)Unless otherwise stated, we assume that C(0) = 0 = (0, 0).Theorem 1.1 Suppose that the 
onditions (i) − (iii) are met. Assume that, on an appropriateprobability spa
e for two independent random walks Sj(n) =
∑n

l=1Xj(l) with their respe
tive lo
altime pro
esses ξj(·, ·), j = 1, 2, one 
an 
onstru
t two independent Brownian motions {Wj(t), t ≥ 0}with their respe
tive lo
al time pro
esses ηj(·, ·), j = 1, 2 su
h that for any ε > 0

lim
n→∞

n−α−ε|Sj(n) − σjWj(n)| = 0 a.s. (1.10)and
lim

n→∞
n−β−ε sup

x∈Z

∣

∣

∣

∣

∣

ξj(x, n) − 1

σ2
j

ηj(x, nσ
2
j )

∣

∣

∣

∣

∣

= 0 a.s. (1.11)hold simultaneously with some 0 < α, β < 1/2, as n → ∞. Then, on a possibly larger probabilityspa
e for {C(n) = (C1(n), C2(n));n = 0, 1, 2, . . .} on C
2, as n→ ∞, we have with any ε > 0

∣

∣

∣

∣

C1(n) − σ1W1

(

1

σ2
2

η2(0, nσ
2
2)

)∣

∣

∣

∣

= O(nϑ/2+ε) a.s.and
|C2(n) − σ2W2(n)| = O(nα∗+ε) a.s.simultaneously, where σ2

j :=
∑∞

k=−∞ k2pj(k), j = 1, 2,
α∗ := max(α, 1/4) and ϑ := max(α∗, β).4



We note in passing that under various random walk 
onditions the assumptions (1.10) and (1.11)hold true. A few of su
h examples are listed in Se
tion 6.The intrinsi
 nature of random walks is usually highlighted by studying their lo
al time behaviour(
f., e.g., Borodin [10℄, Révész [37℄, Csáki et al. [15℄, and referen
es in these works). The study oflo
al time is also of interest 
on
erning some random walk problems in physi
s. In this regard werefer to Ferraro and Zaninetti [27℄, who deal with various statisti
s of the "number of times a siteis visited by a walker", 
alled "lo
al time" in the present paper. Building on their previous paper[26℄, in [27℄ they present a formula for the probability that a site was visited exa
tly r times after
n steps, and then derive all moments of this distribution. Naturally, these moments depend on thetype of random walk in hand, and spe
i�
 formulas are given in [27℄ for the mean and varian
ein 
ase of simple symmetri
 random walks on latti
es with various boundary 
onditions. Here weare to 
ontinue our exposition with studying the asymptoti
 lo
al time behavior of a walker on2-dimensional 
omb latti
e as detailed on the next few pages of this se
tion.De�ne now the lo
al time pro
ess Ξ(·, ·) of the random walk {C(n);n = 0, 1, . . .} on the 2-dimensional 
omb latti
e C

2 by
Ξ(x, n) := #{0 < k ≤ n : C(k) = x}, x ∈ Z

2, n = 1, 2, . . . (1.12)The next result 
on
ludes a strong approximation of the lo
al time pro
ess Ξ((x, 0), n).Theorem 1.2 On the probability spa
e of Theorem 1.1, as n→ ∞, we have for any δ > 0

sup
x∈Z

∣

∣

∣

∣

Ξ((x, 0), n) − 2

σ2
1

η1

(

x,
σ2

1

σ2
2

η2(0, σ
2
2n)

)∣

∣

∣

∣

= O(nβ∗/2+δ) a.s., (1.13)where β∗ = max(β, 1/4).Corollary 1.1 below establishes iterated lo
al time approximations for Ξ((x, 0), n) and Ξ((x, y), n)over in
reasing subintervals for (x, y) ∈ Z
2 via Theorem 1.3.Theorem 1.3 On the probability spa
e of Theorem 1.1, as n→ ∞, we have for any 0 < ε < 1/4

max
|x|≤n1/4−ε

|Ξ((x, 0), n) − Ξ((0, 0), n)| = O(n1/4−δ) a.s. (1.14)and
max

0<|y|≤n1/4−ε
max

|x|≤n1/4−ε
|Ξ((x, y), n) − 1

2
Ξ((0, 0), n)| = O(n1/4−δ) a.s., (1.15)for any 0 < δ < ε/2, where max in (1.14) and (1.15) is taken on the integers.Corollary 1.1 On the probability spa
e of Theorem 1.1, as n→ ∞, we have for any 0 < ε < 1/4

max
|x|≤n1/4−ε

∣

∣

∣

∣

Ξ((x, 0), n) − 2

σ2
1

η1

(

0,
σ2

1

σ2
2

η2(0, σ
2
2n)

)∣

∣

∣

∣

= O(nβ∗/2+ε) a.s. (1.16)5



and
max

0<|y|≤n1/4−ε
max

|x|≤n1/4−ε

∣

∣

∣

∣

Ξ((x, y), n) − 1

σ2
1

η1

(

0,
σ2

1

σ2
2

η2(0, σ
2
2n)

)∣

∣

∣

∣

= O(nβ∗/2+ε) a.s. (1.17)where β∗ = max(β, 1/4) and max in (1.16) and (1.17) is taken on the integers.Remark 2We 
all attention to the fa
t that on the x-axis as in (1.16), the lo
al time is approximatelytwi
e as mu
h as in (1.17), where y 6= 0 (
f. also (1.14) versus (1.15) in this regard).From these strong approximation results one 
an easily 
on
lude almost sure limit theorems forthe path behaviour of C(·) and its lo
al times Ξ(·, ·) in hand. In this paper we 
on
entrate onalmost sure lo
al time path behaviour, and only note that the almost sure path behaviour of therandom walk C(·) on the 2-dimensional 
omb latti
e C
2 under the 
onditions of Theorem 1.1 
anbe studied similarly to that of a simple random walk C(·) on C

2 as in Csáki et al. [16℄.Sin
e, by Theorem E below, the iterated lo
al time pro
ess {η1(0, η2(0, t)); t ≥ 0} has the samedistribution as {sup0≤s≤tW1(η2(0, s)); t ≥ 0}, the following result follows from Theorem 2.2 in [19℄.Corollary 1.2 The net
{

η1(0, η2(0, zt))

25/43−3/4t1/4(log log t)3/4
; 0 ≤ z ≤ 1

}

t≥3

,as t→ ∞, is almost surely relatively 
ompa
t in the spa
e C([0, 1],R) of 
ontinuous fun
tions from
[0, 1] to R, and the set of its limit points is the 
lass of nonde
reasing absolutely 
ontinuous fun
tions(with respe
t to the Lebesgue measure) on [0, 1] for whi
h

f(0) = 0 and

∫ 1

0
|ḟ(x)|4/3 dx ≤ 1. (1.18)In what follows we will need the following s
aling properties of Brownian lo
al time

η(x, t)
d
=

1√
a
η(x

√
a, at), a > 0, t > 0, x ∈ R,where d

= means equality in distribution. Consequently, we also have
{

1

σ2
1

η1

(

0,
σ2

1

σ2
2

η2(0, σ
2
2t)

)

, t ≥ 0

}

d
=

{

1

σ1
√
σ2
η1(0, η2(0, t)), t ≥ 0

}

. (1.19)For the next results we 
onsider a 
ontinuous version of the lo
al times Ξ(·, ·) in (1.12), obtainedby linear interpolation. A 
ombination of Corollaries 1.1 and 1.2 yields the following 
on
lusions.6



Corollary 1.3 Under the 
onditions of Theorem 1.1, for �xed (x, y) ∈ Z
2, the sequen
es

{

σ1
√
σ2 Ξ((x, 0), zn)

29/43−3/4n1/4(log log n)3/4
; 0 ≤ z ≤ 1

}

n≥3

,and
{

σ1
√
σ2 Ξ((x, y), zn)

25/43−3/4n1/4(log log n)3/4
; 0 ≤ z ≤ 1

}

n≥3

, y 6= 0,as n → ∞, are almost surely relatively 
ompa
t in the spa
e C([0, 1],R), and the set of their limitpoints 
oin
ides with that in Corollary 1.2.In parti
ular, we have the following laws of the iterated logarithm for �xed (x, y) ∈ Z
2:

lim sup
t→∞

η1(0, η2(0, t))

t1/4(log log t)3/4
=

25/4

33/4
a.s., (1.20)

lim sup
n→∞

Ξ((x, 0), n)

n1/4(log log n)3/4
=

29/4

33/4σ1
√
σ2

a.s., (1.21)
lim sup

n→∞

Ξ((x, y), n)

n1/4(log log n)3/4
=

25/4

33/4σ1
√
σ2

a.s. y 6= 0. (1.22)Theorem C ([17℄)
lim sup

t→∞

supx∈R η1(x, η2(0, t))

t1/4(log log t)3/4
=

25/4

33/4
a.s.Con
erning liminf results, using Theorem E below, and a Hirs
h-type result of Bertoin [9℄, we
on
lude the following Hirs
h-type law [29℄.Corollary 1.4 Let β(t) > 0, t ≥ 0, be a non-in
reasing fun
tion. Then we have almost surely that

lim inf
t→∞

η1(0, η2(0, t))

t1/4β(t)
= 0 or ∞a

ording as the integral ∫∞

1 β(t)/t dt diverges or 
onverges.From Corollaries 1.1 and 1.4 we get the following results.Corollary 1.5 Let β(n), n = 1, 2, . . . be a non-in
reasing sequen
e of positive numbers. Then, for�xed (x, y) ∈ Z
2, under the 
onditions of Theorem 1.1, we have almost surely that

lim inf
n→∞

Ξ((x, y), n)

n1/4β(n)
= 0 or ∞a

ording as the series ∑∞

1 β(n)/n diverges or 
onverges.7



We 
on
lude this Se
tion by spelling out strong and weak 
onvergen
e results that easily followfrom Theorem 1.1, Theorem 1.2 and Corollary 1.1, respe
tively. To begin with, Theorem 1.1 yieldsa weak 
onvergen
e for C([nt]) on the spa
e D([0,∞),R2) endowed with a uniform topology thatis de�ned as follows.For fun
tions (f1(t), f2(t)), (g1(t), g2(t)) in the fun
tion spa
e D([0,∞),R2), and for 
ompa
tsubsets A of [0,∞), we de�ne
∆ = ∆(A, (f1, f2), (g1, g2)) := sup

t∈A
‖(f1(t) − g1(t), f2(t) − g2(t))‖,where ‖ · ‖ is a norm in R

2.We also de�ne the measurable spa
e (D([0,∞),R2),D), where D is the σ-�eld generated by the
olle
tion of all ∆-open balls of D([0,∞),R2), where a ball is a subset of D([0,∞),R2) of the form
{(f1, f2) : ∆(A, (f1, f2), (g1, g2)) < r}for some (g1, g2) ∈ D([0,∞),R2), some r > 0, and some 
ompa
t interval A of [0,∞).In view of these two de�nitions, Theorem 1.1 yields a weak 
onvergen
e result in terms of afun
tional 
onvergen
e in distribution, as follows.Corollary 1.6 Under the 
onditions of Theorem 1.1, as n→ ∞, we have

h

(

C1([nt])

n1/4
,
C2([nt])

n1/2

)

d−→h

(

σ1√
σ2
W1(η2(0, t)), σ2W2(t)

) (1.23)for all h : D([0,∞),R2) −→ R
2 that are (D([0,∞),R2),D) measurable and ∆-
ontinuous, or ∆-
ontinuous ex
ept at points forming a set of measure zero on (D([0,∞),R2),D) with respe
t to themeasure generated by (W1(η2(0, t)),W2(t)), where W1, W2 are two independent Brownian motionsand η2(0, t) is the lo
al time pro
ess of W2(·) at zero, and d−→ denotes 
onvergen
e in distribution.As an example, on taking t = 1 in Corollary 1.6, we obtain the following 
onvergen
e in distri-bution result: as n→ ∞,

(√
σ2

σ1

C1(n)

n1/4
,
C2(n)

σ2n1/2

)

d−→(W1(η2(0, 1)),W2(1)). (1.24)Con
erning the joint distribution of the limiting ve
tor valued random variable, we have
(W1(η2(0, 1)),W2(1))

d
=(X|Y |1/2, Z),where (|Y |, Z) has the joint distribution of the ve
tor (η2(0, 1),W2(1)), X is equal in distributionto the random variable W1(1), and is independent of (|Y |, Z).8



As to the joint density of (|Y |, Z), we have (
f. 1.3.8 on p. 127 in Borodin and Salminen [11℄)
P(|Y | ∈ dy, Z ∈ dz) =

1√
2π

(y + |z|)e−
(y+|z|)2

2 dy dz, y ≥ 0, z ∈ R.Now, on a

ount of the independen
e of X and (|Y |, Z), the joint density fun
tion of the randomvariables (X, |Y |, Z) reads as follows.
P(X ∈ dx, |Y | ∈ dy, Z ∈ dz) =

1

2π
(y + |z|)e−

x2+(y+|z|)2

2 dx dy dz, y ≥ 0, x, z ∈ R.By 
hanging variables, via 
al
ulating the joint density fun
tion of the random variables U :=
X|Y |1/2, Y, Z, and then integrating it out with respe
t to y ∈ [0,∞), we arrive at the joint densityfun
tion of the random variables (U = X|Y |1/2, Z), whi
h reads as follows.

P(X|Y |1/2 ∈ du,Z ∈ dz) =
1

2π

∫ ∞

0

y + |z|
y1/2

e−
u2

2y
−

(y+|z|)2

2 dy du dz u, z ∈ R. (1.25)Clearly, Z is a standard normal random variable. The marginal distribution of U = X|Y |1/2is of spe
ial interest in that this random variable �rst appeared in the 
on
lusion of Dobrushin's
lassi
al Theorem 2 of his fundamental paper [24℄, that was �rst to deal with the so-
alled se
ondorder limit law for additive fun
tionals of a simple symmetri
 random walk on the real line. Inview of the above joint density fun
tion in (1.25), on integrating it out with respe
t to z over thereal line, we are now to also 
on
lude Dobrushin's formula for the density fun
tion of this randomvariable.
P(U ∈ du) =

1

π

∫ ∞

0

∫ ∞

0

y + z√
y
e−

u2

2y
−

(y+z)2

2 dy dz du

=
1

π

∫ ∞

0

1√
y
e−

u2

2y
− y2

2 dy du =
2

π

∫ ∞

0
e−

u2

2v2 −
v4

2 dv du.As an immediate 
onsequen
e of Theorem 1.2 now, on 
hoosing δ > 0 small enough, we 
on
ludethe following strong invarian
e prin
iple.Corollary 1.7 On the probability spa
e of Theorem 1.1, we have almost surely, as n→ ∞,
sup
t∈A

sup
x∈Z

∣

∣

∣

∣

Ξ((x, 0), [nt]) − 2

σ2
1

η1

(

x,
σ2

1

σ2
2

η2(0, σ
2
2 nt)

)∣

∣

∣

∣

n1/4
= o(1)for all 
ompa
t subsets A of [0,∞).The next result 
on
ludes weak 
onvergen
e for Ξ(([x], 0), [nt]) via in probability nearness ofappropriate fun
tionals on the fun
tion spa
e D(R × [0,∞),R) with respe
t to the norm

∆1 = ∆1(A, f(·, ·), g(·, ·)) := sup
t∈A

sup
x∈R

|f(x, t) − g(x, t)|9



for real valued fun
tions f(·, ·), g(·, ·) and 
ompa
t subsets A of [0,∞). Here D(R×[0,∞),R) standsfor the spa
e of real-valued bivariate 
àdlàg fun
tions de�ned on R × [0,∞).In order to state our result in this regard, we de�ne the measurable spa
e (D(R× [0,∞),R),D),where D is the σ-�eld generated by the 
olle
tion of all ∆1-open balls of D(R × [0,∞),R), where aball is a subset of D(R × [0,∞),R) of the form
{f(·, ·) : ∆1(A, f(·, ·), g(·, ·)) < r}for some g(·, ·) ∈ D(R × [0,∞),R), some r > 0, and some 
ompa
t interval A of [0,∞).In view of these de�nitions, Corollary 1.7 yields an in probability nearness of fun
tionals, whi
hreads as follows.Corollary 1.8 On the probability spa
e of Theorem 1.1, as n→ ∞, we have

∣

∣

∣

∣

h

(

Ξ(([x], 0), [nt])

n1/4

)

− h

(

2

σ2
1

η1

(

x√
n
,
σ2

1

σ2
2

η2(0, σ
2
2 t

))∣

∣

∣

∣

= op(1) (1.26)for all h : D(R× [0,∞),R) −→ R that are (D(R× [0,∞),R),D) measurable and ∆1-
ontinuous, or
∆1-
ontinuous ex
ept at points forming a set of measure zero on (D(R × [0,∞),R),D) with respe
tto the measure generated by 2

σ2
1

η1

(

x,
σ2

1

σ2
2

η2(0, σ
2
2 t)

) on this spa
e, where η1(·, ·), η2(·, ·) are twoindependent Brownian lo
al time pro
esses.Taking fun
tionals of interest, 
orresponding 
onvergen
e in distribution results 
an be easilydedu
ed from (1.26). For example, for all h as in Corollary 1.8, as n→ ∞, we have
h

(

supx∈Z Ξ((x, 0), [nt])

n1/4

)

d−→h

(

2

σ2
1

sup
x∈R

η1

(

x,
σ2

1

σ2
2

η2(0, σ
2
2 t)

))

, (1.27)where d−→ denotes 
onvergen
e in distribution.We note in passing that taking supx∈R instead of supx∈Z on the right hand side in (1.27) isallowed in the limit, due to the modulus of 
ontinuity of Brownian lo
al time in its spa
e parameter(
f. Trotter [41℄, M
Kean [33℄ and Ray [35℄ as 
ited in Csáki et al. [13℄).In view of Corollary 1.1, on 
hoosing ε > 0 small enough, we arrive at the following stronginvarian
e prin
iples.Corollary 1.9 On the probability spa
e of Theorem 1.1, we have almost surely, as n→ ∞,
sup
t∈A

max
|x|≤n1/4−ε

∣

∣

∣

∣

Ξ((x, 0), [nt]) − 2

σ2
1

η1

(

0,
σ2

1

σ2
2

η2(0, σ
2
2 nt)

)∣

∣

∣

∣

n1/4
= o(1),10



and
sup
t∈A

max
0<|y|≤n1/4−ε

max
|x|≤n1/4−ε

∣

∣

∣

∣

Ξ((x, y), [nt]) − 1

σ2
1

η1

(

0,
σ2

1

σ2
2

η2(0, σ
2
2 nt)

)∣

∣

∣

∣

n1/4
= o(1),for all 
ompa
t subsets A of [0,∞), where max is taken on the integers.Corollary 1.9 yields a weak 
onvergen
e for Ξ((x, y), [nt]) with (x, y) ∈ Z

2 �xed, on the fun
tionspa
e D([0,∞),R) with respe
t to the usual sup norm
∆2 = ∆2(A, f(·), g(·)) := sup

t∈A
|f(t) − g(t)|for real valued fun
tions f(·), g(·) and 
ompa
t subsets A of [0,∞).In order to state our result in this regard, we de�ne the usual measurable spa
e (D([0,∞),R),D),where D now is the σ-�eld generated by the 
olle
tion of all ∆2-open balls of D([0,∞),R), wherea ball now is a subset of D([0,∞),R) of the form

{f(·) : ∆2(A, f(·), g(·)) < r}for some g(·) ∈ D([0,∞),R), some r > 0, and some 
ompa
t interval A of [0,∞).In view of these de�nitions, Corollary 1.9, 
ombined with (1.19), yields weak 
onvergen
e resultsin terms of fun
tional 
onvergen
e in distribution as follows.Corollary 1.10 Under the 
onditions of Theorem 1.1, with (x, y) ∈ Z
2 �xed, as n→ ∞, we have

h

(

Ξ((x, 0), [nt])

n1/4

)

d−→h

(

2

σ1
√
σ2
η1(0, η2(0, t))

)

, (1.28)and, when y 6= 0,
h

(

Ξ((x, y), [nt])

n1/4

)

d−→h

(

1

σ1
√
σ2
η1(0, η2(0, t))

)

, (1.29)for all h : D([0,∞),R) −→ R that are (D([0,∞),R),D) measurable and ∆2-
ontinuous, or ∆2-
ontinuous ex
ept at points forming a set of measure zero on (D([0,∞),R),D) with respe
t to themeasure generated by η1(0, η2(0, t)), where η1(0, ·), η2(0, ·) are two independent Brownian lo
al timepro
esses, and d−→ denotes 
onvergen
e in distribution.On taking h to be the identity map, and t = 1 in (1.28) and, respe
tively, in (1.29), as n→ ∞,we obtain for (x, y) ∈ Z
2

Ξ((x, 0), n)

n1/4

d−→ 2

σ1
√
σ2
η1(0, η2(0, 1))

d
=

2

σ1
√
σ2

|X|
√

|Y | (1.30)11



and, when y 6= 0, then
Ξ((x, y), n)

n1/4

d−→ 1

σ1
√
σ2
η1(0, η2(0, 1))

d
=

1

σ1
√
σ2

|X|
√

|Y |, (1.31)where X and Y are independent standard normal random variables.We note that the statement of (1.30) 
an also be obtained from (1.26) in a similar way if we �x
x ∈ Z in (1.26) as well. On the other hand, we emphasize that statements like (1.27) do not followfrom the �rst statement of Corollary 1.9.The stru
ture of this paper from now on is as follows. In Se
tion 2 we give preliminary fa
ts andresults, and in Se
tions 3-5 we prove our Theorems 1.1-1.3. In Se
tion 6 we illustrate the generalnature of our results by dis
ussing several spe
i�
 examples of simultaneous invarian
e prin
iples forrandom walks and their lo
al times that, in turn, yield our Theorems 1.2, 1.3 and Corollary 1.1 withexpli
it rates of 
onvergen
e. We 
on
lude this paper in Se
tion 7 by making further 
omments,and remarks on our results, in
luding that of Proposition 7.1 in there, and those of the examples ofSe
tion 6.2 PreliminariesLet

ρ(0) := 0, ρ(N) := min{k > ρ(N − 1) : S(k) = 0}, N = 1, 2, . . . (2.1)be the re
urren
e times of an integer valued random walk pro
ess {S(n); n = 0, 1, 2, . . .}.De�ne the inverse lo
al time pro
ess of a standard Brownian motion W (·) by
τ(t) := inf{s : η(0, s) ≥ t}, t ≥ 0. (2.2)In 
ase of the simple symmetri
 random walk on Z, denote the re
urren
e time ρ(·) by ρ∗(·).Wequote from Révész ([37℄, p. 119), the following result.Lemma A For any 0 < ε < 1, with probability 1 for all large N,

(1 − ε)
N2

2 log logN
≤ ρ∗(N) ≤ N2(logN)2+ε.Lemma B (
f. [14℄) On an appropriate probability spa
e for the random walk {S(n); n = 0, 1, 2, . . .}satisfying 
onditions (i)-(iii), as N → ∞, we have

|σ2ρ(N) − τ(Nσ2)| = O(N5/3) a.s.From Lemmas A and B, we 
on
lude the following result.12



Lemma C For any 0 < ε < 1, we have with probability 1 for all large enough N that
(1 − ε)

N2

2 log logN
≤ τ(N) ≤ N2(logN)2+ε.From Lemmas B and C now, we arrive at the following 
on
lusion for the re
urren
e times ofour walks.Theorem D Suppose that the random walks {Sj(n); n = 0, 1, 2, . . .}, j = 1, 2, satisfy 
onditions(i)-(iii). Then for any 0 < ε < 1, we have with probability 1 for all large enough N that

(1 − ε)
σ2

jN
2

2 log logN
≤ ρj(N) ≤ σ2

jN
2(logN)2+ε,where ρj(·), j = 1, 2 are the re
urren
e times of Sj(·) as de�ned in (2.1).A well-known result of Lévy [32℄ reads as follows.Theorem E Let W (·) be a standard Brownian motion with lo
al time pro
ess η(·, ·). The followingequality in distribution holds:

{η(0, t), t ≥ 0} d
={ sup

0≤s≤t
W (s), t ≥ 0}.As to the random walk C(n), n = 0, 1, 2, . . . , it 
an be 
onstru
ted as follows (
f. [16℄). Considertwo independent integer valued random walks {Sj(n); n = 1, 2, . . .}, j = 1, 2, with respe
tive one-step distributions Pj = {pj(k), k ∈ Z}, j = 1, 2. We may assume that, on the probability spa
eof these random walks, we have an i.i.d. sequen
e G1, G2, . . . of geometri
 random variables withdistribution

P(G1 = k) =
1

2k+1
, k = 0, 1, 2, . . . ,independent of the random walks Sj(·), j = 1, 2.On the just des
ribed probability spa
e we may also 
onstru
t the random walk C(n) on the2-dimensional 
omb latti
e C

2 as follows. Put TN = G1+G2+ · · ·+GN , N = 1, 2, . . . , and let ρ2(N)denote the time of the N -th return to 0 of the random walk S2(·). For n = 0, . . . , T1, let C1(n) =
S1(n) and C2(n) = 0. For n = T1 + 1, . . . , T1 + ρ2(1), let C1(n) = C1(T1), C2(n) = S2(n − T1). Ingeneral, for TN + ρ2(N) < n ≤ TN+1 + ρ2(N), let

C1(n) = S1(n− ρ2(N)),

C2(n) = 0,and, for TN+1 + ρ2(N) < n ≤ TN+1 + ρ2(N + 1), let
C1(n) = C1(TN+1 + ρ2(N)) = S1(TN+1),

C2(n) = S2(n− TN+1).13



Then, in terms of these de�nitions for C1(n) and C2(n), it 
an be seen that C(n) = (C1(n), C2(n))is a random walk on the 2-dimensional 
omb latti
e C
2 with transition probabilities as in (1.7)-(1.9).Consider now an arbitrary random walk {S(n) =
∑n

l=1X(l); n ≥ 0}, on Z. De�ne its potentialkernel a(·) by
a(x) :=

∞
∑

n=0

(P(S(n) = 0) − P(S(n) = −x)), x ∈ Z.Introdu
e
γ(x) :=

1

a(x) + a(−x) . (2.3)Then, for every one-dimensional aperiodi
 re
urrent random walk S(n), for x = ±1,±2, . . ., onsimply writing ρ for ρ(1), we have (
f. Kesten and Spitzer, [31℄)
P(ξ(x, ρ) = 0) = 1 − γ(x),

P(ξ(x, ρ) = k) = γ2(x)(1 − γ(x))k−1, k = 1, 2, . . . (2.4)
Eξ(x, ρ) = 1, Varξ(x, ρ) = 2(a(x) + a(−x) − 1),

lim
x→∞

a(x) + a(−x)
x

=
2

σ2
, (2.5)where σ2 = Var(X(1)).Lemma 2.1 Let θ(x, 1) be the time between the �rst visit and the �rst return of C(·) to (x, 0). Thenfor x = ±1,±2, . . . , y = ±1,±2, . . ., we have

P(Ξ((x, y), θ(x, 1)) = 0) = 1 − γ2(y)

2
, (2.6)

P(Ξ((x, y), θ(x, 1)) = k) =
γ2
2(y)

2
(1 − γ2(y))

k−1, k = 1, 2..., (2.7)
E(Ξ((x, y), θ(x, 1)) =

1

2
. (2.8)Furthermore, for

g(λ) := E exp(λΞ((x, y), θ(x, 1))) = 1 +
1

2

1 − e−λ

1 − 1

γ2(y)
(1 − e−λ)

, (2.9)we have
g(λ) ≤ exp

(

λ

2

(

1 +
2λ

γ2(y)

)) (2.10)if 2λ < γ2(y), where γ2(·) is de�ned à la γ(·) in (2.3) asso
iated with the random walk S2(·).14



Proof. De�ne the indi
ator variable I as P(I = 0) = P(I = 1) = 1
2 , that is independent from thesequen
e X2(k), k = 1, 2, . . . Observe that, with this notation,

Ξ((x, y), θ(x, 1)) = Iξ2(y, ρ2), |y| > 0,where I = 1 if the �rst step from (x, 0) is verti
al, and 0 if it is horizontal, and ρ2 is the time of the�rst return to 0 of the random walk S2(·). Using now (2.4), we get (2.6) and (2.7). As regards (2.9),it follows by straightforward 
al
ulations, from whi
h we 
an 
on
lude (2.10) as well, via some more
al
ulations.We make use of the following almost sure properties of the in
rements for a Brownian motion(Csörg® and Révész [22℄), Brownian lo
al time (Csáki et al. [13℄), and random walk lo
al time(Csáki and Földes [18℄, Jain and Pruitt [30℄).Theorem F Let 0 < aT ≤ T be a non-de
reasing fun
tion of T . Then, as T → ∞, we have almostsurely
sup

0≤t≤T−aT

sup
s≤aT

|W (t+ s) −W (t)| = O(a
1/2
T (log(T/aT ) + log log T )1/2), (2.11)

sup
x∈R

sup
0≤t≤T−aT

(η(x, t+ aT ) − η(x, t)) = O(a
1/2
T (log(T/aT ) + log log T )1/2), (2.12)and, under the 
onditions (i)-(iii) for a random walk lo
al time ξ(0, ·), as N → ∞, we have almostsurely

max
0≤n≤N−aN

(ξ(0, n + aN ) − ξ(0, n)) = O(a
1/2
N (log(N/aN ) + log logN)1/2). (2.13)Remark 3 We note that for (2.13) of Theorem F to hold, instead of 
ondition (ii), we only needthe existen
e of two moments.In the proofs we also need in
rement results for ξ(x, ·), uniformly in x. Su
h results are notfound in the 
ited papers, but 
ombining (2.12) and (2.13) with the assumed rate (1.11), we 
anobtain the following result.Corollary A Under the 
onditions of Theorem 1.1, for any ε > 0, we have almost surely, as

N → ∞,
sup
x∈Z

sup
0≤n≤N−aN

(ξj(x, n+ aN ) − ξj(x, n)) = O(a
1/2+ε
N ) +O(Nβ+ε), j = 1, 2. (2.14)The following theorem is a version of Hoe�ding's inequality, whi
h is expli
itly stated in [40℄.Theorem G Let Gi be i.i.d.random variables with the 
ommon geometri
 distribution P(Gi = k) =

2−k−1, k = 0, 1, 2... Then
P

(

max
1≤j≤n

∣

∣

∣

∣

∣

j
∑

i=1

(Gi − 1)

∣

∣

∣

∣

∣

> λ

)

≤ 2 exp(−λ2/8n)for 0 < λ < na with some a > 0. 15



3 Proof of Theorem 1.1The proof is based on the following result.Lemma 3.1 Suppose that 
onditions (i)-(iii) are met. If TN + ρ2(N) ≤ n < TN+1 + ρ2(N + 1),then, as n→ ∞, we have for any ε > 0

N = O(n1/2+ε) a.s.and
ξ2(0, n) = N +O(n1/4+ε) a.s.On using Theorem D and Theorem F, the proof of this lemma goes exa
tly the same way asthat of the 
orresponding Lemma 2.1 in [16℄.As to the proof of our Theorem 1.1, it goes along the lines of Theorem 1.1 in [16℄, but we presentit for the sake of 
ompleteness. In what follows we use several times the assumptions (1.10) and(1.11), as well as in
rement results for the Brownian motion (see Theorem F).If TN + ρ2(N) ≤ n < TN+1 + ρ2(N), then

C1(n) = S1(n− ρ2(N)) = σ1W1(n− ρ2(N)) +O(T α+ε
N ) = σ1W1(TN ) +O(N α+ε)

= σ1W1(N)+O(N α∗+ε) = σ1W1(ξ2(0, n))+O(nα∗/2+ε) = σ1W1

(

1

σ2
2

η2(0, nσ
2
2)

)

+O(nϑ/2+ε) a.s.Sin
e C2(n) = 0 if TN + ρ2(N) ≤ n < TN+1 + ρ2(N), we only have to estimate W2(n). We have
|W2(n)| ≤ |W2(ρ2(N))| + sup

0≤t≤TN+1

|W2(ρ2(N) + t) −W2(ρ2(N))|

= |W2(ρ2(N))| +O(N1/2+ε) =
1

σ2
S2(ρ2(N)) +O(nα∗+ε) = O(nα∗+ε),as S2(ρ2(N)) = 0, i.e.,

0 = C2(n) = σ2W2(n) +O(nα∗+ε).In the 
ase when TN+1 + ρ2(N) ≤ n < TN+1 + ρ2(N + 1), then, for any ε > 0, we have almostsurely
C1(n) = S1(TN+1) = σ1W1(N) +O(Nα∗+ε) = σ1W1(ξ2(0, n)) +O(nα∗/2+ε)

= σ1W1

(

1

σ2
2

η2(0, nσ
2
2)

)

+O(nϑ/2+ε),and
C2(n) = S2(n− TN+1) = σ2W2(n − TN+1) +O(nα+ε) = σ2W2(n) +O(nα∗+ε).This 
ompletes the proof of Theorem 1.1. 2 16



4 Proof of Theorem 1.2Re
all the de�nitions and 
onstru
tions in Se
tion 2. For TN + ρ2(N) < n ≤ TN+1 + ρ2(N) thenumber of horizontal steps, out of the �rst n steps, is equal to n− ρ2(N), and for TN+1 + ρ2(N) <
n ≤ TN+1 + ρ2(N + 1) it is equal to TN+1. So we may de�ne the number of horizontal visits to
(x, 0) ∈ Z2 up to time n by

H((x, 0), n) :=

{

ξ1(x, n − ρ2(N)) if TN + ρ2(N) < n ≤ TN+1 + ρ2(N),
ξ1(x, TN+1) if TN+1 + ρ2(N) < n ≤ TN+1 + ρ2(N + 1),

(4.1)and the number of verti
al visits to (x, 0) up to time n is de�ned by
V ((x, 0), n) := Ξ((x, 0), n) −H((x, 0), n). (4.2)For TN , as a sum of i.i.d. geometri
 random variables, we have
TN = N +O((N log logN)1/2) a.s.as N → ∞. Therefore, using Corollary A, we easily obtain for any δ > 0 that, as N → ∞, we havealmost surely
ξ1(x, TN ) = ξ1(x,N) +O(Nβ∗+δ), (4.3)and

ξ1(x, TN+1) = ξ1(x,N + 1) +O(Nβ∗+δ) = ξ1(x,N) +O(Nβ∗+δ),where β∗ is as in Theorem 1.2.If TN + ρ2(N) ≤ n < TN+1 + ρ2(N + 1), then
ξ1(x, TN ) ≤ ξ1(x, n − ρ2(N)) ≤ ξ1(x, TN+1). (4.4)Hen
e, if TN + ρ2(N) ≤ n < TN+1 + ρ2(N + 1), then, by (4.3) and (4.4), we have almost surelyfor any δ > 0, as n→ ∞,

H((x, 0), n) = ξ1(x,N) +O(Nβ∗+δ)

= ξ1(x, ξ2(0, n)) +O(nβ∗/2+δ)

=
1

σ2
1

η1

(

x, σ2
1ξ2(0, n)

)

+O(nβ∗/2+δ)

=
1

σ2
1

η1

(

x,
σ2

1

σ2
2

η2(0, σ
2
2n)

)

+O(nβ∗/2+δ), (4.5)where we used the assumed approximation rates, Lemma 3.1 and Theorem F.In the following lemma we show that the number of horizontal and verti
al visits are very 
loseto ea
h other. 17



Lemma 4.1 For any δ > 0, as n→ ∞, we have
sup
x∈Z

|H((x, 0), n) − V ((x, 0), n)| = O(n1/8+δ) a.s. (4.6)Proof. It follows from Theorem 1.1 that C1(n) ≤ n1/4+δ almost surely for any δ > 0 and su�
ientlylarge n. Hen
e it su�
es to show that
max

|x|≤n1/4+δ
|H((x, 0), n) − V ((x, 0), n)| = O(n1/8+δ) a.s. (4.7)as n→ ∞. Here and throughout the proof max is taken on the integers.Let κ(x, 0) be the time of the �rst visit of C(·) to (x, 0), and for ℓ ≥ 1 let κ(x, ℓ) be the time ofthe ℓ-th horizontal visit to (x, 0). Then

V ((x, 0), κ(x, ℓ)) =

ℓ
∑

j=1

(V ((x, 0), κ(x, j)) − V ((x, 0), κ(x, j − 1))) ,whi
h is a sum of i.i.d. random variables with geometri
 distribution, with parameter 1/2. Then wehave by Theorem G that
P(max

|x|≤m
max
ℓ≤m

|V ((x, 0), κ(x, ℓ) − ℓ| > u) ≤ m exp

(

− u2

8m

)

.Putting u = m1/2+δ, Borel-Cantelli lemma implies
max
|x|≤m

max
ℓ≤m

|V ((x, 0), κ(x, ℓ)) − ℓ| = O(m1/2+δ) a.s.as m→ ∞.It follows from (4.5) that
sup
x∈Z

H((x, 0), n) ≤ n1/4+δalmost surely for any δ > 0 and large n. Hen
e putting m = n1/4+δ, we obtain
max

|x|≤n1/4+δ
|V ((x, 0), n) −H((x, 0), n)|

≤ max
|x|≤n1/4+δ

max
ℓ≤n1/4+δ

|V ((x, 0), κ(x, ℓ)) − ℓ| = O(n1/8+δ) a.s.as n→ ∞. This veri�es the lemma and 
ompletes the proof of Theorem 1.2. 2
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5 Proof of Theorem 1.3The proof of this theorem 
onsists of establishing the next two lemmas. Note that as before,throughout this proof max is taken on the integers, even for Brownian lo
al time η(x, ·) as well.Lemma 5.1 On the probability spa
e of Theorem 1.1, for any 0 < ε < 1/4 and su�
iently small
0 < δ < ε/2, as n→ ∞, we have

max
|x|≤n1/4−ε

|H((x, 0), n) −H((0, 0), n)| = O(n1/4−δ) a.s. (5.1)Proof. First we prove for a Brownian lo
al time η(·, ·) that, as t→ ∞,
max

|x|≤t1/2−ε
|η(x, t) − η(0, t)| = O(t1/2−δ) a.s. (5.2)Re
all that τ(·) stands for the inverse lo
al time of W (·). Then (
f. Perkins [34℄, Bass and Gri�n[4℄)

E

(

eλη(x,τ(r))
)

= exp

(

λr

1 − 2λ|x|

)

, λ < 1/(2|x|).Hen
e, with λ = u/(4r|x|) and some c > 0,

P(η(x, τ(r)) − r > u) ≤ exp

(

2λ2r|x|
1 − 2λ|x| − uλ

)

≤ exp

(

−c u
2

r|x|

)

,as long as u ≤ r/2. Similarly,
P(r − η(x, τ(r)) > u) ≤ exp

(

2λ2r|x|
1 + 2λ|x| − uλ

)

≤ exp

(

−c u
2

r|x|

)

.Consequently,
P( max

|x|≤r1−ε
|η(x, τ(r)) − r| > r1−δ) ≤ c1r

1−ε exp
(

−crε−2δ
)for some c1 > 0. Hen
e, if ε > 2δ, then by Borel-Cantelli lemma

max
|x|≤r1−ε

|η(x, τ(r)) − r| = O(r1−δ) a.s., r → ∞. (5.3)Putting r = η(0, t), we obtain
max

|x|≤(η(0,t))1−ε
|η(x, τ(η(0, t))) − η(0, t)| = O((η(0, t))1−δ) a.s., t→ ∞. (5.4)Consequently, we have also 19



max
|x|≤t1/2−ε

|η(x, τ(η(0, t))) − η(0, t)| = O(t1/2−δ) a.s. (5.5)as t→ ∞. Observe that
η(x, t) − η(0, t) = (η(x, t) − η(x, τ(η(0, t))))

+(η(x, τ(η(0, t))) − η(0, τ(η(0, t)))) + (η(0, τ(η(0, t))) − η(0, t)). (5.6)The �rst term in (5.6) being non-negative, and the last one being zero, we 
an 
on
lude that
η(x, t) − η(0, t) ≥ η(x, τ(η(0, t))) − η(0, τ(η(0, t))). (5.7)Similarly,
η(x, t) − η(0, t) = (η(x, t) − η(x, τ(η(0, t) + 1)))

+(η(x, τ(η(0, t) + 1)) − η(0, τ(η(0, t) + 1))) + (η(0, τ(η(0, t) + 1)) − η(0, t)). (5.8)Here the �rst term being non-positive, and the last term being 1, we arrive at
η(x, t) − η(0, t) ≤ η(x, τ(η(0, t) + 1)) − η(0, τ(η(0, t) + 1)) + 1. (5.9)Taking maximums in (5.7) and (5.9), we obtain (5.2).It follows from the assumed nearness (1.11) and applying the in
rement result (5.2) for η1(x, t),that for any 0 < ε < 1/4 and su�
iently small 0 < δ < ε/2, we have also
max

|x|≤n1/2−ε
|ξ1(x, n) − ξ1(0, n)| ≤ max

|x|≤n1/2−ε

∣

∣

∣

∣

ξ1(x, n) − 1

σ2
1

η1(x, nσ
2
1)

∣

∣

∣

∣

+ max
|x|≤n1/2−ε

∣

∣

∣

∣

1

σ2
1

η1(x, nσ
2
1) −

1

σ2
1

η1(0, nσ
2
1)

∣

∣

∣

∣

+

∣

∣

∣

∣

1

σ2
1

η1(0, nσ
2
1) − ξ1(0, n)

∣

∣

∣

∣

= O(n1/2−δ) a.s.as n→ ∞.Now if TN + ρ2(N) ≤ n < TN + ρ2(N + 1), then
H((x, 0), n) = ξ1(x, TN ).Hen
e, we have almost surely, as n→ ∞,

max
|x|≤n1/4−ε

|H((x, 0), n) −H((0, 0), n)| ≤ max
|x|≤n1/4−ε

|ξ1(x, TN ) − ξ1(0, TN )| = O(T
1/2−δ
N ) = O(n1/4−δ).(5.10)Sin
e TN+1 − TN = O(logN) a.s. for large N, we 
on
lude

sup
x∈Z

|ξ1(x, TN+1) − ξ1(x, TN )| = O(logN) a.s., N → ∞.Consequently, we have (5.10) for TN + ρ2(N + 1) ≤ n < TN+1 + ρ2(N + 1) as well. This also provesLemma 5.1. 2 20



Lemma 5.2 On the probability spa
e of Theorem 1.1, for any 0 < ε < 1/4 and su�
iently small
0 < δ < ε/2, as n→ ∞, we have

max
|x|≤n1/4−ε

max
0<|y|≤n1/4−ε

|Ξ((x, y), n) − V ((x, 0), n)| = O(n1/4−δ) a.s. (5.11)Proof. Let θ(x, 0) be the time of the �rst visit of C(·) to (x, 0), and for ℓ ≥ 1 let θ(x, ℓ) be thetime of the ℓ-th return of C(·) to (x, 0). Then
Ξ((x, y), θ(x, ℓ)) =

ℓ
∑

i=1

(Ξ((x, y), θ(x, i)) − Ξ((x, y), θ(x, i − 1))),a sum of i.i.d. random variables with distribution given in Lemma 2.1, with expe
tation 1/2.Estimating the 
ommon moment generating fun
tion, we get by exponential Markov inequality
P(max

ℓ≤L
|Ξ((x, y), θ(x, ℓ)) − ℓ/2| ≥ u) ≤ L exp

(

Lλ2

γ2(y)
− λu

)

.By sele
ting λ =
uγ2(y)

2L
and applying (2.5), for u < L and some c > 0, we get

P(max
ℓ≤L

|Ξ((x, y), θ(x, ℓ)) − ℓ/2| ≥ u) ≤ L exp

(

−c u
2

|y|L

)

.Putting u = L1−δ, we obtain
P( max

|x|≤L1−ε
max

0<|y|≤L1−ε
max
ℓ≤L

(Ξ((x, y), θ(x, ℓ)) − ℓ/2) ≥ L1−δ) ≤ c1L
3 exp

(

−cLε−2δ
)

,with some c1 > 0. Hen
e, sele
ting δ < ε/2, by Borel-Cantelli lemma we arrive at
max

|x|≤L1−ε
max

0<|y|≤L1−ε
max
ℓ≤L

|Ξ((x, y), θ(x, ℓ)) − ℓ/2|

= max
|x|≤L1−ε

max
0<|y|≤L1−ε

max
ℓ≤L

|Ξ((x, y), θ(x, ℓ)) − 1

2
Ξ((x, 0), θ(x, ℓ))| = O(L1−δ) a.s. (5.12)as L→ ∞.We will now use (5.12) via letting

L = sup
x∈Z

Ξ((x, 0), n).By Theorem 1.2 and Theorem C we have that for any ε1 > 0, as n→ ∞,

sup
x∈Z

Ξ((x, 0), n) = O(n1/4+ε1) a.s.21



On 
hoosing δ and ε1 small enough, we 
on
lude
max

|x|≤n1/4−ε
max

0<|y|≤n1/4−ε
max

ℓ≤n1/4+ε1

|Ξ((x, y), θ(x, ℓ)) − 1

2
Ξ((x, 0), θ(x, ℓ))| = O(n1/4−ε2) a.s.as n→ ∞. Consequently, by Lemma 4.1, we also have

max
|x|≤n1/4−ε

max
0<|y|≤n1/4−ε

max
ℓ≤n1/4+ε1

|Ξ((x, y), θ(x, ℓ)) − V ((x, 0), θ(x, ℓ))| = O(n1/4−ε2) a.s. (5.13)as n→ ∞.For ea
h n ≥ 1, let θn ≤ n be the last visit of C(n) on the x−axis before time n, and let θ∗n > nbe its �rst visit on the x−axis after time n.Observe that if C(n) = (x, y) with y 6= 0, then C1(θn) = C1(n) = C1(θ
∗
n) = x, thus for any

x′ 6= x the lo
al times Ξ((x′, y), ·) and V ((x′, 0), ·) do not 
hange in the interval [θn, θ
∗
n). Furthermore,if C(n) = (x, 0), then θn = n. Consequently, we only have to deal with the 
ase of x = C1(n) when

y = C2(n) 6= 0. We have
V ((x, 0), n) − Ξ((x, y), n) =

(V ((x, 0), θn) − Ξ((x, y), θn)) + (V ((x, 0), n) − V ((x, 0), θn)) + (Ξ((x, y), θn) − Ξ((x, y), n)) (5.14)
≤ V ((x, 0), θn) − Ξ((x, y), θn),as the se
ond term of the three summands in (5.14) is zero and the last one is non-positive.We have also
V ((x, 0), n) − Ξ((x, y), n) =

(V ((x, 0), θ∗n) − Ξ((x, y), θ∗n)) + (V ((x, 0), n) − V ((x, 0), θ∗n)) + (Ξ((x, y), θ∗n) − Ξ((x, y), n)) (5.15)
≥ (V ((x, 0), θ∗n) − Ξ((x, y), θ∗n)) − 1,as the se
ond term of the three summands in (5.15) is equal to −1, and the last one is non-negative.Combining (5.13)-(5.15), we get Lemma 5.2. 2This also 
ompletes the proof of Theorem 1.3. 26 ExamplesIn this se
tion we dis
uss a number of works, as examples, that deal with various joint stronginvarian
e prin
iples for integer valued random walks and their lo
al times. Naturally, our spe
i�
set of examples may not be exhaustive. Also, the original 
onditions of these invarian
e prin
iplesare kept un
hanged or, on o

asions, are repla
ed by equivalent ones. However, we have not madeany attempt to improve them. 22



Example 1. In 1981 Révész in [36℄ proved that for simple symmetri
 walk (whi
h 
learly satis�es
onditions (i)-(iii)), (1.10) and (1.11) hold simultaneously with α = β = 1/4. Thus, for simplesymmetri
 random walk, our Theorems 1.1 and 1.2 and Corollary 1.1 hold with α = α∗ = β = β∗ =
ϑ = 1/4.Example 2. In 1983 Csáki and Révész [20℄ proved that under 
onditions (i) and (iii), if we have
m + 1 moments with m > 6, then (1.10) holds with α = 1/4, simultaneously with (1.11) with
β = β∗ = 1/4 + 3/(2m). Thus, under these 
onditions, our Theorems 1.1 and 1.2 and Corollary 1.1hold with α∗ = 1/4, ϑ = 1/4 + 3/(2m).Example 3. In 1989 Borodin [10℄ proved that under 
ondition (i) with eight moments, and with

• (iii)∗ |ψ(θ)| = |∑∞
k=−∞ eiθkpj(k)| = 1 if and only if θ is an integer multiple of 2π,instead of (iii), (1.10) and (1.11) hold simultaneously with α = β = 1/4. Thus, under these 
ondi-tions, our Theorems 1.1 and 1.2 and Corollary 1.1 hold with α∗ = β∗ = ϑ = 1

4 . We note in passingthat 
ondition (iii)∗ is equivalent to saying that the random walk in hand is strongly aperiodi
 (
f.Spitzer [39℄, p.75).Example 4. In 1993 Bass and Khoshnevisan [5℄ proved that under 
onditions (i) and (iii)∗, andassuming more than �ve moments in 
ase of σ1 = σ2 = 1, (1.10) and (1.11) hold simultaneously,respe
tively with α = 1/4 and β = 1/4. Thus under these 
onditions our Theorems 1.1 and 1.2 andCorollary 1.1 hold with α = α∗ = β = β∗ = ϑ = 1/4.Example 5. A further result of Bass and Khoshnevisan in 1993, namely Theorem 3.2 in [6℄,implies that, under the 
onditions (i)-(iii)∗ with σ1 = σ2 = 1, and m ≥ 3 moments, (1.10) and(1.11) hold simultaneously, respe
tively with α = 1/m and β = β∗ = 3/10. Thus, under these
onditions, our Theorems 1.1 and 1.2 and Corollary 1.1 hold with α = 1/m, α∗ = max(1/m, 1/4),and ϑ = max(1/m, 3/10).7 Further 
omments, results and remarksFirst we note that, in the 
ase of Example 1 that is based on the simultaneous strong approximationresult of Révész [36℄ for a simple symmetri
 random walk and that of its lo
al time, the obtainedrates are nearly best possible (
f. Csörg® and Horváth [21℄). As of the other examples, theirassumptions may very well be improvable for obtaining their strong approximations. This howeverremains an open problem.The weak 
onvergen
e 
on
lusions that are spelled out in Se
tion 1 are based on the strongapproximation results of Theorems 1.1, 1.2 and Corollary 1.1. We note however that in probabilitynearness versions of these approximations would su�
e for our approa
h to proving fun
tional limittheorems, i.e., weak 
onvergen
e, for the various pro
esses in hand. Moreover, these in probability23



nearnesses in various sup norm metri
s may very well be provable under weaker 
onditions thanthose used for their present strong versions. This again remains an open problem in general, andalso in the 
ase of Examples 2�5 in parti
ular, for dealing with weak 
onvergen
e in their 
ontext.A few more remarks in view of Theorem 1.2. It follows from (1.13) that our random walk C(·)on the 2-dimensional 
omb latti
e C2 spends about n1/2 portion of its time up to n on the x-axis.The rest of its time is spent away from this axis. It is of interest to explore how far away it maygo verti
ally from any parti
ular value of x, as well as from a 
olle
tion of x values, on the x-axis.More pre
isely, we are interested in establishing lower and upper bounds for
max

k≤n:C1(k)=x
|C2(k)| and max

k≤n: |C1(k)|≤xn

|C2(k)|. (7.1)In the latter of these two quantities, the magnitude of the size xn is of spe
ial interest on its own,and also in terms of the size of its possible 
ontribution to the desired se
ond set of upper and lowerbounds, as 
ompared to those of the �rst set.First we note that, in view of the approximation of Theorem 1.1 for C2(n) by a standardBrownian motion, for an unrestri
ted maximal behaviour of C2(n), as 
ompared to the restri
tedones in (7.1), with any ε > 0, we have the following immediate almost sure upper and lower boundsfor large n.
n1/2−ε ≤ max

0≤k≤n
|C2(k)| ≤ n1/2+ε. (7.2)On the other hand, for the restri
ted maximal quantities in (7.1), we are now to establish thefollowing bounds.Proposition 7.1 Under the 
onditions of Theorem 1.1, with any ε > 0, we have almost surely forlarge n

n1/4−ε ≤ max
k≤n:C1(k)=x

|C2(k)| ≤ n1/4+ε (7.3)with any �xed x ∈ Z, and
xnn

1/4−ε ≤ max
k≤n: |C1(k)|≤xn

|C2(k)| ≤ xnn
1/4+ε, (7.4)where xn ≤ n1/4−δ with some δ ≥ 0.Remark 4 First we note that the upper bound in (7.4) is valid without any restri
tion on xn. Theassumption that xn ≤ n1/4−δ, with δ ≥ 0, is to have a 
orre
t lower bound as well. In parti
ular,with xn = n1/4−δ, δ > 0, (7.4) reads as follows,

n1/2−δ−ε ≤ max
k≤n: |C1(k)|≤n1/4−δ

|C2(k)| ≤ n1/2−δ+ε. (7.5)Thus, on taking ε > 0 small enough, both bounds in (7.5) are seen to �u
tuate around the value
n1/2−δ for any δ > 0, i.e., unlike in the unrestri
ted maximal path behaviour of C2(·) as in (7.2),24



with δ > 0, the bound n1/2−ε 
annot be rea
hed in (7.5) on taking ε > 0 small enough. In the samevein, we have also
lim inf
n→∞

max{k≤n: |C1(k)|≤n1/4−δ} |C2(k)|
n1/2

= 0 a.s.,and
lim sup

n→∞

max{k≤n: |C1(k)|≤n1/4−δ} |C2(k)|
n1/2

= 0 a.s.On the other hand, the assertion in (7.5) 
ontinues to hold true with δ = 0 as well, i.e., in this 
ase,the bounds in (7.2) and (7.5) 
oin
ide. Moreover, in this 
ase,
lim inf
n→∞

max{k≤n: |C1(k)|≤n1/4} |C2(k)|
n1/2

= 0 a.s.,just like before, however, we now have that
lim sup

n→∞

max{k≤n: |C1(k)|≤n1/4} |C2(k)|
n1/2

= ∞ a.s.Remark 5 We are to 
ompare now the two assertions of Proposition 7.1. First, for ea
h �xed x asin (7.3), like for example on the y-axis, C2(·) does almost surely ex
eed the bound n1/4−ε, howeverthe bound n1/4+ε 
annot be rea
hed. In view of this, (7.4) via (7.5) tells us that for a large enough
olle
tion of x values on the x-axis, C2(·) does get away more and more from this axis as the distan
e
xn of C1(·) from zero in
reases, so that, eventually, for any δ ≥ 0, it ex
eeds the bound n1/2−δ−εwith any ε > 0.Proof of Proposition 7.1 It follows from Theorems 1 and 3 of Földes [28℄ that, for a standardBrownian motion W (·) and large T , we have almost surely

T 1−ε ≤ sup
0≤s≤τ(T )

|W (s)| ≤ T 1+εwith any 0 < ε < 1, where τ(·) is the inverse lo
al time pro
ess as in (2.2). Using now the assumption(1.10) in 
ombination with Lemma B and Theorem F, we obtain the almost sure bounds with any
0 < ε < 1

N1−ε ≤ max
i≤ρ(N)

|S(i)| ≤ N1+ε (7.6)for large N .Now re
all that V ((x, 0), n) =: V (x) as in (4.2) is the number of verti
al returns of C(·) to
(x, 0) up to time n whi
h, in turn, equals the number of ex
ursions of S2(·), 
orresponding to theseverti
al returns, up to time n, 25



Then, with any 0 < ε < 1, we 
an also 
on
lude from (7.6) that
V (x)1−ε ≤ max

k≤n:C1(k)=x
|C2(k)| ≤ V (x)1+ε. (7.7)To estimate V (x) now, we 
ombine Lemma 4.1 with the law of the iterated logarithm as statedin (1.21) and, on using also Corollary 1.5, we get

n1/4−ε1 ≤ V ((x, 0), n) ≤ n1/4+ε1 (7.8)with any 0 < ε1 < 1/4, almost surely for large n. Now, the statements of (7.7) and (7.8) togetherresult in (7.3).In order to prove (7.4), we apply (7.6) with
N =

∑

|x|≤xn

V ((x, 0), n),that is the total number of verti
al returns to x in the interval −xn ≤ x ≤ xn, whi
h is also thenumber N of 
orresponding ex
ursions of S2(·). Consequently, with any 0 < ε < 1, we 
an also
on
lude




∑

|x|≤xn

V ((x, 0), n)





1−ε

≤ max
k≤n:|C1(k)|≤xn

|C2(k)| ≤





∑

|x|≤xn

V ((x, 0), n)





1+ε

, (7.9)and, 
learly,
xn min

|x|≤xn

V ((x, 0), n) ≤
∑

|x|≤xn

V ((x, 0), n) ≤ (2xn + 1) max
|x|≤xn

V ((x, 0), n). (7.10)We also note that the estimate of V ((x, 0), n) as in (7.8) also holds true uniformly in x over theinterval (−xn, xn), on a

ount of the very same information that was already used in arguing (7.8)itself. Consequently, with the latter in mind, in view of (7.10) and (7.9), we arrive at (7.4) as well.This also 
ompletes the proof of Proposition 7.1. 2A
knowledgementsThe authors are indebted to, and wish to thank, the referee for insightful remarks and forproposing to study instead of the Markov 
hain of transition probabilities (1.7), (1.8), (1.9), theMarkov 
hain whose transition probabilities are 
hara
terized as follows: repla
e
• the fa
tor 1/2 of the right hand side of (1.8) by χ (0 < χ < 1)

• the fa
tor 1/2 of the right hand side of (1.9) by 1 − χ.We fully agree with him/her saying that this repla
ement would not make too mu
h di�
ulties,and that the same results would 
ontinue to hold with appropriate 
hanges in their 
orresponding
onstants. Indeed, this is so. For example, the fa
tor 1/2 on the left hand side of (1.15) would be
hanged to χ, as well as some other 
onstants along these lines.26
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