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1 Introduction and main results

In this paper we continue our study of a simple random walk C(n) on the 2-dimensional comb
lattice C? that is obtained from Z? by removing all horizontal lines off the z-axis (cf. Cséki et al.

[16]).
A formal way of describing a simple random walk C(n) on the above 2-dimensional comb lattice
C? can be formulated via its transition probabilities as follows: for (z,y) € Z2

P(C(n+1) = (z,y+1) | On) = (z,y) = 5, Fy#0, (1.1)

P(C(n+1) = (z£1,0) | C(n) = (£,0)) = P(C(n+1) = (z,%1) | C(n) = (,0)) = % (1.2)

The coordinates of the just defined vector valued simple random walk C(n) on C? are denoted
by Ci(n), Ca(n), i.e., C(n) := (C1(n), C2(n)).

A compact way of describing the just introduced transition probabilities for this simple random
walk C(n) on C? is via defining

1
~ deg(u)’

p(u,v) :=P(C(n+1)=v|C(n) =u) (1.3)

for locations u and v that are neighbors on C2, where deg(u) is the number of neighbors of u,
otherwise p(u,v) := 0. Consequently, the non-zero transition probabilities are equal to 1/4 if u is
on the horizontal axis and they are equal to 1/2 otherwise.

This and related models have been studied intensively in the literature and have a number of
applications in various problems in physics. See, for example, Arkhincheev [1], [2], [3], Cassi and
Regina [12], Dean and Jansons [23], Durhuus et al. [25], Reynolds [38], Zahran [43], Zahran et al.
[44], and the references in these papers. It was observed that the second component Cy(n) behaves
like ordinary Brownian motion, but the first component C}(n) exhibits some anomalous subdiffusion
property of order n'/%. Zahran [43] and Zahran et al. [44] applied Fokker-Planck equation to
describe the properties of comb-like model. Weiss and Havlin [42] derived the asymptotic form for
the probability that C(n) = (x,y) by appealing to a central limit argument. Bertacchi and Zucca
[8] obtained space-time asymptotic estimates for the n-step transition probabilities p(")(u,v) =
P(C(n) = v | C(0) = u), n > 0, from u € C? to v € C?, when u = (2k,0) or (0,2k) and
v = (0,0). Using their estimates, they concluded that, if k/n goes to zero with a certain speed,
then p(™((2k,0),(0,0))/p® ((0,2k), (0,0)) — 0, as n — oo, an indication that suggests that the
particle in this random walk spends most of its time on some tooth of the comb. Bertacchi [7] noted
that a Brownian motion is the right object to approximate Cs(-), but for the first component C(-)
the right object is a Brownian motion time-changed by the local time of the second component.
More precisely, Bertacchi [7] on defining the continous time process C(nt) = (Cy(nt),Ca(nt)) by
linear interpolation, established the following remarkable joint weak convergence result.



Theorem A For the R? valued random elements C(nt) of C[0,00) we have

(S0, 201 0) 2% 0 (0,0, Walo) 201, = o (L4

where W1, Wy are two independent Brownian motions and n2(0,t) is the local time process of Wy

at zero, and Law  Jenotes weak convergence on C([0,00),R?) endowed with the topology of uniform
convergence on compact subsets.

Here, and throughout as well, C'(I,R?), respectively D(I,R?), stand for the space of R%valued,
d = 1,2, continuous, respectively cadlag, functions defined on an interval I C [0,00). R! will
throughout be denoted by R.

In Cséki et al. [16] we established the corresponding strong approximation that reads as follows.

Recall that a standard Brownian motion {W(¢), t > 0} (called also Wiener process in the
literature) is a mean zero Gaussian process with covariance E(W (¢t1)W (t2)) = min(t1,t2). Its
two-parameter local time process {n(z,t), x € R, t > 0} can be defined via

/ n(x,t)de =XMs: 0<s<t, W(s) e A} (1.5)
A

for any ¢t > 0 and Borel set A C R, where A(-) is the Lebesgue measure, and 7(-,-) is frequently
referred to as Brownian local time.

Theorem B On an appropriate probability space for the simple random walk
{C(n) = (C1(n),C2(n));n = 0,1,2,...} on C?, one can construct two independent standard Brow-
nian motions {Wi(t); t > 0}, {Wa(t); t > 0} so that, as n — oo, we have with any € > 0

n= V401 (n) = Wi(n2(0,n))| + 0~V 2|Ca(n) — Wa(n)| = O(n~1/*+)  ass.,

where 1n2(0,-) is the local time process at zero of Wa(-).

The strong approximation nature of Theorem B enabled us to establish some Strassen type al-
most sure set of limit points for the simple random walk C(n) = (C1(n), C2(n)) on the 2-dimensional
comb lattice, as well as the Hirsch type liminf behaviour (cf. Hirsch [29]) of its components.

Here we extend Theorem B for more general distributions along the horizontal and vertical
directions. More precisely, let X;(n), n =1,2,..., j = 1,2, be two independent sequences of i.i.d.
integer valued random variables having disributions P; = {pi(k), k € Z} and Py = {pa(k), k € Z}
respectively, satisfying the following conditions:

o (i) DR o lkPpi(k) <oo, j=1,2,

o (iii) V() =Y e%pi(k) =1, j=1,2, if and only if § is an integer multiple of



Remark 1 Condition (iii) is equivalent to the aperiodicity of the random walks
{Si(n) =3, X;();n=1,2,...}, j=1,2 (see Spitzer [39], p. 67).
The local time process of a random walk {S(n) := > ;" X(I); n =0,1,2,...} with values on Z,
is defined by
Ekyn) =4#{i: 1<i<n,SlE)=k}, k€Z n=12,... (1.6)

Keeping our previous notation in the context of conditions (i), (ii) and (iii) as well, from now on
C(n) will denote a random walk on the 2-dimensional comb lattice C? with the following transition
probabilities:

P(C(n+1) = (z,y + k) | C(n) = (v,y)) = p2(k), (z,,k) € Z°, y #0, (1.7)
P(C(n+1) = (2,k) | O(n) = (r,0)) = 5palk), (r.k) € 27, (18)
P(Cln+1) = (2 +5,0)| Cn) = (x,0)) = s;a(K), (k) € 22 (1.9)

Unless otherwise stated, we assume that C(0) = 0 = (0,0).

Theorem 1.1 Suppose that the conditions (i) — (iii) are met. Assume that, on an appropriate
probability space for two independent random walks Sj(n) = > X;(1) with their respective local
time processes &;(-,-), j = 1,2, one can construct two independent Brownian motions {W;(t), t > 0}
with their respective local time processes 1;(-,-), j = 1,2 such that for any ¢ >0

lim n=*7¢[S;(n) —o;W;(n)| =0 a.s. (1.10)

n—oo

and

lim n % ¢sup

1
&i(x,n) — ﬁnj(w,naf-) =0 a.s. (1.11)

J

hold simultaneously with some 0 < «, < 1/2, as n — oco. Then, on a possibly larger probability
space for {C(n) = (C1(n),Ca(n));n =0,1,2,...} on C?, as n — oo, we have with any ¢ > 0

1
Cu(n) — o1 W1 <;nz(07n05)> ‘ —0W") as.
2

and
|Cy(n) — aaWa(n)| = O(n® °)  a.s.

simultaneously, where 0]2 =30 JKik), j=1,2,

o :=max(a,1/4) and 9 := max(a”, ).



We note in passing that under various random walk conditions the assumptions (1.10) and (1.11)
hold true. A few of such examples are listed in Section 6.

The intrinsic nature of random walks is usually highlighted by studying their local time behaviour
(cf., e.g., Borodin [10], Révész [37], Cséki et al. [15], and references in these works). The study of
local time is also of interest concerning some random walk problems in physics. In this regard we
refer to Ferraro and Zaninetti [27], who deal with various statistics of the "number of times a site
is visited by a walker", called "local time" in the present paper. Building on their previous paper
[26], in [27] they present a formula for the probability that a site was visited exactly r times after
n steps, and then derive all moments of this distribution. Naturally, these moments depend on the
type of random walk in hand, and specific formulas are given in [27] for the mean and variance
in case of simple symmetric random walks on lattices with various boundary conditions. Here we
are to continue our exposition with studying the asymptotic local time behavior of a walker on
2-dimensional comb lattice as detailed on the next few pages of this section.

Define now the local time process Z(-,-) of the random walk {C(n);n = 0,1,...} on the 2-
dimensional comb lattice C? by

Ex,n)=#{0<k<n:Ck)=x}), x€Z’n=12... (1.12)
The next result concludes a strong approximation of the local time process Z((x,0),n).

Theorem 1.2 On the probability space of Theorem 1.1, as n — oo, we have for any § > 0

- 2 o? .
sup :(($, 0),’1’L) - —m <$, _§772(0,0’§”)>' = O(nﬁ /2+6) a.s., (]—13)
T€ZL 01 P

where 3* = max(3,1/4).

Corollary 1.1 below establishes iterated local time approximations for Z((x,0),n) and E((z, y), n)
over increasing subintervals for (z,y) € Z? via Theorem 1.3.

Theorem 1.3 On the probability space of Theorem 1.1, as n — oo, we have for any 0 < e < 1/4

‘ ‘m?ﬁ 12((z,0),n) —2((0,0),n)| = O(n'/*7%) a.s. (1.14)
z|<nt/%7¢
and
max max |2((z,y),n) — 1E((O, 0),n)] = O(n'/*7%) a.s., (1.15)
0<|y|<nl/4—e |g|<nl/4—c 2

for any 0 < 0 < &/2, where max in (1.14) and (1.15) is taken on the integers.

Corollary 1.1 On the probability space of Theorem 1.1, as n — oo, we have for any 0 < e < 1/4

2 2 "
max |Z((x,0),n) — —m (0, %nﬁO,a%n))‘ =0’ /*E) s (1.16)
|x|<nl/d—e oy 5



and

1 2 .
max  max |2((5,y),n) — —m (o,"—;m(o,a%n))\:omﬁ ) s (LIT)
0<|y|<nt/4=¢ |z|<nl/4=¢ o1 03

where * = max(3,1/4) and max in (1.16) and (1.17) is taken on the integers.

Remark 2 We call attention to the fact that on the x-axis as in (1.16), the local time is approzimately
twice as much as in (1.17), where y # 0 (cf. also (1.14) versus (1.15) in this regard).

From these strong approximation results one can easily conclude almost sure limit theorems for
the path behaviour of C(-) and its local times Z(-,-) in hand. In this paper we concentrate on
almost sure local time path behaviour, and only note that the almost sure path behaviour of the
random walk C(-) on the 2-dimensional comb lattice C? under the conditions of Theorem 1.1 can
be studied similarly to that of a simple random walk C(-) on C? as in Cséki et al. [16].

Since, by Theorem E below, the iterated local time process {1;(0,72(0,t)); ¢ > 0} has the same
distribution as {supg<s<; W1(12(0, s)); t > 0}, the following result follows from Theorem 2.2 in [19].

Corollary 1.2 The net

0,7m2(0, 2t
{ 5/4 17:1/(4 1731( ) 3/1° 0<z=< 1} g
25/43=3/4¢1/4(log log t) >3

as t — 00, is almost surely relatively compact in the space C([0,1],R) of continuous functions from

[0,1] to R, and the set of its limit points is the class of nondecreasing absolutely continuous functions
(with respect to the Lebesque measure) on [0,1] for which

1
F0)=0  and / F ()3 dw < 1. (1.18)
0
In what follows we will need the following scaling properties of Brownian local time

1
n(ﬂ:,t)ij_ n(zva,at), a>0,t>0, zeR,
a

where £ means equality in distribution. Consequently, we also have

1 0'% 2 d 1
pnl 07 ? 772(0702t) 2 0p= nl(oanZ(Oat))7t >0,. (119)
1

5 014/09

For the next results we consider a continuous version of the local times Z(+, ) in (1.12), obtained
by linear interpolation. A combination of Corollaries 1.1 and 1.2 yields the following conclusions.



Corollary 1.3 Under the conditions of Theorem 1.1, for fived (x,y) € Z?2, the sequences

014/02 E((m,O),zn) 0<z2<1
: z
20/43=3/4p1/4(loglogn)®/4" " = = 7 T f 5]
and =((x,y), 2n)
01402 =22, Y), 2N
0<z2z<1 0
{25/43—3/4n1/4(10glogn)3/4’ =e= }nza7 vro

as n — oo, are almost surely relatively compact in the space C([0,1],R), and the set of their limit
points coincides with that in Corollary 1.2.

In particular, we have the following laws of the iterated logarithm for fixed (z,y) € Z:

m(0,m2(0,¢))  2%/4

li _ ., 1.20
ey t1/4(loglogt)3/4  33/4 s (1.20)
. =((x,0),n 29/4
lim sup 1/4(( ) )3/4 = 2371 a.s., (1.21)
n—oo n'/4(loglogn) 33/461 /T2
= 25/4
lim sup (lwy)hn) a.s. y#0. (1.22)

n—o0 n1/4(10g10gn)3/4 - 33/40_1\/0T2
Theorem C ([17])
95/4
lim sup SUPlxe]R m (.%', 72 (O’ t)) _
t—00 t /4(1Og10g t)3/4 33/4

Concerning liminf results, using Theorem E below, and a Hirsch-type result of Bertoin [9], we
conclude the following Hirsch-type law [29].

a.s.

Corollary 1.4 Let 5(t) > 0, t > 0, be a non-increasing function. Then we have almost surely that

liminfM =0 or oo
t—oo  t1/403(t)
according as the integral floo B(t)/tdt diverges or converges.
From Corollaries 1.1 and 1.4 we get the following results.

Corollary 1.5 Let 3(n),n = 1,2,... be a non-increasing sequence of positive numbers. Then, for
fized (z,y) € Z2, under the conditions of Theorem 1.1, we have almost surely that

liminfM:O or oo
n—oo 711/4[3(nJ

according as the series Y 1~ 3(n)/n diverges or converges.



We conclude this Section by spelling out strong and weak convergence results that easily follow
from Theorem 1.1, Theorem 1.2 and Corollary 1.1, respectively. To begin with, Theorem 1.1 yields
a weak convergence for C([nt]) on the space D([0,00), R?) endowed with a uniform topology that
is defined as follows.

For functions (f1(t), f2(t)), (91(t), g2(t)) in the function space D([0,00),R?), and for compact
subsets A of [0, 00), we define

A=A (1 £2) (91,92)) i= sup [(A1(#) = 91(0), fo(t) = 92D,

where || - || is a norm in R2,
We also define the measurable space (D([0,00),R?), D), where D is the o-field generated by the
collection of all A-open balls of D(]0,00),R?), where a ball is a subset of D([0,00), R?) of the form

{(f1, f2) = A(A, (f1, f2), (91, 92)) <7}

for some (g1, g2) € D(]0,00),R?), some r > 0, and some compact interval A of [0, c0).
In view of these two definitions, Theorem 1.1 yields a weak convergence result in terms of a
functional convergence in distribution, as follows.

Corollary 1.6 Under the conditions of Theorem 1.1, as n — oo, we have

h <C;(1[Zt])’ Cﬂ%”) ~Loh (;—;_QWl(U2(0at)),J2W2(t)) (1.23)

for all h : D([0,00),R?) — R? that are (D([0,00),R?),D) measurable and A-continuous, or A-
continuous except at points forming a set of measure zero on (D([0,00),R?), D) with respect to the
measure generated by (Wi(n2(0,t)), Wa(t)), where Wy, Wy are two independent Brownian motions

and 1n2(0,t) is the local time process of Wa(-) at zero, and L, denotes convergence in distribution.

As an example, on taking ¢ = 1 in Corollary 1.6, we obtain the following convergence in distri-
bution result: as n — oo,

(L2 O L) i (0, ), W2 0) (124

o1 nl/4 7 gynl/?

Concerning the joint distribution of the limiting vector valued random variable, we have
W1 (12(0, 1)), Wo (1) (XY V2, Z
(W1 (n2(0, 1)), W (1)) =(XY|/7, Z),

where (Y|, Z) has the joint distribution of the vector (12(0,1), Wa(1)), X is equal in distribution
to the random variable W (1), and is independent of (|Y|, Z).



As to the joint density of (|Y], Z), we have (cf. 1.3.8 on p. 127 in Borodin and Salminen [11])

(yH D2

P(Y|edy,Z € dz) = dydz, y>0, zeR.

—(y+ J2l)e”
— z
V2T Y

Now, on account of the independence of X and (Y], Z), the joint density function of the random
variables (X, |Y|, Z) reads as follows.

yH D?

1
P(X edz,|Y|edy,Z € dz) = Q—(y—i—]z\) dedydz, y>0, z,z €R.
m

By changing variables, via calculating the joint density function of the random variables U :=
X\Y\I/Q, Y, Z, and then integrating it out with respect to y € [0,00), we arrive at the joint density
function of the random variables (U = X|Y|'/2, Z), which reads as follows.

w2 2
P(X|Y|Y? € du, Z € dz) = 2177/ yt/|;| ER dydudz wu,z € R. (1.25)

Clearly, Z is a standard normal random variable. The marginal distribution of U = X|[Y|'/2
is of special interest in that this random variable first appeared in the conclusion of Dobrushin’s
clagsical Theorem 2 of his fundamental paper [24], that was first to deal with the so-called second
order limit law for additive functionals of a simple symmetric random walk on the real line. In
view of the above joint density function in (1.25), on integrating it out with respect to z over the
real line, we are now to also conclude Dobrushin’s formula for the density function of this random

variable. , ,
u ( +Z)
P(U € du) = / / y+z “5 T dydzdu

2 oo u2 ,U4
=— —e 2y E dydu:—/ e 22 2 dvdu.
TJo VY T Jo
As an immediate consequence of Theorem 1.2 now, on choosing § > 0 small enough, we conclude
the following strong invariance principle.

Corollary 1.7 On the probability space of Theorem 1.1, we have almost surely, as n — oo,

0.2
=(0) o) ~ Zm (o Zom0. 030 )|
1711/4 : = o(1)

sup sup
teA x€Z

for all compact subsets A of [0,00).

The next result concludes weak convergence for Z(([x],0), [nt]) via in probability nearness of
appropriate functionals on the function space D(R x [0, 00),R) with respect to the norm

A = Al(Aa f(’ ')’g(" )) ‘= supsup |f($,t) - g(x,t)|

teA zeR



for real valued functions f(-,-), g(-,-) and compact subsets A of [0, 00). Here D(R x [0, c0), R) stands
for the space of real-valued bivariate cadlag functions defined on R x [0, c0).

In order to state our result in this regard, we define the measurable space (D(R x [0,),R), D),
where D is the o-field generated by the collection of all Aj-open balls of D(R x [0,00),R), where a
ball is a subset of D(R x [0, 00),R) of the form

{FC) s Au(A f(G0)9(50) <)

for some g(-,-) € D(R x [0,00),R), some r > 0, and some compact interval A of [0, c0).
In view of these definitions, Corollary 1.7 yields an in probability nearness of functionals, which
reads as follows.

Corollary 1.8 On the probability space of Theorem 1.1, as n — oo, we have
E(([$]7O)7 [nt]) 2 x U% 2 _
‘h (T —h 0'_%771 %,U—%UQ(O,OQIS —0p(1) (126)

for all h: D(R x [0,00),R) — R that are (D(R x [0,00),R), D) measurable and Aq-continuous, or

Aq-continuous except at points forming a set of measure zero on (D(R X [0,00),R), D) with respect
9 2

to the measure generated by —5m <x, J—ém(O,aS t) | on this space, where n(-,-), n2(-,) are two
o1 o

2
independent Brownian local time processes.

Taking functionals of interest, corresponding convergence in distribution results can be easily
deduced from (1.26). For example, for all h as in Corollary 1.8, as n — oo, we have

sup,ez =((x,0), [nt d 2 ot
h< €z 71(1(/4 L ])> —Sh <—2 sup (w —5712(0, 03 t))), (1.27)

071 zeR g5

where % denotes convergence in distribution.

We note in passing that taking sup,cp instead of sup,cz on the right hand side in (1.27) is
allowed in the limit, due to the modulus of continuity of Brownian local time in its space parameter
(cf. Trotter [41], McKean [33] and Ray [35] as cited in Cséki et al. [13]).

In view of Corollary 1.1, on choosing € > 0 small enough, we arrive at the following strong
invariance principles.

Corollary 1.9 On the probability space of Theorem 1.1, we have almost surely, as n — oo,

= 2 ot 2
:(($, O)a [nt]) — N 0, _2772(0’ 02 ’I’Lt)
91 92
sup max =o(1),

teA |z|<nl/4=e nl/4

10



and

= L of 2
=((a,), 1))~ —m (0, (0,03 )
sup  max max L 2 =o(1),

teA 0<\y|§n1/4*5 ‘x‘§n1/4—s ’I’L1/4

for all compact subsets A of [0,00), where max is taken on the integers.

Corollary 1.9 yields a weak convergence for Z((x,y), [nt]) with (z,y) € Z2 fixed, on the function
space D([0,00),R) with respect to the usual sup norm

A2 = B24, £(),90)) i=sup £ () = 9(0)

for real valued functions f(-), g(-) and compact subsets A of [0, c0).

In order to state our result in this regard, we define the usual measurable space (D([0,c0),R), D),
where D now is the o-field generated by the collection of all Ag-open balls of D([0,00),R), where
a ball now is a subset of D([0,00),R) of the form

{£() = A2(A f(),9() <r}

for some g(-) € D([0,00),R), some r > 0, and some compact interval A of [0, 00).
In view of these definitions, Corollary 1.9, combined with (1.19), yields weak convergence results
in terms of functional convergence in distribution as follows.

Corollary 1.10 Under the conditions of Theorem 1.1, with (x,y) € Z? fized, as n — 0o, we have

h (W) N ( 2 m(O,op(O,t))) , (1.28)

014/02

and, when y # 0,

014/02

h <w> LN < ! 771(0,772(0,75))> , (1.29)

for all h : D(]0,00),R) — R that are (D([0,00),R), D) measurable and Az-continuous, or Ag-
continuous except at points forming a set of measure zero on (D([0,00),R), D) with respect to the
measure generated by 11(0,12(0,t)), where n1(0,-), n2(0,-) are two independent Brownian local time

d . . . .
processes, and — denotes convergence in distribution.

On taking h to be the identity map, and ¢ = 1 in (1.28) and, respectively, in (1.29), as n — oo,
we obtain for (z,y) € Z2

E((x,O),n) d 2 d 2 e

11



and, when y # 0, then

E(@y)n) a1 a 1
1))= XY 1.31
im0 ) E = X VIY (1.31)

where X and Y are independent standard normal random variables.

We note that the statement of (1.30) can also be obtained from (1.26) in a similar way if we fix
x € Z in (1.26) as well. On the other hand, we emphasize that statements like (1.27) do not follow
from the first statement of Corollary 1.9.

The structure of this paper from now on is as follows. In Section 2 we give preliminary facts and
results, and in Sections 3-5 we prove our Theorems 1.1-1.3. In Section 6 we illustrate the general
nature of our results by discussing several specific examples of simultaneous invariance principles for
random walks and their local times that, in turn, yield our Theorems 1.2, 1.3 and Corollary 1.1 with
explicit rates of convergence. We conclude this paper in Section 7 by making further comments,
and remarks on our results, including that of Proposition 7.1 in there, and those of the examples of
Section 6.

2 Preliminaries

Let
p(0):=0, p(N):=min{k >p(N—-1): S(k)=0}, N=1,2,... (2.1)

be the recurrence times of an integer valued random walk process {S(n); n =0,1,2,...}.
Define the inverse local time process of a standard Brownian motion W(:) by

7(t) :=inf{s: n(0,s) > t}, t > 0. (2.2)

In case of the simple symmetric random walk on Z, denote the recurrence time p(-) by p*(-). We
quote from Révész ([37], p. 119), the following result.
Lemma A For any 0 < e < 1, with probability 1 for all large N,

N2

— < p*(N) < N%(log N)*te.
210g10gN_,0( ) < N*(log N)

(1—¢)

Lemma B (cf. [14]) On an appropriate probability space for the random walk {S(n); n =0,1,2,...}
satisfying conditions (i)-(iii), as N — oo, we have

|02p(N) — 7(No?)| = O(N°3)  a.s.
From Lemmas A and B, we conclude the following result.

12



Lemma C For any 0 < € < 1, we have with probability 1 for all large enough N that
N2
l—g)———— <
( 6)210g10g]\7_7—

From Lemmas B and C now, we arrive at the following conclusion for the recurrence times of

(N) < N2(log N2+,

our walks.
Theorem D Suppose that the random walks {S;(n); n = 0,1,2,...},5 = 1,2, satisfy conditions
(i)-(iii). Then for any 0 < & < 1, we have with probability 1 for all large enough N that

o2N?
1—e)=—L——" < pj(N) < 07N*(log N)***
( 8)210g10gN—p]( )—U] (Og ) )
where p;i(-), j = 1,2 are the recurrence times of S;(-) as defined in (2.1).
A well-known result of Lévy [32] reads as follows.
Theorem E Let W (-) be a standard Brownian motion with local time process n(-,-). The following
equality in distribution holds:

{(n(0,4), t > 0YL{ sup W(s), t > 0}.
0<s<t
As to the random walk C(n), n =0, 1,2, ..., it can be constructed as follows (cf. [16]). Consider
two independent integer valued random walks {S;(n); n = 1,2,...}, j = 1,2, with respective one-
step distributions P; = {p;(k),k € Z}, j = 1,2. We may assume that, on the probability space

of these random walks, we have an i.i.d. sequence Gi,G3,... of geometric random variables with
distribution 1
P(Glzk):W7 ]{7:0,172,...,

independent of the random walks S;(-), j =1, 2.

On the just described probability space we may also construct the random walk C(n) on the
2-dimensional comb lattice C? as follows. Put Ty = G1+Ga+---+Gn, N = 1,2,..., and let po(N)
denote the time of the N-th return to 0 of the random walk Sa(-). For n =0,...,T1, let Ci(n) =
Si(n) and Ce(n) =0. For n =T1 +1,...,T1 + p2(1), let Ci(n) = C1(T1), C2(n) = Sa(n —T11). In
general, for Ty + po(N) <n < Tyni1 + p2(N), let

Ci(n) = Si(n — p2(NV)),
CQ(’I’L) = 0,
and, for Tny1 4+ p2(N) <n < Tni1+ p2(N + 1), let
Ci(n) = C1(Tn41 + p2(N)) = S1(Tn+1),

CQ(TL) = Sg(n — TN+1).

13



Then, in terms of these definitions for C(n) and Ca(n), it can be seen that C(n) = (C1(n), Ca(n))
is a random walk on the 2-dimensional comb lattice C? with transition probabilities as in (1.7)-(1.9).

Consider now an arbitrary random walk {S(n) = Y";"; X(I); n > 0}, on Z. Define its potential
kernel a(-) by

o
ale) = 3 (P(S(1) = 0) = P(S(n) = —)), = €Z
n=0
Introduce 1
r)=——. 2.3
1) = s (23)
Then, for every one-dimensional aperiodic recurrent random walk S(n), for z = +1,£2,..., on

simply writing p for p(1), we have (cf. Kesten and Spitzer, [31])
P(¢(z,p) =0) =1 —=~(2),

P(e(x,p) = k) = (@)L —y(@)F, k=1,2,... (2.4)
E¢(r,p) =1, Varé(z,p) = 2(a(z) +a(~z) - 1),
i A2) +al=z) _ 2 (2.5)

=00 x g2

where 02 = Var(X(1)).

Lemma 2.1 Let 0(x,1) be the time between the first visit and the first return of C(-) to (z,0). Then
forz==+1,£2,..., y==41,42,..., we have

P(Z((z,y),0(x,1)) =0) =1 - ”259), (2.6)
_ %5 (y) k-1
P(:‘((xay)’e(x’ 1)) = k) = 2 (1 - '72(?/)) , k=12 (27)
B(2((r,), 0z, 1)) = (29)
Furthermore, for
1 1—e?
g(A) = Eexp(A=((z,y),0(x,1))) =14+ = T ) (2.9)
1-— (1—e?)
Y2(y)

we have \ o)

oo <o (3 (1+5355)) 10

if 2\ < y2(y), where vo(+) is defined a la (-) in (2.3) associated with the random walk Sa(-).
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Proof. Define the indicator variable I as P(I = 0) = P(I = 1) = 3, that is independent from the
sequence Xo(k),k =1,2,... Observe that, with this notation,

E((z,y),0(z,1)) =18 (y, p2), |yl >0,

where I = 1 if the first step from (z,0) is vertical, and 0 if it is horizontal, and p9 is the time of the
first return to 0 of the random walk Sa(-). Using now (2.4), we get (2.6) and (2.7). As regards (2.9),
it follows by straightforward calculations, from which we can conclude (2.10) as well, via some more
calculations.

We make use of the following almost sure properties of the increments for a Brownian motion
(Csorgs and Révész [22]), Brownian local time (Csaki et al. [13]), and random walk local time
(Cséki and Foldes [18], Jain and Pruitt [30]).

Theorem F Let 0 < ap < T be a non-decreasing function of T. Then, as T — 0o, we have almost
surely

L Sup sup [W(t+s) = W(H)| = O(ag* (log(T/ar) + loglog T)'/?), (2.11)
sup  sup (n(z,t+ar) —n(z,t)) = O(ay 12 (log(T/ar) + loglogT)l/z) (2.12)

z€R 0<t<T—ar

and, under the conditions (1)-(iii) for a random walk local time £(0,-), as N — oo, we have almost
surely

Jomax (60,0 + ax) = £(0,n)) = Ofay*(log(N/ax) +loglog N)'/2). (2.13)

Remark 3 We note that for (2.13) of Theorem F to hold, instead of condition (ii), we only need
the existence of two moments.

In the proofs we also need increment results for {(z,-), uniformly in x. Such results are not
found in the cited papers, but combining (2.12) and (2.13) with the assumed rate (1.11), we can
obtain the following result.

Corollary A Under the conditions of Theorem 1.1, for any € > 0, we have almost surely, as
N — 00,

sup  sup  (&(@,n +an) — &(z,n)) = O(a*T) + O(NPH), j=1,2. (2.14)
r€Z 0<n<N-—apn

The following theorem is a version of Hoeffding’s inequality, which is explicitly stated in [40].

Theorem G Let G; be i.i.d.random variables with the common geometric distribution P(G; = k) =
27k=1 " k£ =0,1,2... Then

e

) < 2exp(—A?/8n)

max
1<j<n

for 0 < X\ < na with some a > 0.
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3 Proof of Theorem 1.1

The proof is based on the following result.

Lemma 3.1 Suppose that conditions (i)-(iii) are met. If Ty + p2(N) < n < Tni1 + p2(N + 1),
then, as n — oo, we have for any € > 0

N =0(n'?*) a.s.

and
&(0,n) = N + O(n/**%) a.s.

On using Theorem D and Theorem F, the proof of this lemma goes exactly the same way as
that of the corresponding Lemma 2.1 in [16].

As to the proof of our Theorem 1.1, it goes along the lines of Theorem 1.1 in [16], but we present
it for the sake of completeness. In what follows we use several times the assumptions (1.10) and
(1.11), as well as increment results for the Brownian motion (see Theorem F).

If Ty + pQ(N) <n<Tny1 + pQ(N), then

Ci(n) = S1(n — p2(N)) = o1 Wi(n — pa(N)) + O(Ty %) = o1 Wi (Tw) + O(N **¥)

* * 1
= o W1 (N)+O(N * ) = 01 W1 (£2(0,n)) + O(n® />78) = 5y W (;772(0,1105)) +0(n"?%)  as.
2

Since Ca(n) = 0if T + p2(N) < n < Tyy41 + p2(N), we only have to estimate Wy(n). We have

[Wa(n)| < [Wa(p2(N))[ +  sup  [Wa(pa(N) +1t) — Wa(pa(N))|

0<t<TnN4+1

= [Wa(p2(N))| + O(N'/?¥€) = U%SQ(W(N)) +0(n™ ) = 0™ "),

as So(p2(N)) =0, i.e, )
0= CQ(TL) = 0'2W2(7’L) + O(’I’La +6).

In the case when Ty1 + p2(INV) < n < Tny1 + p2(IN + 1), then, for any € > 0, we have almost
surely

Ci(n) = S1(Tn41) = a1t Wi(N) + O(NY ) = oW1 (£2(0,n)) + O(n® /2+9)

1
= Wi (p?]g(O,?”LO’%)) + O(nﬂ/Z—f—a)’
2

and
Cg(n) = Sg(n — TN+1) = O'QWQ(TL _ TN+1) + O(naJre) — O’QWQ(TL) + O(na*+€)-

This completes the proof of Theorem 1.1. O
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4 Proof of Theorem 1.2

Recall the definitions and constructions in Section 2. For T + pa(N) < n < Ty41 + p2(N) the
number of horizontal steps, out of the first n steps, is equal to n — pa(N), and for Ty 1 + p2(N) <
n < Tny1+ p2(N +1) it is equal to Tn41. So we may define the number of horizontal visits to
(x,0) € Z2 up to time n by

[0 —pa(N)) i T+ po(N) < < Twsr + po(N),
H((z,0),n) = {fl(x,TNH) if Tnir+p2(N) <n < Tnip+ p2(N +1), )

and the number of vertical visits to (z,0) up to time n is defined by
V((2,0),m) = Z((z,0),m) — H((,0),n). (4.2)
For T, as a sum of i.i.d. geometric random variables, we have
Tx = N + O((N loglog N)/?) a.s.

as N — oo. Therefore, using Corollary A, we easily obtain for any § > 0 that, as N — oo, we have
almost surely
&1(z, Ty) = & (x, N) + O(NP19), (4.3)

and
61, T1) = Ea(a, N + 1) + OV ) = 12, N) + O(N? ),

where §* is as in Theorem 1.2.
If Ty + pQ(N) <n< TN+1 + pQ(N + 1), then

Ei(x, Tn) < &i(z,n — p2(N)) < &(z, Tns1). (4.4)

Hence, if Ty + p2(N) <n < Tny1 + p2(N + 1), then, by (4.3) and (4.4), we have almost surely
for any § > 0, as n — o0,
H((z,0),n) =& (z,N) + O(NP+9)

= 51 (JT, 52(05 ’I’L)) + O(nﬁ*/2+6)
1 x

=3 (z,07&(0,n)) + O(n” /219)

1

= —m\z —2?72(0702n) +O0(n ); (4.5)

g1 932

where we used the assumed approximation rates, Lemma 3.1 and Theorem F.
In the following lemma we show that the number of horizontal and vertical visits are very close
to each other.
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Lemma 4.1 For any § > 0, as n — oo, we have

ilellz) |H((x,0),n) — V((x,0),n)] = O(n'/%+) a.s. (4.6)

Proof. It follows from Theorem 1.1 that C(n) < n'/4t% almost surely for any § > 0 and sufficiently
large n. Hence it suffices to show that

max |H((z,0),n) — V((z,0),n)| = O(n'/*+%) as. (4.7)

la|<nl/i+s

as n — 0o. Here and throughout the proof max is taken on the integers.
Let x(z,0) be the time of the first visit of C(-) to (z,0), and for £ > 1 let x(x, £) be the time of
the ¢-th horizontal visit to (x,0). Then

l
V((2,0),5(z,0) = Y (V((2,0), 5(x, /) = V((x,0), x(x,j — 1)),

Jj=1

which is a sum of i.i.d. random variables with geometric distribution, with parameter 1/2. Then we
have by Theorem G that

u?
\% — < —— .
P(‘ﬁ%%] ((x,0),k(z, ) — €] > u) < mexp < 8m>

Putting v = m!/2t9 Borel-Cantelli lemma implies

max max |V ((z,0), s(z,0)) — | = O(m'?*T9) as.

|z|<m £<m

as m — 0o.
It follows from (4.5) that

sup H((x,0),n) < n'/*+
TEZ

almost surely for any § > 0 and large n. Hence putting m = n/4*% we obtain

max ]V((w,O),n) —H((m,O),n)\

|a:|§n1/4+5
1/8+6
g‘ D, IV ((,0), 5z, 0)) — L] = O(n'/3H)  as.
x|I<n <n

as n — o0o. This verifies the lemma and completes the proof of Theorem 1.2. O
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5 Proof of Theorem 1.3

The proof of this theorem consists of establishing the next two lemmas. Note that as before,
throughout this proof max is taken on the integers, even for Brownian local time n(z,-) as well.

Lemma 5.1 On the probability space of Theorem 1.1, for any 0 < € < 1/4 and sufficiently small
0<d<e/2 asn— oo, we have

max |H((x,0),n) — H((0,0),n)| = O(n'*%) a.s. (5.1)

‘x‘§n1/4—s
Proof. First we prove for a Brownian local time 7(-,-) that, as t — oo,

max |n(z,t) —n(0,t)] = O(t/*7%) as. (5.2)

ja|<t1/2—

Recall that 7(-) stands for the inverse local time of W(-). Then (cf. Perkins [34], Bass and Griffin
[4])

AT
M@ — eep (2
E(e ) exp(l_QA‘x’>, A< 1/(2z)).

Hence, with A = u/(4r|z|) and some ¢ > 0,

2)\2 2
P(n(z,7(r)) —r >u) <exp <ﬁr)|\:|nx|| _ u)\> < exp <—c%> ’
as long as u < r/2. Similarly,
2)\2 2
P(T - 77(-%'77'(7“)) > u) < exp <1+TT)|\T$|| _ u)\) < exp (-C%) .
Consequently,
P( max |’I’]($,T(’r)) — T‘| > T‘l_s) < lerl_e exp (_CT6—26>
x| <rl=e

for some ¢; > 0. Hence, if € > 24, then by Borel-Cantelli lemma

max |n(z,7(r) —r| =00 as., r— oco. (5.3)

|z|<ri=e

Putting » = n(0,t), we obtain
max [n(z, 7(1(0,))) —1(0,)] = O((n(0,4))'~°) as., t— oo (5.4)
|2[<(n(0,8))! =

Consequently, we have also
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S [n(. m(n(0.1)) = n(0.1)] = O(t'*7?) as. (5.5)

as t — oo. Observe that

77(957 t) - 77(07 t) = (77(957 t) - 77(957 7(77(07 t))))

+(n(z,7(n(0,¢))) —n(0,7(n(0,1)))) + (n(0,7(n(0,¢))) — n(0,t)). (5.6)
The first term in (5.6) being non-negative, and the last one being zero, we can conclude that
n(x,t) = n(0,t) = n(x, 7(n(0, 1)) —n(0,7(n(0,1))). (5.7)
Similarly,
n(x,t) = n(0,t) = (n(x, t) —n(z, 7(n(0,¢) + 1))
+(n(z,7(n(0,2) + 1)) = n(0, 7(n(0,) + 1)) + (n(0,7(n(0,t) + 1)) — n(0,1)). (5.8)
Here the first term being non-positive, and the last term being 1, we arrive at

77(957 t) - 77(07 t) < 77(‘%'7 7(77(07 t) + 1)) - 77(07 7(77(07 t) + 1)) + 1L (5'9)

Taking maximums in (5.7) and (5.9), we obtain (5.2).
It follows from the assumed nearness (1.11) and applying the increment result (5.2) for n;(x,t),
that for any 0 < ¢ < 1/4 and sufficiently small 0 < § < £/2, we have also

max [&(xz,n) —&1(0,n)] < max

1
&i(x,n) — pm(%m%)

|| <nl/2—e |z|<nl/2—¢ 7
1 1 1

bomax [ m(mn02) — 5 (0,103)| + | mi(0,n0%) — £1(0,n)| = O}/2F) as.
|z|<nl/2-¢ | 07 oy o1

as n — 00.
Now if Ty + p2(N) <n < Tn + p2(N + 1), then

H((x,0),n) =& (x,Tn).
Hence, we have almost surely, as n — oo,

| ‘maf ]H((x,O),n) - H((07O)7n)’ < | |ma5( ‘51(x7TN) - gl(OaTN)‘ = O(T]if/Q_é) = O(n1/4_5).
T Snl 4—¢ T Snl 4—g
(5.10)

Since Tny1 — Ty = O(log N) a.s. for large N, we conclude

Sulz |£1('IaTN+1) - él(xaTNN = O(logN) a.s., N — oo.
xe

Consequently, we have (5.10) for Ty + p2(N +1) <n < Tny41+ p2(N + 1) as well. This also proves
Lemma 5.1. O
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Lemma 5.2 On the probability space of Theorem 1.1, for any 0 < € < 1/4 and sufficiently small
0<d<e/2 asn— oo, we have

max max  |2((x,y),n) — V((2,0),n)| = O(nY*%) as. (5.11)

|z[<nt/4=e 0<|y|<nt/4=e

Proof. Let (x,0) be the time of the first visit of C(-) to (z,0), and for £ > 1 let §(x, ) be the
time of the ¢-th return of C(-) to (z,0). Then

¢

E((w,9),0(x,0) = Y _(E((x,y),0(x,1)) — E((x,y),0(z,i — 1)),

=1

a sum of ii.d. random variables with distribution given in Lemma 2.1, with expectation 1/2.
Estimating the common moment generating function, we get by exponential Markov inequality

2
P(max |Z((z,v),0(x,0)) — £/2| > u) < Lexp < LA _ Au) .

(<L Y2(y)
By selecting A = U’Y;é@ and applying (2.5), for u < L and some ¢ > 0, we get
u2
P = —0/2| >u) <L —c—— .
(e (o). 060, 0) ~ £/21 2 ) < Lesp (e 7 )

Putting u = L', we obtain

P = O, 0)) —/2) > L) < ¢, L3 (- LH‘S),
e 0<|§?2§1_J?§a§( ((z,9),0(x,0)) = €/2) = L'™°) < c1 L7 exp ( —c

with some ¢; > 0. Hence, selecting 6 < €/2, by Borel-Cantelli lemma we arrive at

max max max |Z((x,y),0(x,f)) — £/2
|| <L'—= 0<|y|<Ll—¢ €§L| ((z,y),0(z, ) /2|

Z((z,0),0(z,0))| = O(L*%) as. (5.12)

1
= max max max |Z2((x,y),0(z, ) — =
‘Z“SL175 0<|y‘§L175 ZSL | (( y)? ( )) 2

as L — oo.
We will now use (5.12) via letting

L =supZ((z,0),n).
TEL

By Theorem 1.2 and Theorem C we have that for any €1 > 0, as n — oo,

supE((z,0),n) = O(n'/4+e1)  as.
TEL
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On choosing § and 7 small enough, we conclude

1
max max max |Z((x O(x,0)) — =
|a:|§n1/4*5 0<|y‘§n1/4—s Z§n1/4+51 ’ (( 73/)7 ( ’ )) )

as n — 0o. Consequently, by Lemma, 4.1, we also have

= o _ 1/4—e2

\x\gﬁﬁ*a 0<\yﬁr%?1}1</4*5 ZSS}%&EI 1=((z,y),0(x,0)) — V((x,0),0(z,0)] = O(n ) as. (5.13)
as m — 00.

For each n > 1, let 6,, < n be the last visit of C(n) on the x—axis before time n, and let 6} > n
be its first visit on the z—axis after time n.

Observe that if C(n) = (z,y) with y # 0, then C1(0,) = Ci(n) = C1(0};) = z, thus for any
a’ # x the local times Z((2/,y), -) and V((2/,0), -) do not change in the interval [6,,, 0} ). Furthermore,
if C(n) = (x,0), then #,, = n. Consequently, we only have to deal with the case of x = C1(n) when
y = Cs(n) # 0. We have

V((x,O),n) - E((w,y),n) =
(V((,0),0n) = E((z,9),0n)) + (V((2,0),n) = V((2,0),0n)) + (E((z,y),0n) — E((2,y),n)) (5.14)
S V((x70)76n) - E((x,y),@n),

as the second term of the three summands in (5.14) is zero and the last one is non-positive.
We have also

V((2,0),n) = =((z,y),n) =
(V((z,0),6,) = E((z,9),63)) + (V((2,0),n) = V((2,0),6,)) + (E((z,y), ) = =((z,y),n)) (5.15)
> (V((2,0),0,) = E((2,9),6,)) — 1,
as the second term of the three summands in (5.15) is equal to —1, and the last one is non-negative.

Combining (5.13)-(5.15), we get Lemma 5.2. O
This also completes the proof of Theorem 1.3. O

6 Examples

In this section we discuss a number of works, as examples, that deal with various joint strong
invariance principles for integer valued random walks and their local times. Naturally, our specific
set of examples may not be exhaustive. Also, the original conditions of these invariance principles
are kept unchanged or, on occasions, are replaced by equivalent ones. However, we have not made
any attempt to improve them.
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Example 1. In 1981 Révész in [36] proved that for simple symmetric walk (which clearly satisfies
conditions (i)-(iii)), (1.10) and (1.11) hold simultaneously with @ = § = 1/4. Thus, for simple
symmetric random walk, our Theorems 1.1 and 1.2 and Corollary 1.1 hold with o = o* = 3 = g* =
9 =1/4.

Example 2. In 1983 Csaki and Révész [20] proved that under conditions (i) and (iii), if we have
m + 1 moments with m > 6, then (1.10) holds with = 1/4, simultaneously with (1.11) with
B = p*=1/4+3/(2m). Thus, under these conditions, our Theorems 1.1 and 1.2 and Corollary 1.1
hold with o* = 1/4, 9 = 1/4 + 3/(2m).

Example 3. In 1989 Borodin [10] proved that under condition (i) with eight moments, and with
o (iii)" [W(0)] = |32 e p;(k)| =1 if and only if § is an integer multiple of 2,

instead of (iii), (1.10) and (1.11) hold simultaneously with & = § = 1/4. Thus, under these condi-
tions, our Theorems 1.1 and 1.2 and Corollary 1.1 hold with o = g* =9 = i. We note in passing
that condition (iii)* is equivalent to saying that the random walk in hand is strongly aperiodic (cf.
Spitzer [39], p.75).

Example 4. In 1993 Bass and Khoshnevisan [5] proved that under conditions (i) and (iii)*, and
assuming more than five moments in case of 07 = 09 = 1, (1.10) and (1.11) hold simultaneously,
respectively with a = 1/4 and 8 = 1/4. Thus under these conditions our Theorems 1.1 and 1.2 and
Corollary 1.1 hold with a = o* = = * =9 = 1/4.

Example 5. A further result of Bass and Khoshnevisan in 1993, namely Theorem 3.2 in [6],
implies that, under the conditions (i)-(iii)* with o1 = o2 = 1, and m > 3 moments, (1.10) and
(1.11) hold simultaneously, respectively with & = 1/m and § = * = 3/10. Thus, under these
conditions, our Theorems 1.1 and 1.2 and Corollary 1.1 hold with & = 1/m, a* = max(1/m,1/4),
and ¥ = max(1/m,3/10).

7 Further comments, results and remarks

First we note that, in the case of Example 1 that is based on the simultaneous strong approximation
result of Révész [36] for a simple symmetric random walk and that of its local time, the obtained
rates are nearly best possible (cf. Csorgs and Horvath [21]). As of the other examples, their
assumptions may very well be improvable for obtaining their strong approximations. This however
remains an open problem.

The weak convergence conclusions that are spelled out in Section 1 are based on the strong
approximation results of Theorems 1.1, 1.2 and Corollary 1.1. We note however that in probability
nearness versions of these approximations would suffice for our approach to proving functional limit
theorems, i.e., weak convergence, for the various processes in hand. Moreover, these in probability
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nearnesses in various sup norm metrics may very well be provable under weaker conditions than
those used for their present strong versions. This again remains an open problem in general, and
also in the case of Examples 2-5 in particular, for dealing with weak convergence in their context.

A few more remarks in view of Theorem 1.2. It follows from (1.13) that our random walk C(-)
on the 2-dimensional comb lattice C2 spends about n'/2 portion of its time up to n on the z-axis.
The rest of its time is spent away from this axis. It is of interest to explore how far away it may
go vertically from any particular value of z, as well as from a collection of x values, on the x-axis.
More precisely, we are interested in establishing lower and upper bounds for

max  |Ca(k)| and max |Ca (k)| (7.1)
k<n:Cy(k)=z k<n:|Cy(k)|<zn

In the latter of these two quantities, the magnitude of the size x,, is of special interest on its own,
and also in terms of the size of its possible contribution to the desired second set of upper and lower

bounds, as compared to those of the first set.
First we note that, in view of the approximation of Theorem 1.1 for Cy(n) by a standard
Brownian motion, for an unrestricted maximal behaviour of Cs(n), as compared to the restricted
ones in (7.1), with any & > 0, we have the following immediate almost sure upper and lower bounds

for large n.

n/27f < max |Cy(k)| < n'/?*e. (7.2)
0<k<n

On the other hand, for the restricted maximal quantities in (7.1), we are now to establish the

following bounds.

Proposition 7.1 Under the conditions of Theorem 1.1, with any € > 0, we have almost surely for
large n

nt/47F < max  |Co(k)| < nl/itE (7.3)
k<n:Ci(k)=z
with any fived x € Z, and
Tt/ < max |Co (k)| < xpnt/ite, (7.4)

T k<n: |Oy (k)| <zn
where x, < /48 with some & > 0.

Remark 4 First we note that the upper bound in (7.4) is valid without any restriction on x,,. The
assumption that z, < n'/*=0 with § > 0, is to have a correct lower bound as well. In particular,
with @, =n'/*=9, 6 >0, (7.4) reads as follows,

nt/270=¢ < max |Cy (k)| < nt/20Fe, (7.5)
k<n:|Cy(k)|<nl/4=0

Thus, on taking € > 0 small enough, both bounds in (7.5) are seen to fluctuate around the value
n'/2=% for any & > 0, i.e., unlike in the unrestricted mazimal path behaviour of Ca(-) as in (7.2),
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with & > 0, the bound n'/?=¢ cannot be reached in (7.5) on taking € > 0 small enough. In the same
vein, we have also
MaX <. oy (k)| <nt/4-0} |C2(F)]

hnnl)1£f 172 =0 a.s.,
e Co(h)
max,, . . /a5y |C2
lim sup (< | (k)| <n?/A70) =0 a.s.
ol nl/2

On the other hand, the assertion in (7.5) continues to hold true with § = 0 as well, i.e., in this case,
the bounds in (7.2) and (7.5) coincide. Moreover, in this case,

max , Cy(k
lim inf {’fén-\cl(kl)\ﬁnl/4}\ 2(F)| —0  as.
n—o0 nl/2

just like before, however, we now have that

. MaX p<n: |Cy (k)| <nl/4} |Ca()|
lim sup /2 = 00 a.s.
n—oo n

Remark 5 We are to compare now the two assertions of Proposition 7.1. First, for each fized x as
in (7.3), like for ezample on the y-axis, Co(-) does almost surely exceed the bound n'/*~¢, however
the bound n'/**¢ cannot be reached. In view of this, (7.4) via (7.5) tells us that for a large enough
collection of x values on the x-azis, Ca(-) does get away more and more from this axis as the distance
xn of C1(+) from zero increases, so that, eventually, for any § > 0, it exceeds the bound pl/2—0—¢
with any € > 0.

Proof of Proposition 7.1 It follows from Theorems 1 and 3 of Foldes [28| that, for a standard
Brownian motion W (-) and large 7', we have almost surely

T'° < sup |W(s)| < T
0<s<r(T)

with any 0 < € < 1, where 7(-) is the inverse local time process as in (2.2). Using now the assumption
(1.10) in combination with Lemma B and Theorem F, we obtain the almost sure bounds with any
0<exl
N'7¢ < max [S(i)| < N'*© (7.6)
i<p(N)

for large N.

Now recall that V((z,0),n) =: V(x) as in (4.2) is the number of vertical returns of C(-) to
(z,0) up to time n which, in turn, equals the number of excursions of Sy(-), corresponding to these
vertical returns, up to time n,
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Then, with any 0 < ¢ < 1, we can also conclude from (7.6) that

V(z)' < Co(k)| < V(z)'e .7
()7 =, Jmax  [Ca(k) < Viz) (7.7)
To estimate V() now, we combine Lemma 4.1 with the law of the iterated logarithm as stated
in (1.21) and, on using also Corollary 1.5, we get

nt/4me < V((2,0),n) < nl/ite (7.8)

with any 0 < &1 < 1/4, almost surely for large n. Now, the statements of (7.7) and (7.8) together
result in (7.3).
In order to prove (7.4), we apply (7.6) with

N= Y V(x,0),n),

that is the total number of vertical returns to z in the interval —z,, < z < x,, which is also the
number N of corresponding excursions of Sa(-). Consequently, with any 0 < £ < 1, we can also
conclude

1—¢ 14

> V((x,0),n) < max |Cy(k) < | D] V((x,0),n) , (7.9)

T k<n:|CL(k)|<zn

|z|<zr |z|<zr
and, clearly,
xn|n|r1<in V((z,0),n) < > V((x,0),n) < (2xn+1)‘rr‘1<ax V((x,0),n). (7.10)

We also note that the estimate of V((x,0),n) as in (7.8) also holds true uniformly in = over the
interval (—xy,, z,), on account of the very same information that was already used in arguing (7.8)
itself. Consequently, with the latter in mind, in view of (7.10) and (7.9), we arrive at (7.4) as well.
This also completes the proof of Proposition 7.1. O
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