Asymptotic properties of ranked heights
in Brownian excursions

by

Endre Csik1' and Yueyun Hu?

Summary. Pitman and Yor [20,21] recently studied the distri-
butions related to the ranked excursion heights of a Brownian
bridge. In this paper, we study the asymptotic properties of
the ranked heights of Brownian excursions. The heights of both
high and low excursions are characterized by several integral
tests and laws of the iterated logarithm. Our analysis relies on
the distributions of the ranked excursion heights considered up
to some random times.

KEY WORDS: Ranked heights, Brownian and Bessel excur-
sions, integral test, law of the iterated logarithm.

1991 Mathematics Subject Classification. 60F15, 60G55.

Running title: Ranked heights in Brownian excursions

L A. Rényi Institute of Mathematics, Hungarian Academy of Sciences, Reédltanoda u.
13-15, P.O.B. 127, Budapest, H-1364, Hungary. E-mail: csakiQmath-inst.hu. Research
supported by the Hungarian National Foundation for Scientific Research, Grant No. T

019346 and T 029621
2 Laboratoire de Probabilités et Modeles Aléatoires, CNRS UMR~7599, Université

Paris VI, Tour 56, 3® étage, 4 Place Jussieu, F-75252 Paris cedex 05, France. E-mail:

hu@proba.jussieu.fr



1. INTRODUCTION

Let {B(t),t > 0} be a one-dimensional Brownian motion starting from 0 and consider

the sequence
M (t) > My(t) > ... > M, (t) > ... (1.1)

the ranked heights of all the excursions of the reflected Brownian motion |B| considered
up to time ¢ (including the meander height sup,,<,<;|B(u)|, where g; denotes the last
zero of B before t), which gives a natural way to order the countable many Brownian
excursions. In the literature, there is an another well-studied way to order excursions,
namely by considering the ranked excursion lengths, see e.g. Csdki et al. [6] for random
walk and Brownian excursion lengths, and some recent papers: Pitman and Yor [18,19]
combined with their references for studies of laws and many further developments, Révész
[23], Hu and Shi [14,15] and the references therein for the behaviors of longest and shortest
excursion lengths. For the ranked excursion heights, the most recent references are Pitman
and Yor [20,21] who have characterized the laws of ranked heights of excursions of a
Brownian bridge, or more generally, of a bridge of a recurrent self-similar Markov process,
considered up to some random times. Let us mention in particular Pitman and Yor [20]
for the law of (M,,n > 1) taking at an independent exponential time (cf. Remark 2.2
below).

Here, we are interested in the almost sure asymptotic behaviors of {M,,(t),n > 1} as
t — oo. Our analysis relies on a distribution result which will be stated in Section 2 for
all recurrent Bessel processes. First of all, let us observe that M (t) = supg<s<;|B(8);
hence the classical Erdgs-Feller-Kolmogorov-Petrowski (EFKP) and Chung’s integral tests
for the Brownian motion can be directly applied to M7 (t). Consequently, their respective

laws of the iterated logarithm (LIL) read as follows:

M, (t)

I Y 1) as. 1.2

I?iigp 2tloglogt > &8 (1.2)
loglog

liminf /228" A (1) = 2, as. (1.3)

t—o00 t %’

(see Csorgd and Révész [8], Révész [22] for detailed accounts). Let us consider M, (t) for
n > 2. Obviously, when M,,(t) is very big, then M; (t), ..., M,,_1(t) should also be very big.
This simple fact prevents M, (t) from reaching the same bound as M;(t). On the other
hand, for n > 2, M, (t) could reach much smaller values than M;(t). The following result

confirms this intuitive idea:



Theorem 1.1. Let f > 0 be a nondecreasing function. For fixed n > 2, we have

P(Ma(0) > Vi, i0) = {§ = [ B o (- CRELOY 200y

1 t 2 =00
Vit o o 00
P(Ma(1) < th) o) ={" <:>/ tj‘f—zt) [=2, (1.5)

where, here and in the sequel, “i.0.” means “infinitely often” as the relevant index goes to

infinity. Consequently, we have

lim su M) 1 a.s (1.6)
t—)oop V2tloglogt  2n—1’ o '
logt)®
tim inf U98D% a7 () = {0 = {¢ sl s (1.7)
t—o0 \/E o0 a>1

In the case of n = 1, (1.4) is just the famous EFKP’s test. Now, we turn to the
problem of low excursion heights, i.e. of the asymptotic behaviors of M, )(t) as t — oo,

with n(t) depending on ¢ and [n(t)] meaning the integer part of n(t). We have

Theorem 1.2. Let n(t) T oo be a nondecreasing function such that n(t)/\/tloglogt is

nonincreasing. Assume that lim;_,o, n(t)/loglogt = ¢ with ¢ € [0,00]. We have

. n(t) My (t)
imsup ——=——-
twoo  V/t loglogt

where ry = 1/\/5, Teo = V2, and for 0 < ¢ < oo the constant 7, is the unique r > 0
such that p(cr=2) = r=2, where u(z) = z(logcosh \g + Mg — A3z/2), and \g is the unique
positive solution A = Ag(x) of Ax = 1 + tanh A.

=T, a.8. (1.8)

The rest of this paper is organized as follows: in Section 2 we give the distributions
of the ranked heights of excursions of recurrent Bessel processes taken at some random
times, which consist of the core of the proofs of Theorem 1.1 and 1.2. In Section 3, we
prove Theorem 1.1, whereas Section 4 is devoted to the study of low excursions, and to
the proof of Theorem 1.2.

Before closing this introduction, we would like to point out that Theorems 1.1 and
1.2 admit their natural generalizations to excursions of all the recurrent Bessel processes
by using Corollary 2.1 and Lemma 2.2 below, and to excursions of a simple random walk

on Z by using the Skorokhod embedding. Let us also mention the difference of the lower
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functions for M (t) and for My (t) (cf. (1.3) and (1.5)), one way to get better understanding
of this difference is to consider the joint lower functions of (M (t), Ma(t)). Some further
studies of this kind will be presented in [7]. We refer to [5] for the characterizations of the
joint lower functions of (supg<s<; B(s), —info<s<¢ B(s)) (and random walk case), where

Chung-type and Hirsch-type tests are unified.

Throughout this paper, we use the notation f(z) ~ g(z) as z — zg € [0,00] (resp:
f(z) < g(z) as x € I C R} ) meaning lim,_,,, f(z)/g9(z) =1 (resp: 0 < Cy < f(x)/g(x) <
Cy < o0, for all z € I), where, here and in the sequel, Cy, Cs, ..., C13 denote some universal

positive constants.

Acknowledgements: We are very grateful to Professor Marc Yor for helpful discussions
and for references, who also kindly pointed out another proof of (2.3) below by using a
martingale argument. We are also indebted to the referee for useful remarks. The coopera-
tion between the authors was supported by the joint French-Hungarian Intergovernmental
Grant “Balaton” (grant no. F25/97).

2. DISTRIBUTION OF BESSEL EXCURSION
HEIGHTS

In this Section, we consider a recurrent Bessel process {R(t),t > 0} starting from 0,
of dimension 0 < d < 2. See Revuz and Yor [24, Chap. XI] for detailed accounts on Bessel
processes. We only mention that in the case of d = 1, R is in fact a reflected Brownian
motion. Denote by

M) > MO ) > ... > M) > ... (2.1)

the sequence of ranked excursion heights of R over [0,¢] (including the meander height

SUPg, (t)<s<t 12(s) With gr(t) the last zero of R before t). Let
HOYO YL int{t>0: MD@) >r},  r>o0. (2.2)

We aim at characterizing the law of the sequence {Mi(d) (Hfld)(l)),i > 1; H,(ld)(l)}. Note
that by definition MT(Ld)(H,(zd)(l)) = 1l,a.s. Write v = (2 —d)/2 € (0,1) for the sake of

notational simplification.

Proposition 2.1. The two sequences {Mi(d) (Hﬁd)(l)),i < n} and {Mjgd)(H,(ld)(l)),j >

n + 1} are independent. Furthermore, we have
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(i) Forn > 2,

1 1 law
0< <1, ={0<& <. <61 <1},
d d d d
{ My (HD (1) M, (D (1) }
(2.3)
where {&1,...,&,_1} is a rearranged nondecreasing sequence of n — 1 i.i.d. variables

taking values in [0,1] with common distribution 2vz®*~ o< z<1ydx;
(ii) The law of {M J(d) (Hr(bd)(l)), j > n+ 1} is characterized as follows: for every mea-
surable function f > 0, we have

Eexp(— Y f(M§d>(H,gd>(1))))=(1+2y /01 xiﬁl (1—e—f<w>))_"; (2.4)

i>n+1

(iii) The law of Hﬁd)(l) conditioned on {Mi(d) (H,(Ld)(l)),i > 1} is determined as follows:

for every A > 0, we have

E(e—%Hé‘”(U ‘ {(MOHDA) = > 0,i # n}) =6, [[20z), (2.5
i#n
where here and in the sequel, £,,(x) def WLM

1,, the modified Bessel function with index p.

for all 4 > —1 and x > 0, with

Remark 2.1. By BES! we mean a Bessel process of dimension 2(1 + ), starting from
r > 0 (hence R'Z BESy"). Write T{*, its first hitting time at a > 0 (if it is finite) by
the BES¥. According to Kent [16], we have

2
Eexp ( - % Téi)l) =/,(x), x>0, p>—1, (2.6)
E ( ﬁTW)—-TW “h K, (z) >0, 4<0 (2.7)
€Xp 2 1—0 _F(_N’)x M.’E, x y M ’ -

where K, denotes the modified Bessel function with index p (cf. [1] for the modified
Bessel functions I, and K,,). Consequently, (2.5) is in fact a decomposition of I—L(Td)(l)
conditioning on {Mi(d) (HT(Ld)(l)),z' > 1}, as the sum of independent hitting times related
to BES].

Proof of Proposition 2.1. The proof relies on Itd’s excursion theory for the recurrent

Bessel process R, cf. also Bertoin [2]. Here, we begin by taking one choice of local times
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{L(t,z),t > 0,z > 0} of the Bessel process R, determined by the following density formula:
for every measurable function f : Ry — R, we have

[ rmepas=1 [ @,
0 vV Jr,
(notice that in the case d = 1, v = 1/2, L(t,0) is equal to the local time at 0 of a Brownian
motion, which is the half of that of a reflected Brownian motion).

Denote by (e(t),t > 0) the excursion process of R associated with {L(¢,z),t > 0,2 >
0}, and n the It6 measure. Denote by h(e) = sup{e(u),u > 0}, the height for a generic
excursion € and V(e) = inf{t > 0 : €(t) = 0} its lifetime. According to Biane and Yor [3,
pp. 43-45, formula (3h)] together with our choice of local times, we have (n equals in fact
their 7, notice that in formula (3h) the constant 4 should be 2)

n(h>s) =272, >0 (2.8)

Let ay, dgL(Hﬁ,d)(l), 0) be the local time at 0 up to time H,(ld)(l). Observe that in the
excursion time scale, a, is the first time when there are exactly n excursions whose heights
are larger than 1. Remark that {Ml(d) (H,gd)(l)) > L2 Mf(ld_)l(H,(ld)(l)) > 1} is the rear-
ranged nonincreasing sequence of {h(e(ay)), ..., h(e(a,—1))}, and the latter n — 1 variables
are measurable with respect to the excursion process {e(t) I(x(e(t))>1),t = 0}, which is in-
dependent of {e(t) I(p(e(t))<1),t > 0}. Hence the two sequences {Mi(d) (Hfzd)(l)),i <n-1}
and {M J(d) (Héd) (1)),7 > n+1} are independent, since the latter is measurable with respect
to {e(t) n(e(t))<1),t > 0} (here, we suppose that n > 2, for there is nothing to do for
showing the independence if n = 1).

Using successively the strong Markov property at the stopping times a,,_1, ..., a; for
the excursion process e, we see that {h(e(ay)), ..., h(e(an_1))} are n — 1 i.i.d. variables,

with common law: For = > 1,

]P’(h(e(al)) < x) = IF’(inf{t > 0: h(e(t)) € [1,2)} < inf{t > 0: h(e(t)) € [, OO)}>
= /Oo dS(l — .’17_2V)e_3 (1—z~2¥) eS8 z 2V

=1-z" %, x> 1, (2.9)

since by using (2.8), the two first entrance time variables in the RHS of the first equality

—2v

are independent, both exponentially distributed with respective parameters 1 — x and

2. Hence (2.3) follows.



To get the law of {Mi(d) (H,(ld)(l)),i > n + 1}, consider {(e(s),aj—1 < s < a;)}1<j<n
(with convention oy = 0). Again the strong Markov property says that these n excur-
sion processes are independent and identically distributed, with common law that of
the excursion process (€(s),0 < s < 1), where € is defined as the restriction of e on
AY {e : h(e) < 1}. Notice that € has characteristic measure I 4n and is independent of
a1, whereas «; is exponentially distributed with parameter n(.A°) = 1. It turns out from

(2.8) that

]Eexp(— 3 f(Mi(d)(H,gd>(1))))=1Eexp(—i > f(h(e(S))))

i>n+1 j=laj_1<s<aj

s (- 3 st )

s<ay

= (
(| ateElen (- X rae)])"
(/ dte™ exp( /An(de)(l_e—f(h(e)))>n
= (

5)-

I

dz PR
1+2u/ ot (1= e >)) , (2.10)

yielding (2.4). It remains to show (2. By using Williams’ [26] path-decomposition
of R at ggr(t), with gr(?) ef sup{s < t : R(s) = 0} being the last zero of R before t,
we have that H{? (1) — gr(H{? (1)) is independent of o{R(s A gr(HY (1))),s > 0}, and
H,(ld)(l) —g R(H,(ld)(l)) 2w Té21 (in fact, Williams’ original path—decomposition deals with
Brownian motion, but the corresponding version for recurrent Bessel processes follows from

a time-change argument, cf. Biane and Yor [3, Lemma 3.1]). Now, remark that

mEOW) = Ve = Y G new)

s<an;h(e(s))>0 s<an;h(e(s))>0
{n(e(s)) : h(e(s)) > 0,5 < an} = {MPV(HD 1)) : i # n}.

According to Biane and Yor [3, pp.43], under the It6 measure n and conditioning on
{h(e(s)) : h(e(s)) > 0,s < an}, the variables {V(e(s))/h(e(s))? : h(e(s)) > 0,s < an}
are 1.i.d., with common law as the sum of two independent copies of TO(ZZI. Hence, (2.5)
follows from (2.6). O

The following formula shows a decomposition of the law of HY (1) conditioning on
{Mi(d) (H,gd)(l)), 1 < i <n—1}, as a sum of independent Bessel hitting times, and of i.i.d.
variables whose Laplace transform corresponds to £_,(\)/£, (). See also Pitman and Yor

[20] for some closely related formulas in Brownian motion case.



Corollary 2.1. Recall v % (2—d)/2 € (0,1) and Remark 2.1. Let n > 2. For A > 0 and

12> ... > Tp_1 > 1, we have

] f_y A nn—l
IE[e_ATHr(Ld)(l) | (Mi(d)(Hr(zd)(l)) - ;,;i)1§i§n_1] = £4,(\) [ ; (()\))} H 2 (Az;), (2.11)
v =1
n n—1
UUEDSLLES ST
i=1 Jj=1

where all the variables {agd),l < i < £J(~d),1 < j < n — 1} are independent, and
afd) lgVTO(::? for 1 <i<n, zfj(.d) lgle(::)) for1<j<n-1.

Proof of Corollary 2.1. By applying the strong Markov property of R successively at

the stopping times Hfd)(l), ey Hqsdjl(l), (2.12) follows. We also point out that in view of

(2.6)—(2.7), (2.12) is in agreement with a direct computation based on (2.11) and (2.3).
To show (2.11), using (2.5) and (2.4) to write the LHS of (2.11) as

@(A)ﬁez(/\xi)m[ [T 2o mEO))]

j2n+1
n—1 1 dx —n
=/4,(\) H 2 (\x;) [1 + 21//0 ey (1 - K,Zj(/\a:))] ,
i=1
yielding (2.11) by using the fact that %(%) = —2vx~172/2(z), which can be
obtained from the fact that (II_,,U "(z) = —2sm7r(m) — 121(95) (cf. Abramovitz and Stegun [1,
pp. 375]). 0

Remark 2.2. Takingd =1 (ie. v = 1/2) in (2.12) (and in (2.6)-(2.7)), we recover

Pitman and Yor [20]’s formula:

Eexp ( - ;H,(Ll)(l)) = [cosh )\] o e M1, A>0. (2.13)

Let us end this section with two preliminary results:

Lemma 2.1. Let Y7,...,Y} be independent random variables and assume that for i1 =
1,...,k, there exist some constants 3; > 0 and «; € R such that
@ Bi
PlY;<e) < e exp| ——], e — 0. (2.14)
€
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Then we have

IP(Yl +...+Y < 6) = eorttan—(k=1)/2 gy (_ (VB + ...

€

\/F’“V), € — 0. (2.15)

Proof of Lemma 2.1. Follows from elementary computations by using integration by
parts and Laplace method. O

Lemma 2.2. Recall0 < v = (2—d)/2 < 1. We have (n being fixed)

2n — 1)2
lI”(Héd)(l) < 6) < € exp ( - %) e—0,n>1, (2.16)
€
-1
]P’(HT(ld)(l) > 37) ~ m .CU_V, r—00, N Z 2. (217)

Proof of Lemma 2.2. The proof is based on (2.12). First, from (2.7), the density
of §§d) faw Tl(:,'f)) can be obtained by inverting the Laplace transform; here we adopt an
argument of Bessel time reversal (cf. [27]), which implies that £&; has the same law as the
last exit time at 1 by a transient Bessel process BESY (of dimension 4 — d). Hence, it

follows from Getoor [12] that

lP’( @ ¢ dt)/dt - Wl(y) =4 oxp ( - l), t> 0. (2.18)

The tail of a§d) ey é:ﬁ) is given by Gruet and Shi [13], more generally, for all y > —1,
they have obtained that:
9l—h

P(T{) <€) ~ =

——¢€ ¥ exp(— L ), e — 0, u> —1. (2.19)
(14 n)

2¢
From (2.18), we have that
21—1/
IP( @ 6) L A —1/(2) €50
1 T'(v) ’ ’
which in view of (2.19) with u = —v, yields (2.16) by applying Lemma 2.1 to (2.12).
Now, applying (2.6) and (2.7) to (2.12) for the Laplace transform of H,gd)(l), we

deduce that for n > 2,

0 1
/ dte= P(H,Sd)(l) > t) =3 (1 — Ee MY (1)) ~(n—1)27" A0 xS,
0
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which, according to a Tauberian theorem (cf. Feller [11, pp. 423]) yields (2.17). O

3. PROOF OF THEOREM 1.1

From now on, let us go back to the reflected Brownian motion |B|. Recall (1.1) and
define for n > 1,
Hy(r) ¥ inf{t >0: M,(t) >r}, r>0. (3.1)
Let us fix n > 2 in this section. Taking v = 1/2 in Lemma 2.2 and using self-similarity
yields that for a fixed ¢ > 0, we have as A — oo

(2n —21) A )7

]P’(Mn(t) < %) = ]P’(Hn(l) > ,\2) ~ (n— 1)\/%A—1. (3.3)

From (3.2), (3.3) and the monotonicity of M,(t), it is a routine to prove the convergent
parts of the tests in (1.4) and (1.5), see e.g. Erdds [10]. We omit here the details and only

prove the divergent parts.

P(Mn(t) > ,\\/E) - ]P’(Hn(l) < ,\—2) = A Lexp ( - (3.2)

Proof of Theorem 1.1: the divergent part of (1.4). Let f be a nondecreasing
function such that the integral in (1.4) diverges. Without any loss of generality, we can

limit our attention to the “critical” case:

1 2
< < > .
5 1\/loglogt < f(t) < o — 1\/10g10gta t > 1o, (3.4)

for some constant to > 0 (see e.g. Erdés [10] for a rigorous justification). Let i > ig, where

here and in the sequel, 7y denotes some fixed but sufficiently large constant whose value

may change from one line to the next. Define

i exp(i/logi),  ti=r}/Per),  TOEIE), 2

Notice that H,(r;) < t; implies that M, (t;) > r; = \/t_zf(rz) = VEf(rd) > Vi f(t;) by
(3.4). Therefore, if we would have proven that

P(Hn(ri) <t i.o.) >0, (3.5)

we would obtain that ]P’(Mn(t) > Vif(t), i.o.) > 0, which, from Kolmogorov’s 0-1 law,

equals in fact 1 and ends the proof.



It remains to show (3.5). The idea consists of working with “favorite” events which

are given as follows:
B { Ha(ri) < i} 0 {My(Ho(ri) < 7o}, i (3.6)

It suffices to show IF’(Ei, i.o.) > 0. First, let us estimate IF’(EZ) Taking d = 1 in (2.11)
gives the following first equality (z1 > ... > zp_1 > 1)

E(e ¥ MO [ My(Ha(1) =22 > 1,1 < i <n—1})

n n—1 .
- sin)l\rl)\ (taI;\h/\> E (sml)l\(L)\acz))2
2 n—1

= Eexp (— %(n0+§(")+2xi(m+ﬁi))>, (3.7)

=1

where all the variables {19, (™, n;, s, 1 < i < n—1} in (3.7) are positive and independent,

aw  law -

with ng fav 1n; = 1; and

2

o (< o) = gy Ee (<50 = (A ae

Here we used the well-known fact that both A\/(sinh ) and (tanh A)/A are Laplace trans-
forms, at A%2/2, of some positive random variables. From (3.7), we see that condition-
ing on {M;(H,(1)) = z; > 1,1 < i < n — 1}, H,(1) is stochastically smaller than
no 4+ ¢ + 2, Z?:_f (n; + 7;). It turns out that for x > 1

P(Hn(ri) < ti| My(Hp(ri)) = xri) - ]P’(Hn(l) P | My (H, (1)) = g;)

f2(r:) )
> P (19 + ¢ +x121 (i + 1) < f;”))
n—1
> P(no +¢™ + D+ i) < xf:(ri)>’
—p(x 4 Z n < xf:(n)), (3.9)

where $(m) & no + ¢ + Z:.:ll 7; is independent of (7;,1 <1i < n —1). We shall estimate
the small deviation in (3.8). Observe that Ee~ %™ = cosh™™(A), it turns out that

(n) 12 > on . 04, with o; being i.i.d. and o; faw Té_fl/ ) (recalling the notations in Remark

10



2.1), whereas ilazw T 2 has the same law of the first hitting time at 1 by a three-
Ui 0—1

dimensional Bessel process starting from 0. By using (2.19) with 4 = —1/2 for the small
deviation of o; and with g = 1/2 for that of n;, we have

1 1
IP(0¢<6> = ¢l/2 exp(——) and IP’(m<6> xe_1/2exp(——), e — 0,
2e 2e

which in view of Lemma 2.1 yields that

n] (2n —1)2
IP’(E(") + Zl n; < 6) = e "3/2 exp ( — T>’ e — 0. (3.9)
1=

Notice that f(r;) < v/Iogi, and % -1~ %gi > Cgf_2(7‘i) for some universal constant

C3 > 0. The law of M;(H,(1)) follows from (2.3) with v = 1/2:

P(M(Ho(r) <miz) = (1- 1), ax1. (3.10)

. >
Combining (3.8)—(3.10) with 1 < z < 1 + C3f~2(r;), we obtain that

-1

P(Ei) > IP’(U(”) + ni:lm < (14 C5F2(ry)) f—2(r,-)) IP(Ml(Hn(rZ-)) <r(1+ C3f_2(Ti)))

> Cy (J’c\(ri)>2n—3 exp ( B (2n — 1;2]/&(7‘1')> (f_2(ri)>n_1
= Caf 1(ry) exp ( _@n— 1;2;&(7%‘))7

for some constant Cy > 0. In light of (3.2), we have shown

IP’(EZ> > lP’(Hn(Ti) < ti) < f}(ri) exp ( B 2

From the assumption of divergence of the integral in (1.4), it is elementary to see that

ZIP(EZ.) = . (3.12)

i
Let us estimate the second moment ]P’(Ei N Ej). Define

D; ¥ inf{t > H,(r;) : B(t) = 0},
the first return time to 0 of B (i.e. of | B|) after the stopping time H,, (r;). Let B(t) d:efB(t—l—

D;),t > 0; By the strong Markov property at the stopping time Dj, B is a standard

11



Brownian motion starting from 0, and independent of Fp,, where (F;,¢ > 0) denotes the
natural o-fields generated by B. Define the processes J\/Zn, I;Tn related to B exactly in the
same way as M, H, do to B. Consider j > ¢ > iy and w € E; N Ej, if additionally
M;(D;)(w) < rj, all excursions having heights larger than r; live after the time D;(w),
which implies that H,, (rj)(w) < tj. Therefore using (3.11) gives that

P(E: 0 E; 0 {My(D;) < r5}) <P(B: 0 {Halry) < t;})
= P(:)P(Ha(ry) <1;)
< Cs]P’(Ei>]P’<Ej). (3.13)

Observe that E; N E; N {M1(D;) > rj} C E;N{rjqy > Mi(D;) > r;}N {ﬁn_l(rj) <
t;j}. Furthermore M;(D;) is independent of E;, since M;(D;) in fact is the maximum of
|B(H,,(7;)+ )| considered up to its first hitting time at 0, hence P(Ml (D;) € [ry, Tj+1)> =
ri/r; — 7i/7j41. It follows that

IP’(EZ- NE; N {My(D;) > rj}) < P(Ez- N{r; < Mi(D;) < rja} N {Hpoa(rj) < tj})
= IP(EZ> P(rj < My(D;) < Tj+1) P(ﬁn—l(Tj) < tj)

(2n — 3)2P<rj>)
2

< CG]P’(EZ) :—; f(rj) exp ( —

< C7]P’(EZ-> exp ( — {0;]’) j=Cs. (3.14)

where we have used the facts that r;/r; < exp (— (j —4)/logj) and P(rj) = logj,j > io-
From (3.11) and (3.13)—(3.14), some elementary calculations show that

o Ziogi,jgn P(Ei N Ej)
lim inf 5
T (D P(F))

which according to Kochen and Stone’s version [17] of the Borel-Cantelli lemma, together
with (3.12) yields that

S 055

IP’(EZ- i.o.) >1/C5 > 0,

resulting (3.5) and ending the proof of the divergent part of (1.4). O

Proof of Theorem 1.1: the divergent part of (1.5). Since H,, () > Hx(r), it suffices
to prove this part for n = 2. Assume that the integral in (1.5) diverges and we work again

with the “critical” case when

Viegt < f(t) < log?t,  t>t. (3.15)
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Let
def def 2

FOEFE, S22, =i ().
Our aim is to prove that
]P(Hz(r,-) > b, i.o.) >0, (3.16)

which would imply that for these i.o. % such that Hs(r;) > t;, we have Ms(t;) < r; =
VE/F(r) < VE/f(ts), so that P(Mz(t) < VEf(t), i.o.) > 0, and the desired result
follows from Kolmogorov’s 0-1 law.

Now, let dp, () o inf{t > Hy(r) : B(t) = 0} be the first return time to 0 after Hy(r).
Define m(r) & sup{|B(s)| : Ha(r) < s < dp,(,)} the maximal height of the excursion
straddling Ha(r), m(r) is independent of Ha(r;) by strong Markov property at Ha(r;).
Consider the event

def

F; = {ti+1 > Hy(r;) > ti} N {m(ri) < ri+1} N {dH2(”) < ti+2}. (3.17)

It follows from (3.3) and the self-similarity that

P(F)

= ]P’(2f2(7“i) > Hy(1) > f2(n)> ]P’({m(l) <2} N {dm,q) < 41?2(”)})
= J?_l(ri )

) (3.18)

which, in light of the fact that [ d¢/(t f (t)) = oo, implies

ZIP’(Fi) — 0. (3.19)

The second moment P(Fi ﬂFj) is easy to estimate. Let 7 > ¢+ 3, and define E(t) d:efB(t-i-

di,(r;)),t > 0. B is a Brownian motion independent of F;. Define H,(r), Hy(r) related
to B in the same way as H;(r), Ha(r) do to B. Consider a path w € F; N F}, we have
Hy(rj)(w) — dg,r,)(w) >t —tiya > t;/2. There are only two possibilities. First consider
the case (M1(H2(r;))(w) < r;), meaning that the two highest excursions before Hy(r;)(w)
are realized after the stopping time dg,(,)(w), hence we have Hy(r;)(w) = ﬁg(?‘j)(w) +
dH,(r;)(w). Assembling all this and using (3.3) and (3.18) yield

]P’(Fi N F; 0 { M (Hy(r;)) < rj}) < ]P’(Fi N {Hy(r;) > tj/z}) < Cg]P’<Fi>]P’(Fj>. (3.20)

It remains to consider the case (Mi(Hz(r;))(w) > r;), which means that there exists

exactly one excursion living in the time interval [dg, (), H2(7;)](w), whose height is larger
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than r;; hence Hy(r;)(w) = ﬁl(rj)(w) + d,(r) (w). Tt turns out that

]P’(Fi N F; N { My (Ha(ri)) > rj}) < IP’(FZ- N {Hi(rj) > tj/z})

-#(r)(m0) > 52
< ]P’(Fi) % (3.21)

where the last inequality is due to Chebychev’s inequality and to the fact that EH 1(1) =1,
since Hi(1) is the first hitting time at 1 by |B| (in fact Hi(1) has a tail of exponential
decay (cf. [4] for all Bessel hitting times), but here the rough estimate is sufficient for us).
From (3.18), (3.20) and (3.21), it is elementary to show that

lim inf Lioshisn P(Fi i FJ2>
T (SusienP(R))

which in view of (3.19) and a version of the Borel-Cantelli lemma (cf. [17]), yield that
lP’(Fi i.o.) > 1/Cgy > 0; hence we have proven (3.16) and finished the whole proof. O

S 095

4. LOW EXCURSIONS

In this Section, we shall study the asymptotic behavior of the height Mi,)(t) with
n(t) T oo being a nondecreasing function. Our first preliminary result concerns the tail
asymptotics:

Lemma 4.1. Fix r > 0 and assume that lim;_, . n(t)/(loglogt) = ¢ with c € [0, 00]. We

have

log ]P’(n(t)M[n(t)](l) > r4/log logt> ~ =72 (%) log logt, t — o0, (4.1)
where 11(0) = 2, p(o0o) = 1/2 and for 0 < z < 0o p(x) is defined in Theorem 1.2.

Proof of Lemma 4.1. Define T'(r) def inf{t > 0: B(t) =r} for r € R. Recall (3.1). It
follows from (2.12) that
H,(1) & 5™ 4 T(n - 1), (4.2)

where $(" is independent of T'(n— 1), and Eexp (— A—;E(")) = cosh™ " (A). It follows from

the well-known Gaussian tail that

P(T(T) < 67‘2) = IP’( sup B(s) > i) < \eexp (—i> , e — 0. (4.3)

0<s<1 Ve 2¢
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Let now z = z(t) = n(t)/(r?loglogt) — ¢/r? € [0,00], as t — oco. Then it is easy to
see that (4.1) is equivalent to

logP(H,(1) < xm) ~ —n——=, n — 0o, (4.4)

with three possible cases in (4.4), namely: z € (0,00) being fixed; z — 0; and x — oo, as
n — oo.

For fixed 0 < z < oo, since from (4.2), H,(1) is stochastically greater than X(»=1) 4
T(n — 1), and smaller than ¥(*) + T'(n), (4.4) follows from Cramér’s theorem (cf. Dembo
and Zeitouni [9, Theorem 2.2.3]). In the case when z — 0 or x — oo as n — oo, first
estimate P(Hn(l) < mn) with z > 0 depending on n. The Laplace transform of H,,(1) is
given by (2.13). Using Chebychev’s inequality

]P’(Hn(l) < xn) < eXren Fo= A Ha() — o om (cosh A) e AL (4.5)

for all A > 0. By putting A\ = % in (4.5) we get

P (H, (1) < zn) < 2" exp (-%) , (4.6)

giving an upper bound in (4.4) when z — 0.
On the other hand, by taking A = (n —1)/(zn) in (4.5) we get

P(Ho(1) < zn) < exp (-%) (4.7)

showing an upper bound in the case x — oo.
To obtain a lower bound in the case when z — 0 notice that (") is stochastically
dominated by T'(n), which implies in view of (4.2) and (4.3) that

P(Hn(l) < xn) > ]P’(f(n) +T(n—-1)< xn)

- ]P(T(zn 1)< xn)

[ ne1)2
> (CIO A E) e (22“1) s (48)
n

where Cyo > 0 is some universal constant, and 7(r) is an independent copy of T'(r). (4.6)

and (4.8) together imply (4.4) in the case z — 0.
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Since ©(® can be written as the sum of n i.i.d. variables, of common law of ©(1)| with

expectation 1, using the law of large numbers gives that for z > 1,

]P’(Hn(l) < xn) > IP’(Z(") < Zn) IP’(T(n -1) < (z— 2)n)

> COn ]P’(T(n —1) < (z- 2)n)

> CIZ\/% exp(— 2(%_2)»

which, together with (4.7), implies (4.4) in the case x — oo. O

Proof of Theorem 1.2: First we show that z — p(z) is decreasing for 0 < z < oo. It is

elementary to see that
¢ (z) = —A2x + logcosh A\g + Mg = — g tanh g + log cosh A < 0, (4.9)

for logcosh A < A tanh A for all A > 0, hence p is decreasing and r. is well defined in
Theorem 1.2.

Now we prove the upper bound in (1.8) for fixed 0 < ¢ < co. Fix a small € > 0. Define
t; = (1 +¢€)® for i > 1, then loglogt; ~ logi. From (4.1) and using the monotonicity of ,

we have for all large 4,

P(n(t:) Min(e(tie1) > (€ + Lre /b loglog: )
= ]P’( (ti) Mn e,y (1) > reve+1 \/loglogm)

€ C
< exp (—(1 + g) log logti>
< it

Y

being summable, which according to the convergent part of Borel-Cantelli lemma, implies

that almost surely for all large i, we have M) (tiv1) < (e + 1)rev/tiloglogt; /n(t;);
hence for all large t, t € [t;,t;+1), and by monotonicity M[n(t)](t) < M) (tig1) <

(e + 1)re v/t loglogt; /n(t;) < re(e+1)+/tloglogt /n(t)

t
lim sup n(t) < (1+e)re, a.s.,

——— M, t
t—soo /tloglogt inte ()

yielding the upper bound of (1.8) by letting ¢ — 0 along a countable sequence.
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To obtain the lower bound of (1.8), fix a small 6 > 0 and let ¢; 441, Consider the

event
G ¥ {n(ti)M[n(ti)] (ti) > (L = 0)re /1 loglog ti}' (4.10)

Write (F;,t > 0) for the natural o-fields generated by B. Obviously, G; is F;, measurable.
If we would have proven that

ZIF’(Gi | ‘Fti—l) = 00, a.s., (4.11)

%

then, according to Lévy’s version of Borel-Cantelli’s lemma (cf. [25]), we would obtain
. _ . . n(t) .
that ]P’(Gi, 1.0.) = 1, which shows lim sup,_, o, Jiloglogs Min)(t) > (1=0)rc, a.s., ending

the proof of (1.8) by letting § — 0.

To arrive at (4.11), define dy,_, = inf{t > t;_1 : B(t) = 0} the first return time to 0 of
B after time t;_;. Then B(t) LB (t+d¢,_,),t >0, is a Brownian motion independent of

Fa,,_,- Define ]T/I\n(r) in terms of B in the same way as M, (r) was defined in terms of B.

Observe that conditioning on |B(t;—1)| =7 > 0and Fy, |, dy, , —t;i—1 faw r2|N|=2 with N/
a centered reduced Gaussian variable. Notice that tlt—zl < % It follows that for all large 4,

]P’(&tl |./\/’|_2 < O0t; — ti_1> > (13, and we have

Nre

]P’(Gi |fti_1) > P({dti_l < 5ti} N {M\[n(ti)](ti —dy ) > % Vi loglogti} ‘]—‘ti_l )
> Ci3 1, _ 1)< v/5%0) P(A/éf[n(ti)]((l —0)t;) > % Vi loglogti>

) c
> Cia L g1, _1)|<v/o8) XP ( —(1-3) Tgﬂ(m) log log ti)
> Cia Lpr,_yy<vam i T (4.12)

by virtue of (4.1) and monotonicity of u. Using the classical LIL for |B(t)| shows that
almost surely for all but finite 4, |B(t;_1)| < \/ 3ti_1loglogt;_1 < +/dt;, which, combining
with (4.12) implies (4.11), proving (1.8) in the case 0 < ¢ < oo.

The proof of (1.8) in other cases (¢ = 0 and ¢ = c0) is similar and therefore omitted.

This completes the proof of Theorem 1.2. O
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