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Abstract. We prove an almost sure limit theorem for the maxima of stationary Gaussian
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Introduction. The early results on the almost sure central limit theorem (ASCLT) dealt

mostly with partial sums of random variables. A general pattern of these investigations

is that if X1, X2, . . . is a sequence of random variables with partial sums Sn =
∑n

k=1Xk

satisfying an(Sn − bn) D−→ G for some numerical sequences (an), (bn) and distribution

function G, then under some additional mild conditions we have

lim
n→∞

1
logn

n∑
k=1

1
k
I (ak(Sk − bk) < x) = G(x) a.s.

for any continuity point x of G, where I is indicator function.

For more discussions about ASCLT we refer to the survey papers by Berkes (1998),

and Atlagh and Weber (2000). Recently Fahrner and Stadtmüller (1998) and Cheng et

al. (1998) have extended this principle by proving ASCLT for the maxima of independent

random variables.
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THEOREM A. Let X1, X2, . . . be i.i.d. random variables and Mk = maxi≤k Xi. If

ak(Mk − bk) D−→ G for a nondegenerate distribution G and some numerical sequences (ak)

and (bk) , then we have

lim
n→∞

1
logn

n∑
k=1

1
k
I (ak(Mk − bk) < x) = G(x) a.s.

for any continuity point x of G.

Berkes and Csáki (2001) extended the ASCLT for general nonlinear functionals of in-

dependent random variables. For strong invariance principles improving Theorem A see

Berkes and Horváth (2001) and Fahrner (2001).

Throughout this paper Z1, Z2, . . . is a stationary Gaussian sequence and we denote

its covariance function by rn = Cov(Z1, Zn+1), and Mn = max1≤i≤n Zi and Mk,n =

maxk+1≤i≤n Zi. Here a� b and a ∼ b stand for a = O(b) and a/b→ 1 respectively. Φ(x)

is the standard normal distribution function and φ(x) is its density function.

For notational convenience let R(n) = rn logn (log log n)1+ε.

1. Main Result. The main result is an almost sure central limit theorem for the maximum

of stationary Gaussian sequences.

THEOREM 1.1. Let Z1, Z2, . . . be a standardized stationary Gaussian sequence with

R(n) = O(1) as n→ ∞. Then

(i) If n(1 − Φ(un)) → τ for 0 ≤ τ <∞, then

lim
n→∞

1
logn

n∑
k=1

1
k
I(Mk ≤ uk) = e−τ a.s.,

(ii) If an = (2 logn)1/2 and bn = (2 logn)1/2 − 1
2 (2 logn)−1/2(log log n+ log 4π), then

lim
n→∞

1
log n

n∑
k=1

1
k
I(ak(Mk − bk) ≤ x) = exp(−e−x) a.s..

2. Auxiliary Results. The main weak convergence result for the maximum of stationary

Gaussian sequence is summarized in the following theorem.
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THEOREM 2.1. (Theorem 4.3.3 in Leadbetter et al. (1983)). Let Z1, Z2, . . . be a

standardized stationary Gaussian sequence with rn logn→ 0. Then

(i) For 0 ≤ τ <∞, P(Mn ≤ un) → e−τ if and only if n(1 − Φ(un)) → τ

(ii) P(an(Mn − bn) ≤ x) → exp(−e−x),

where an = (2 logn)1/2 and bn = (2 logn)1/2 − 1
2(2 logn)−1/2(log logn+ log 4π).

We need the following lemmas for the proof of our main result.

LEMMA 2.1. Let Z1, Z2, . . . be a standardized stationary Gaussian sequence. Assume

that R(n) = O(1) and n(1 − Φ(un)) is bounded. Then

sup
1≤k≤n

k
n∑

j=1

|rj| exp
(
− u2

k + u2
n

2(1 + |rj |)
)

� (log logn)−(1+ε).

PROOF OF LEMMA 2.1: Under the condition rn → 0 we have supn≥1 |rn| = σ < 1 (cf.,

Leadbetter et al., 1983). By assumption, n(1 − Φ(un)) ≤ K. Let the sequence (vn) be

defined by vn = un if n ≤ K and n(1 − Φ(vn)) = K, if n > K. Then clearly un ≥ vn and

hence

k

n∑
j=1

|rj| exp
(
− u2

k + u2
n

2(1 + |rj |)
)

≤ k

n∑
j=1

|rj | exp
(
− v2

k + v2
n

2(1 + |rj |)
)
.

Thus it would be enough to prove the lemma for the sequence (vn). By the well known

fact

1 − Φ(x) ∼ φ(x)
x

, x→ ∞

we can see that

(2.1) exp
(
−v

2
n

2

)
∼ K

√
2πvn

n
, vn ∼ (2 logn)1/2.

Define α to be 0 < α < (1 − σ)/(1 + σ). Note that

k
n∑

j=1

|rj | exp
(
− v2

k + v2
n

2(1 + |rj|)
)

=

= k
∑

1≤j≤nα

|rj | exp
(
− v2

k + v2
n

2(1 + |rj |)
)

+ k
∑

nα<j≤n

|rj| exp
(
− v2

k + v2
n

2(1 + |rj |)
)

=

=: T1 + T2.
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Using (2.1)

T1 ≤ knα exp
(
− v2

k + v2
n

2(1 + σ)

)
= knα

(
exp

(
−v

2
k + v2

n

2

))1/(1+σ)

�

� knα
(vkvn

kn

)1/(1+σ)

� k1−1/(1+σ)nα−1/(1+σ)(log k logn)1/2(1+σ) ≤

≤ n1+α−2/(1+σ)(logn)1/(1+σ).

Since 1+α−2/(1+σ) < 0, we get T1 ≤ n−δ for some δ > 0, uniformly for 1 ≤ k ≤ n. Now

we estimate the second term T2. Setting σn = supj≥n |rj| and counting on R(n) = O(1)

as n→ ∞

(2.2) σn logn(log logn)1+ε ≤ sup
j≥n

|rj| log j(log log j)1+ε = O(1), n→ ∞.

Set p = [nα]. By (2.1) and (2.2) we have

σpvkvn � σ[nα](log k logn)1/2 � σ[nα] lognα �

� (log log nα)−(1+ε) ∼ (log logn)−(1+ε)(2.3)

and similarly, for 1 ≤ k ≤ n

(2.4) σpv
2
k � (log logn)−(1+ε).

Hence using (2.1), (2.3) and (2.4)

T2 ≤ kσp exp
(
−v

2
k + v2

n

2

) ∑
p≤j≤n

exp
(

(v2
k + v2

n)|rj|
2(1 + |rj|)

)
≤

≤ knσp exp
(
−v

2
k + v2

n

2

)
exp

(
(v2

k + v2
n)σp

2

)
� (log logn)−(1+ε).

The proof is completed.

LEMMA 2.2. Let Z1, Z2, . . . be a standard stationary Gaussian sequence. Suppose that

supn≥1 |rn| < 1. Then for k < n

|P (Mk ≤ uk,Mk,n ≤ un) − P (Mk ≤ uk)P (Mk,n ≤ un)| �

� k

n∑
j=1

|rj | exp
(
− u2

k + u2
n

2(1 + |rj|)
)
.

PROOF OF LEMMA 2.2. We use the following
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THEOREM 2.2. (Theorem 4.2.1, Normal Comparison Lemma in Leadbetter et al.

(1983)). Suppose ξ1, . . . , ξn are standard normal variables with covariance matrix Λ1 =

(Λ1
ij), and η1, . . . , ηn with covariance matrix Λ0 = (Λ0

ij), and let ρij = max(|Λ1
ij|, |Λ0

ij |).
Further, let u1, . . . , un be real numbers. Then

|P (ξj ≤ uj , j = 1, . . . , n) − P (ηj ≤ uj , j = 1, . . . , n)| ≤

≤ K
∑

1≤i<j≤n

|Λ1
ij − Λ0

ij | exp

(
− u2

i + u2
j

2(1 + ρij)

)
.

Apply this Theorem with (ξi = Zi, i = 1, . . . , n), (ηj = Zj , j = 1, . . . , k; ηj = Z̃j , j =

k + 1, . . . , n), where (Z̃k+1, . . . , Z̃n) has the same distribution as (Zk+1, . . . , Zn), but it is

independent of (Z1, . . . , Zk). Further, ui = uk, i = 1, . . . , k and ui = un, i = k + 1, . . . , n.

Then Λ1
ij = Λ0

ij = rj−i if either 1 ≤ i < j ≤ k, or k + 1 ≤ i < j ≤ n. Otherwise

Λ1
ij = rj−i, Λ0

ij = 0. Hence we have

|P (Mk ≤ uk,Mk,n ≤ un) − P (Mk ≤ uk)P (Mk,n ≤ un)| �

�
k∑

i=1

n∑
j=k+1

|rj−i| exp
(
− u2

k + u2
n

2(1 + |rj−i|)
)

≤ k
n∑

m=1

|rm| exp
(
− u2

k + u2
n

2(1 + |rm|)
)
.

This completes the proof of LEMMA 2.2.

LEMMA 2.3. Let Z1, Z2, . . . be a standardized stationary Gaussian sequence. Assume

that R(n) = O(1) and n(1 − Φ(un)) is bounded. Then for 1 ≤ k < n

Cov (I(Mk ≤ uk), I(Mk,n ≤ un)) � (log logn)−(1+ε).

PROOF OF LEMMA 2.3: It follows simply from LEMMA 2.1 and LEMMA 2.2.

LEMMA 2.4. Let Z1, Z2, . . . be a standardized stationary Gaussian sequence. Assume

that R(n) = O(1) and n(1 − Φ(un)) is bounded, then

E|I(Mn ≤ un) − I(Mk,n ≤ un)| � k

n
+ (log log n)−(1+ε).
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PROOF OF LEMMA 2.4: Note that

E|I(Mn ≤ un) − I(Mk,n ≤ un)| = P(Mk,n ≤ un) − P(Mn ≤ un) ≤

≤ |P(Mk,n ≤ un) − Φn−k(un)| + |P(Mn ≤ un) − Φn(un)|+

+ |Φn−k(un) − Φn(un)| =: D1 +D2 +D3.

From the elementary fact that

xn−k − xn ≤ k

n
, 0 ≤ x ≤ 1

we have D3 ≤ (k/n). By Corollary 4.2.4 in Leadbetter et al. (1983), p. 84

Di � n

n∑
j=1

|rj | exp
(
− u2

n

1 + |rj|
)

i = 1, 2.

Thus by LEMMA 2.1 we have Di � (log logn)−(1+ε), i = 1, 2.

3. Proof of Main Result. We now give the proof of THEOREM 1.1. We need the

following lemma for the proof.

LEMMA 3.1. Let η1, η2, . . . be a sequence of bounded random variables. If

Var

(
n∑

k=1

1
k
ηk

)
� log2n (log logn)−(1+ε) for some ε > 0,

then

lim
n→∞

1
log n

n∑
k=1

1
k

(ηk −Eηk) = 0 a.s..

PROOF OF LEMMA 3.1: Setting

µn =
1

logn

n∑
k=1

1
k

(ηk − Eηk)

and nk = exp(exp(kν)) for some 1
1+ε < ν < 1, we have

∞∑
k=3

Eµ2
nk

�
∞∑

k=3

(log lognk)−(1+ε) �
∞∑

k=3

k−ν(1+ε) <∞

6



implying
∑∞

k=3 µ
2
nk
< ∞ a.s. Thus

µnk
→ 0 a.s..

Since

(k + 1)ν − kν → 0 as k → ∞ if ν < 1,

we have
log nk+1

lognk
= e(k+1)ν−kν → 1 as k → ∞.

Obviously for any given n there is an integer k such that nk < n ≤ nk+1. Therefore

|µn| ≤ 1
logn

∣∣∣∣∣∣
n∑

j=1

1
j

(ηj − Eηj)

∣∣∣∣∣∣ ≤

≤ 1
lognk

∣∣∣∣∣∣
nk∑
j=1

1
j

(ηj − Eηj)

∣∣∣∣∣∣+
1

lognk

nk+1∑
j=nk+1

1
j
|ηj −Eηj | �

� |µnk
| +

1
lognk

(log nk+1 − lognk) � |µnk
| +
(

lognk+1

lognk
− 1
)

and thus

lim
n→∞µn = 0 a.s..

PROOF OF THEOREM 1.1: First, we claim that under the assumptions that R(n) = O(1)

and n(1 − Φ(un)) is bounded, we have

(3.1) lim
n→∞

1
logn

n∑
k=1

1
k

(I(Mk ≤ uk) − P(Mk ≤ uk)) = 0 a.s..

In order to show this, by LEMMA 3.1 it is sufficient to show

(3.2) Var

(
n∑

k=1

1
k
I(Mk ≤ uk)

)
� (log logn)−(1+ε) log2 n for some ε > 0.

Let ηk = I(Mk ≤ uk) − P(Mk ≤ uk). Then

Var
( n∑

k=1

1
k
I(Mk ≤ uk)

)
= E

( n∑
k=1

1
k
ηk

)2

=

=
n∑

k=1

1
k2

E|ηk|2 + 2
∑

1≤k<l≤n

|E(ηkηl)|
kl

=: L1 + L2.(3.3)
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Since |ηk| ≤ 2, it follows that

(3.4) L1 �
∞∑

k=1

1
k2

< ∞.

To estimate L2, note that for l > k

∣∣E(ηkηl)
∣∣ =

∣∣Cov
(
I(Mk ≤ uk), I(Ml ≤ ul)

)∣∣ ≤ ∣∣Cov
(
I(Mk ≤ uk), I(Ml ≤ ul)−

− I(Mk,l ≤ ul)
)∣∣+

∣∣Cov
(
I(Mk ≤ uk), I(Mk,l ≤ ul)

)∣∣�
� E|I(Ml ≤ ul) − I(Mk,l ≤ ul)| +

∣∣Cov
(
I(Mk ≤ uk), I(Mk,l ≤ ul)

)∣∣.(3.5)

By LEMMA 2.3 and LEMMA 2.4 we get

∣∣Cov
(
I(Mk ≤ uk), I(Mk,l ≤ ul)

)∣∣� (log log l)−(1+ε)

and

E|I(Ml ≤ ul) − I(Mk,l ≤ ul)| � k

l
+ (log log l)−(1+ε).

Hence for l > k

(3.6) |E(ηkηl)| � k

l
+ (log log l)−(1+ε)

and consequently

L2 �
∑

1≤k<l≤n

1
kl

(
k

l

)
+

∑
1≤k<l≤n

1
kl(log log l)1+ε

=

=: L21 + L22.(3.7)

For L21 and L22 we have the following estimates:

L22 �
n∑

l=3

1
l(log log l)1+ε

l−1∑
k=1

1
k
�

n∑
l=3

log l
l(log log l)1+ε

�

� logn
n∑

l=3

1
l(log log l)1+ε

� log2 n (log log n)−(1+ε)(3.8)
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and

(3.9) L21 ≤
∑

1≤k<l≤n

1
kl

(
k

l

)
� logn.

Thus (3.3)–(3.9) together establish (3.1).

PROOF OF (i): Note that R(n) = O(1) implies rn logn → 0. By THEOREM 4.3.3(i) in

Leadbetter et al. (1983), we have P (Mn ≤ un) → e−τ . Clearly this implies

lim
n→∞

1
log n

n∑
k=1

1
k
P(Mk ≤ uk) = e−τ

which is, by (3.1), equivalent to

lim
n→∞

1
logn

n∑
k=1

1
k
I(Mk ≤ uk) = e−τ a.s..

PROOF OF (ii): By THEOREM 2.1 we have n(1 − Φ(un)) → e−x for un = x/an + bn.

Thus the statement of (ii) is a special case of (i).
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Mathematicae 18, 097–126.

2. Berkes, I. (1998), Results and problems related to the pointwise central limit theorem.

Asymptotic results in Probability and Statistics, (A volume in honour of Miklós Csörgő),
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