Heavy points of a d-dimensional simple random walk

Endre Csáki¹

Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest, P.O.B. 127, H-1364, Hungary. E-mail address: csaki@renyi.hu

Antónia Földes²

Department of Mathematics, College of Staten Island, CUNY, 2800 Victory Blvd., Staten Island, New York 10314, U.S.A. E-mail address: foldes@mail.csi.cuny.edu

Pál Révész³

Institut für Statistik und Wahrscheinlichkeitstheorie, Technische Universität Wien, Wiedner Hauptstrasse 8-10/107 A-1040 Vienna, Austria. E-mail address: reveszp@renyi.hu

Abstract: For a simple symmetric random walk in dimension $d \ge 3$, a uniform strong law of large numbers is proved for the number of sites with given local time up to time n.

AMS 2000 Subject Classification: Primary 60G50; Secondary 60F15, 60J55.

Keywords: local time, simple random walk in d-dimension, strong theorems.

¹Corresponding author. Research supported by the Hungarian National Foundation for Scientific Research, Grant No. T 037886 and T 043037.

²Research supported by a PSC CUNY Grant, No. 66494-0035.

 $^{^3} Research$ supported by the Hungarian National Foundation for Scientific Research, Grant No. T 037886 and T 043037.

1. Introduction and main results

Consider a simple symmetric random walk $\{\mathbf{S}_n\}_{n=1}^{\infty}$ starting at the origin $\mathbf{0}$ on the d-dimensional integer lattice \mathcal{Z}_d , i.e. $\mathbf{S}_0 = \mathbf{0}$, $\mathbf{S}_n = \sum_{k=1}^n \mathbf{X}_k$, $n = 1, 2, \ldots$, where \mathbf{X}_k , $k = 1, 2, \ldots$ are i.i.d. random variables with distribution

$$P(X_1 = e_i) = P(X_1 = -e_i) = \frac{1}{2d}, \quad i = 1, 2, ..., d$$

and $\{\mathbf{e}_1, \mathbf{e}_2, ... \mathbf{e}_d\}$ is a system of orthogonal unit vectors in \mathcal{Z}_d . Define the local time of the walk by

$$\xi(\mathbf{x}, n) := \#\{k : 0 < k \le n, \ \mathbf{S}_k = \mathbf{x}\}, \quad n = 1, 2, \dots,$$
 (1.1)

where x is any lattice point of \mathcal{Z}_d . The maximal local time of the walk is defined as

$$\xi(n) := \max_{\mathbf{x} \in \mathcal{Z}_d} \xi(\mathbf{x}, n). \tag{1.2}$$

Define also

$$\eta(n) := \max_{0 \le k \le n} \xi(\mathbf{S}_k, \infty). \tag{1.3}$$

Denote by $\gamma(n) = \gamma(n; d)$ the probability that in the first n-1 steps the d-dimensional path does not return to the origin. Then

$$1 = \gamma(1) \ge \gamma(2) \ge \dots \ge \gamma(n) \ge \dots > 0. \tag{1.4}$$

It was proved in [2] that

Theorem A (Dvoretzky and Erdős [2]) For $d \geq 3$

$$\lim_{n \to \infty} \gamma(n) = \gamma = \gamma(\infty; d) > 0, \tag{1.5}$$

and

$$\gamma < \gamma(n) < \gamma + O(n^{1-d/2}), \tag{1.6}$$

or equivalently

$$\mathbf{P}(\xi(\mathbf{0}, n) = 0, \, \xi(\mathbf{0}, \infty) > 0) = O\left(n^{1 - d/2}\right)$$
 (1.7)

as $n \to \infty$.

So γ is the probability that the d-dimensional simple symmetric random walk never returns to its starting point.

Let $\xi(\mathbf{x}, \infty)$ be the total local time at \mathbf{x} of the infinite path in \mathcal{Z}_d . Then (see Erdős and Taylor [3]) $\xi(\mathbf{0}, \infty)$ has geometric distribution:

$$\mathbf{P}(\xi(\mathbf{0}, \infty) = k) = \gamma(1 - \gamma)^k, \qquad k = 0, 1, 2, \dots$$
 (1.8)

Erdős and Taylor [3] proved the following strong law for the maximal local time:

Theorem B (Erdős and Taylor [3]) For $d \geq 3$

$$\lim_{n \to \infty} \frac{\xi(n)}{\log n} = \lambda \qquad \text{a.s.}, \tag{1.9}$$

where

$$\lambda = \lambda_d = -\frac{1}{\log(1 - \gamma)}. (1.10)$$

Following the proof of Erdős and Taylor, without any new idea, one can prove that

$$\lim_{n \to \infty} \frac{\eta(n)}{\log n} = \lambda \qquad \text{a.s.}$$
 (1.11)

We can present a stronger lower estimate of $\xi(n)$.

Theorem C (Révész [10]) Let $d \ge 4$ and

$$\psi(n) = \psi(n, B) = \lambda \log n - \lambda B \log \log n. \tag{1.12}$$

Then with probability 1 for any $\varepsilon > 0$ there is a random variable n_0 such that

$$\xi(n) \ge \psi(n, 3 + \varepsilon)$$

if $n \geq n_0$.

Erdős and Taylor [3] also investigated the properties of

$$Q(k,n) := \#\{\mathbf{x} : \mathbf{x} \in \mathcal{Z}_d, \ \xi(\mathbf{x},n) = k\},\$$

i.e. the cardinality of the set of points visited exactly k times in the time interval [1, n]. They proved

Theorem D (Erdős and Taylor [3]) For $d \geq 3$ and for any k = 1, 2, ...

$$\lim_{n \to \infty} \frac{Q(k, n)}{n} = \gamma^2 (1 - \gamma)^{k-1}$$
 a.s. (1.13)

Let

$$U(k,n) := \#\{j: \ 0 < j \le n, \ \xi(\mathbf{S}_j, \infty) = k, \ \mathbf{S}_j \ne \mathbf{S}_\ell \ (\ell = 1, 2, \dots, j - 1)\}$$

= $\#\{\mathbf{x} \in \mathcal{Z}_d: \ 0 < \xi(\mathbf{x}, n) \le \xi(\mathbf{x}, \infty) = k\}.$ (1.14)

Repeating the proof of Theorem D one can get

$$\lim_{n \to \infty} \frac{U(k, n)}{n} = \gamma^2 (1 - \gamma)^{k-1}$$
 a.s. (1.15)

for any k = 1, 2, ...

Define furthermore

$$R(k,n) := \sum_{j=k}^{\infty} Q(j,n),$$
 (1.16)

$$V(k,n) := \sum_{j=k}^{\infty} U(j,n).$$
 (1.17)

It follows that for fixed $k \geq 1$

$$\lim_{n \to \infty} \frac{R(k, n)}{n} = \gamma (1 - \gamma)^{k-1} \qquad \text{a.s.}$$
 (1.18)

$$\lim_{n \to \infty} \frac{V(k, n)}{n} = \gamma (1 - \gamma)^{k-1} \qquad \text{a.s.}$$
 (1.19)

The properties of these quantities were further investigated (for fixed k) by Pitt [8] who proved (1.13), (1.15) and (1.18), (1.19) for general random walk and by Hamana [5], [6] who proved central limit theorems (in general case for $d \ge 3$).

In this paper we study the question whether k can be replaced by a sequence $t(n) = t_n \nearrow \infty$ of positive integers in (1.13), (1.15), (1.18) and (1.19).

Theorem Let $d \geq 3$, and define

$$\mu = \mu(t) := \gamma (1 - \gamma)^{t-1}, \tag{1.20}$$

$$t_n := [\psi(n, B)], \quad B > 2,$$
 (1.21)

where $\psi(n, B)$ is defined by (1.12). Then we have

$$\lim_{n \to \infty} \sup_{t < t_n} \left| \frac{U(t, n)}{n\gamma\mu(t)} - 1 \right| = 0 \quad \text{a.s.}$$
 (1.22)

$$\lim_{n \to \infty} \sup_{t \le t_n} \left| \frac{Q(t, n)}{n\gamma\mu(t)} - 1 \right| = 0 \quad \text{a.s.}$$
 (1.23)

$$\lim_{n \to \infty} \sup_{t \le t_n} \left| \frac{V(t, n)}{n\mu(t)} - 1 \right| = 0 \quad \text{a.s.}$$
 (1.24)

$$\lim_{n \to \infty} \sup_{t \le t_n} \left| \frac{R(t, n)}{n\mu(t)} - 1 \right| = 0 \quad \text{a.s.}$$
 (1.25)

Here in $\sup_{t < t_n}$, t runs through positive integers.

(1.25) of Theorem clearly implies (compare to Theorem C)

Corollary Let $d \geq 3$. Then with probability 1 for any $\varepsilon > 0$ there is a random variable n_0 such that

$$\xi(n) \ge \lambda \log n - (2 + \varepsilon) \log \log n$$

if $n \geq n_0$.

First we present some more notations. For $\mathbf{x} \in \mathcal{Z}_d$ let $T_{\mathbf{x}}$ be the first hitting time of \mathbf{x} , i.e. $T_{\mathbf{x}} = \min\{i \geq 1 : \mathbf{S}_i = \mathbf{x}\}$ with the convention that $T_{\mathbf{x}} = \infty$ if there is no i with $\mathbf{S}_i = \mathbf{x}$. Let $T = T_{\mathbf{0}}$. In general, for a subset A of \mathcal{Z}_d , let T_A denote the first time the random walk visits A, i.e. $T_A = \min\{i \geq 1 : \mathbf{S}_i \in A\} = \min_{\mathbf{x} \in A} T_{\mathbf{x}}$. Let $\mathbf{P}_{\mathbf{x}}(\cdot)$ denote the probability of the event in the bracket under the condition that the random walk starts from $\mathbf{x} \in \mathcal{Z}_d$. We denote $\mathbf{P}(\cdot) = \mathbf{P}_{\mathbf{0}}(\cdot)$.

Introduce further

$$q_{\mathbf{x}} := \mathbf{P}(T < T_{\mathbf{x}}),\tag{1.26}$$

$$s_{\mathbf{x}} := \mathbf{P}(T_{\mathbf{x}} < T). \tag{1.27}$$

In words, $q_{\mathbf{x}}$ is the probability that the random walk, starting from $\mathbf{0}$, returns to $\mathbf{0}$, before reaching \mathbf{x} (including $T < T_{\mathbf{x}} = \infty$), and $s_{\mathbf{x}}$ is the probability that the random walk, starting from $\mathbf{0}$, hits \mathbf{x} , before returning to $\mathbf{0}$ (including $T_{\mathbf{x}} < T = \infty$).

2. Preliminary facts and results

First we present some lemmas needed to prove Theorem.

Introduce the following notations:

$$X_{i}(t) = X_{i} =$$

$$= \begin{cases} 1 \text{ if } \mathbf{S}_{j} \neq \mathbf{S}_{i} \ (j = 1, 2, \dots, i - 1), \ \xi(\mathbf{S}_{i}, \infty) \geq t, \\ 0 \text{ otherwise,} \end{cases}$$

$$Y_{i}(t, n) = Y_{i} =$$

$$= \begin{cases} 1 \text{ if } \mathbf{S}_{j} \neq \mathbf{S}_{i} \ (j = 1, 2, \dots, i - 1), \ \xi(\mathbf{S}_{i}, n) \geq t, \\ 0 \text{ otherwise,} \end{cases}$$

$$\rho_{i} = \rho_{i}(t) = I\{X_{i} = 1\}(\min\{j: \ \xi(\mathbf{S}_{i}, j) \geq t\} - i),$$

$$\mu_{i} = \mu_{i}(t) = \gamma(i)(1 - \gamma)^{t-1},$$

 $t=1,2,\ldots,$ $i=1,2,\ldots,$ where $I\{\cdot\}$ denotes the usual indicator function. Recall the definitions of $\gamma(i),$ γ and $\mu=\mu(t)$ in (1.4) (1.5) and (1.20). Furthermore let

$$\sigma_n^2 = \sigma_n^2(t) := \mathbf{E} \left(\sum_{i=1}^n X_i - n\mu \right)^2.$$
 (2.1)

Clearly we have

$$R(t,n) = \sum_{i=1}^{n} Y_i,$$
$$V(t,n) = \sum_{i=1}^{n} X_i.$$

Lemma 2.1. (Dvoretzky and Erdős [2])

$$P(S_i \neq S_i, j = 1, 2, ..., i - 1) = P(\xi(0, i - 1) = 0) = \gamma(i).$$

The following lemma is a trivial consequence of Theorem A.

Lemma 2.2.

$$\mathbf{P}(n < \rho_i(t) < \infty) \le \frac{O(1)t^{d/2}}{n^{d/2-1}},$$

$$\mu \le \mu_i \le \left(1 + \frac{O(1)}{i^{d/2-1}}\right)\mu,$$

$$\mathbf{E}X_i = \mu_i.$$

The next lemma can be obtained by elementary calculations.

Lemma 2.3.

$$n\mu \le \mathbf{E} \sum_{i=1}^{n} X_i = \sum_{i=1}^{n} \mu_i \le n\mu + \mu a_n O(1),$$

where

$$a_n = \sum_{i=1}^n \frac{1}{i^{d/2-1}} = \begin{cases} O(1) & \text{if } d > 4, \\ O(1) \log n & \text{if } d = 4, \\ O(1)n^{1/2} & \text{if } d = 3. \end{cases}$$

Lemma 2.4. Let $n > 3^3$. Then

$$\sigma_n^2 \le n\mu + \mu a_n O(1) - n^2 \mu^2 + 2(I + II + III), \tag{2.2}$$

where

$$I = \sum_{1 \le i < j \le n} \mathbf{P}(X_i = 1, \ X_j = 1, \ \rho_i \ge n^{\alpha}),$$

$$II = \sum_{1 \le i < j \le \min(i + 3n^{\alpha}, n)} \mathbf{P}(X_i = 1, \ X_j = 1, \ \rho_i < n^{\alpha}),$$

$$III = \sum_{1 \le i < i + 3n^{\alpha} < j \le n} \mathbf{P}(X_i = 1, \ X_j = 1, \ \rho_i < n^{\alpha}),$$

$$\alpha = 2/d.$$

Proof. Clearly we have

$$\sigma_n^2 = \mathbf{E} \left(\sum_{i=1}^n X_i \right)^2 + n^2 \mu^2 - 2n\mu \mathbf{E} \sum_{i=1}^n X_i =$$

$$= \mathbf{E} \sum_{i=1}^n X_i + 2 \sum_{1 \le i < j \le n} \mathbf{E} X_i X_j + n^2 \mu^2 - 2n\mu \sum_{i=1}^n \mu_i \le$$

$$\le n\mu + \mu a_n O(1) + 2 \sum_{1 \le i < j \le n} \mathbf{E} X_i X_j - n^2 \mu^2.$$

Further

$$\sum_{1 \le i < j \le n} \mathbf{E} X_i X_j = \sum_{1 \le i < j \le n} \mathbf{P} \{ X_i = 1, \ X_j = 1 \} = I + II + III.$$

Hence Lemma 2.4 is proved.

Now let $A^{(\mathbf{x})}$ denote the two-point set $\{\mathbf{0}, \mathbf{x}\}$ and let $\Xi(A^{(\mathbf{x})}, \infty) = \xi(\mathbf{0}, \infty) + \xi(\mathbf{x}, \infty)$ denote its total occupation time.

Lemma 2.5. For $\mathbf{x} \in \mathcal{Z}_d$, $\mathbf{x} \neq \mathbf{0}$, define $\gamma_{\mathbf{x}} := \mathbf{P}(T_{\mathbf{x}} = \infty)$ and recall the definitions of $q_{\mathbf{x}}$ and $s_{\mathbf{x}}$ in (1.26) and (1.27). Then

$$\gamma_{\mathbf{e}_i} = \gamma_{-\mathbf{e}_i} = \gamma, \quad i = 1, 2, \dots, d, \tag{2.3}$$

$$\gamma_{\mathbf{x}} \ge \gamma, \tag{2.4}$$

$$q_{\mathbf{x}} = 1 - \frac{\gamma}{1 - (1 - \gamma_{\mathbf{x}})^2},$$
 (2.5)

$$s_{\mathbf{x}} = (1 - \gamma_{\mathbf{x}})(1 - q_{\mathbf{x}}), \tag{2.6}$$

$$q_{\mathbf{x}} + s_{\mathbf{x}} = 1 - \frac{\gamma}{2 - \gamma_{\mathbf{x}}},\tag{2.7}$$

$$\mathbf{P}(\Xi(A^{(\mathbf{x})}, \infty) = j) = (1 - q_{\mathbf{x}} - s_{\mathbf{x}})(q_{\mathbf{x}} + s_{\mathbf{x}})^{j}, \quad j = 0, 1, \dots$$
(2.8)

Proof. We show (2.3) first. For symmetric reason, $\gamma_{\pm \mathbf{e}_i} = \gamma_{\pm \mathbf{e}_j}$, $i, j = 1, \ldots, d$. Hence

$$1 - \gamma = \sum_{i=1}^{d} \mathbf{P}(\mathbf{S}_{1} = \mathbf{e}_{i})(1 - \gamma_{\mathbf{e}_{i}}) + \sum_{i=1}^{d} \mathbf{P}(\mathbf{S}_{1} = -\mathbf{e}_{i})(1 - \gamma_{-\mathbf{e}_{i}}) = 2\sum_{i=1}^{d} \frac{1}{2d}(1 - \gamma_{\mathbf{e}_{1}}) = 1 - \gamma_{\mathbf{e}_{1}},$$

proving (2.3).

To show (2.4), observe that starting from the origin, before hitting \mathbf{x} with $\|\mathbf{x}\| > 1$, the random walk should hit first the sphere $S(\mathbf{x}, 1) := \{\mathbf{y} : \|\mathbf{y} - \mathbf{x}\| = 1\}$. Hence

$$1 - \gamma_{\mathbf{x}} = \mathbf{P}(T_{S(\mathbf{x},1)} < \infty)(1 - \gamma) \le 1 - \gamma. \tag{2.9}$$

Now let Z(A) denote the number of visits in the set A up to the first return to zero, i.e.

$$Z(A) = \sum_{n=1}^{T} I\{S_n \in A\}.$$
 (2.10)

Observe that

$$\mathbf{P}(Z(A^{(\mathbf{x})}) = j + 1, T < \infty) = \begin{cases} q_{\mathbf{x}} & \text{if } j = 0, \\ s_{\mathbf{x}}^{2} q_{\mathbf{x}}^{j-1} & \text{if } j = 1, 2, \dots \end{cases}$$
 (2.11)

Summing up in (2.11) we get

$$\sum_{j=0}^{\infty} \mathbf{P}(Z(A^{(\mathbf{x})}) = j+1, T < \infty) = q_{\mathbf{x}} + \frac{s_{\mathbf{x}}^2}{1 - q_{\mathbf{x}}} = \mathbf{P}(T < \infty) = 1 - \gamma.$$
 (2.12)

On the other hand, one can easily see that

$$1 - \gamma = \mathbf{P}(T < \infty) = \mathbf{P}(T < T_{\mathbf{x}}) + \mathbf{P}(T > T_{\mathbf{x}}, T < \infty)$$

$$= \mathbf{P}(T < T_{\mathbf{x}}) + \mathbf{P}(T > T_{\mathbf{x}})\mathbf{P}_{\mathbf{x}}(T < \infty)$$

$$= \mathbf{P}(T < T_{\mathbf{x}}) + \mathbf{P}(T > T_{\mathbf{x}})\mathbf{P}(T_{\mathbf{x}} < \infty) = q_{\mathbf{x}} + s_{\mathbf{x}}(1 - \gamma_{\mathbf{x}}),$$

i.e.

$$1 - \gamma = q_{\mathbf{x}} + s_{\mathbf{x}}(1 - \gamma_{\mathbf{x}}) \tag{2.13}$$

Now (2.12) and (2.13) easily imply (2.5) and (2.6), hence also (2.7).

Equation (2.8) was proved in [1] for general random walk. For completeness a short proof is presented here. The probability that the random walk, starting from $\mathbf{0}$, returns to $\mathbf{0}$ without hitting \mathbf{x} , is $q_{\mathbf{x}}$, while $s_{\mathbf{x}}$ is the probability that the random walk starting from $\mathbf{0}$ hits \mathbf{x} without returning to $\mathbf{0}$. Similarly, for symmetric reason, $q_{\mathbf{x}}$ is also the probability of the random walk starting from \mathbf{x} returns to \mathbf{x} without hitting $\mathbf{0}$, and $s_{\mathbf{x}}$ is also the probability of the random walk starting from \mathbf{x} hits $\mathbf{0}$ in finite time, without returning to \mathbf{x} . Hence, the probability that the random walk starting from any point of $A^{(\mathbf{x})}$, returns to $A^{(\mathbf{x})}$ in finite time, is $q_{\mathbf{x}} + s_{\mathbf{x}}$. This gives (2.8).

Similarly to Theorem A, we prove

Lemma 2.6.

$$1 - \gamma_{\mathbf{x}}(n) := \mathbf{P}(T_{\mathbf{x}} < n) = 1 - \gamma_{\mathbf{x}} + \frac{O(1)}{n^{d/2 - 1}},$$
(2.14)

$$q_{\mathbf{x}}(n) := \mathbf{P}(T < \min(n, T_{\mathbf{x}})) = q_{\mathbf{x}} + \frac{O(1)}{n^{d/2 - 1}},$$
 (2.15)

$$s_{\mathbf{x}}(n) := \mathbf{P}(T_{\mathbf{x}} < \min(n, T)) = s_{\mathbf{x}} + \frac{O(1)}{n^{d/2 - 1}},$$
 (2.16)

and O(1) is uniform in \mathbf{x} .

Proof. For the proof of (2.14) see Jain and Pruitt [7]. To prove (2.15) and (2.16), observe that

$$q_{\mathbf{x}} - q_{\mathbf{x}}(n) = \mathbf{P}(T < T_{\mathbf{x}}, n \le T < \infty) \le \mathbf{P}(n \le T < \infty) = \gamma(n) - \gamma,$$

 $s_{\mathbf{x}} - s_{\mathbf{x}}(n) = \mathbf{P}(T_{\mathbf{x}} < T, n \le T_{\mathbf{x}} < \infty) \le \mathbf{P}(n \le T_{\mathbf{x}} < \infty) = \gamma_{\mathbf{x}}(n) - \gamma_{\mathbf{x}}.$

Lemma 2.7. Let i < j. Then for $t \ge 1$ integer we have

$$\mathbf{P}(X_i = 1, X_j = 1) \le C\mu^2 \left(1 + \frac{t^{d/(d-2)}}{(j-i)^{d/2}} \left(\frac{2}{2-\gamma} \right)^{2t} \right), \tag{2.17}$$

where C is a constant, independent of i, j, t and $\mu = \mu(t) = \gamma(1-\gamma)^{t-1}$.

Proof. Using (2.8) of Lemma 2.5, we get

$$\begin{aligned} \mathbf{P}(X_i = 1, X_j = 1) \\ \leq \sum_{\mathbf{x} \in \mathcal{Z}_d} \mathbf{P}(\mathbf{S}_j - \mathbf{S}_i = \mathbf{x}, \xi(\mathbf{S}_i, \infty) - \xi(\mathbf{S}_i, i) + \xi(\mathbf{S}_j, \infty) - \xi(\mathbf{S}_j, i) \geq 2t - 1) \\ = \sum_{\mathbf{x} \in \mathcal{Z}_d} \mathbf{P}(\mathbf{S}_{j-i} = \mathbf{x}) \mathbf{P}(\Xi(A^{(\mathbf{x})}, \infty) \geq 2t - 1) \\ = \sum_{\mathbf{x} \in \mathcal{Z}_d} \mathbf{P}(\mathbf{S}_{j-i} = \mathbf{x}) (q_{\mathbf{x}} + s_{\mathbf{x}})^{2t-1} = \sum_{\mathbf{x} \in \mathcal{Z}_d, ||\mathbf{x}|| \leq R} + \sum_{\mathbf{x} \in \mathcal{Z}_d, ||\mathbf{x}|| > R}, \end{aligned}$$

where R will be chosen later. For estimating the first sum, we use $\gamma_{\mathbf{x}} \geq \gamma$ (cf. (2.4) of Lemma 2.5), hence by (2.7)

$$q_{\mathbf{x}} + s_{\mathbf{x}} = 1 - \frac{\gamma}{2 - \gamma_{\mathbf{x}}} \le \frac{2(1 - \gamma)}{2 - \gamma}.$$

On the other hand

$$\mathbf{P}(\mathbf{S}_{j-i} = \mathbf{x}) \le \frac{C_1}{(j-i)^{d/2}}, \quad \mathbf{x} \in \mathcal{Z}_d$$

with some constant C_1 , not depending on \mathbf{x} (cf. Spitzer [11], page 72).

Since the cardinality of the set $\{\|\mathbf{x}\| \leq R\}$ is a constant multiple of R^d , we have

$$\sum_{\mathbf{x} \in \mathcal{Z}_d, \|\mathbf{x}\| < R} \le \frac{C_2 R^d}{(j-i)^{d/2}} \left(\frac{2(1-\gamma)}{2-\gamma} \right)^{2t} \tag{2.18}$$

with some constant C_2 .

For estimating the second sum, we use $1 - \gamma_{\mathbf{x}} \leq C_3 R^{-d+2}$ for $\|\mathbf{x}\| > R$ (cf. Révész [9], page 241), hence

$$q_{\mathbf{x}} + s_{\mathbf{x}} \le 1 - \gamma + C_4 R^{-d+2} = (1 - \gamma) \left(1 + \frac{C_4}{(1 - \gamma)R^{d-2}} \right).$$

Now choose $R = t^{1/(d-2)}$. Then

$$(q_{\mathbf{x}} + s_{\mathbf{x}})^{2t-1} \le C_5 (1 - \gamma)^{2t}.$$

Here the constant C_5 is independent of both ${\bf x}$ and t. Since

$$\sum_{\mathbf{x}\in\mathcal{Z}_d} \mathbf{P}(\mathbf{S}_j - \mathbf{S}_i = \mathbf{x}) = 1,$$

we have

$$\sum_{\mathbf{x} \in \mathcal{Z}_d, \|\mathbf{x}\| > R} \le C_5 (1 - \gamma)^{2t} = C_6 \mu^2.$$

this together with (2.18) (putting $R = t^{1/(d-2)}$ there) proves Lemma 2.7. In the subsequent lemmas t_n is defined by (1.21).

Lemma 2.8. For $t \leq t_n$, any $\varepsilon > 0$ and large enough n we have

$$I \le O(1)n^{2/d+\varepsilon} \left(n + \left(\frac{2}{2-\gamma}\right)^{2t_n} \right) \mu^2(t). \tag{2.19}$$

Proof. Now we need to estimate the probability

$$P(X_i = 1, X_j = 1, \rho_i \ge n^{\alpha}).$$

Define the events B_k by

$$B_k = \{ \xi(\mathbf{S}_i, \infty) - \xi(\mathbf{S}_i, i) + \xi(\mathbf{S}_j, \infty) - \xi(\mathbf{S}_j, i) = k \}$$

and consider the k time intervals between the consecutive visits of $\{S_i, S_j\}$. Then at least one of these intervals is larger than

$$\frac{\rho_i(t)}{k} \ge \frac{n^{\alpha}}{k} \tag{2.20}$$

(provided that $\{X_i = 1, X_j = 1, \rho_i \ge n^{\alpha}\}$). Denote this event by D_k . Similarly to the proof of Lemma 2.7 we have

$$\mathbf{P}(X_i = 1, X_j = 1, \rho_i \ge n^{\alpha}) \le \sum_{\mathbf{x} \in \mathcal{Z}_d} \mathbf{P}(\mathbf{S}_j - \mathbf{S}_i = \mathbf{x}, \cup_{k \ge 2t-1} B_k D_k)$$

$$\leq \sum_{\mathbf{x}\in\mathcal{Z}_d} \mathbf{P}(\mathbf{S}_{j-i}=\mathbf{x}) \sum_{k>2t-1} \mathbf{P}(B_k D_k \mid \mathbf{S}_j - \mathbf{S}_i = \mathbf{x}).$$

The event $B_k D_k$, under the condition $\mathbf{S}_j - \mathbf{S}_i = \mathbf{x}$, means that placing a new origin at the point \mathbf{S}_i , and starting the time at i, there are exactly k visits in the set $A^{(\mathbf{x})}$, and at least one time interval between consecutive visits is larger than n^{α}/k . Hence applying (2.8) of Lemma 2.5 and (2.15), (2.16) of Lemma 2.6, we get

$$\mathbf{P}(B_k D_k \mid \mathbf{S}_j - \mathbf{S}_i = \mathbf{x}) \le k(1 - q_{\mathbf{x}} - s_{\mathbf{x}})(q_{\mathbf{x}} + s_{\mathbf{x}})^{k-1} \left(q_{\mathbf{x}} + s_{\mathbf{x}} - q_{\mathbf{x}} \left(\frac{n^{\alpha}}{k} \right) - s_{\mathbf{x}} \left(\frac{n^{\alpha}}{k} \right) \right)$$

$$\le O(1)k \left(\frac{k}{n^{\alpha}} \right)^{d/2 - 1} (1 - q_{\mathbf{x}} - s_{\mathbf{x}})(q_{\mathbf{x}} + s_{\mathbf{x}})^{k-1} \le O(1)k^{d/2} n^{2/d - 1} (q_{\mathbf{x}} + s_{\mathbf{x}})^{k-1},$$

where O(1) is uniform in k and x, hence

$$\sum_{k \ge 2t-1} \mathbf{P}(B_k D_k \mid \mathbf{S}_j - \mathbf{S}_i = \mathbf{x}) \le O(1) n^{2/d-1} \sum_{k \ge 2t-1} k^{d/2} (q_{\mathbf{x}} + s_{\mathbf{x}})^{k-1}$$

$$\le O(1) n^{2/d-1} t^{d/2} (q_{\mathbf{x}} + s_{\mathbf{x}})^{2t-2}.$$

Proceeding now as in the proof of Lemma 2.7, we can estimate

$$\mathbf{P}(X_i = 1, X_j = 1, \rho_i \ge n^{\alpha}) \le O(1)t^{d/2}n^{2/d-1}\mu^2(t) \left(1 + \frac{t^{d/(d-2)}}{(j-i)^{d/2}} \left(\frac{2}{2-\gamma}\right)^{2t}\right)$$

and summing up for $1 \le i < j \le n$, we get

$$I \le O(1)n^{2/d}t_n^{d/2} \left(n + t_n^{d/(d-2)} \left(\frac{2}{2-\gamma}\right)^{2t_n}\right) \mu^2(t),$$

since $t \leq t_n$. But $t_n < \lambda \log n$, therefore any power of t_n can be estimated by n^{ε} , hence (2.19) follows.

Lemma 2.9. For $t \leq t_n$, any $\varepsilon > 0$ and large enough n we have

$$II \le O(1)n^{2/d+\varepsilon} \left(n + n^{1-2/d} \left(\frac{2}{2-\gamma}\right)^{2t_n}\right) \mu^2(t).$$
 (2.21)

Proof. Using the estimate in Lemma 2.7 and summing up for i, j with $1 \le i < j \le \min(i+3n^{\alpha},n)$, using again that $t_n < \lambda \log n$, a simple calculation shows (2.21).

Lemma 2.10. For $t \leq t_n$, any $\varepsilon > 0$ and large enough n we have

$$III \le \frac{\mu^2(t)n^2}{2} + O(1)n^{3/2}\mu^2(t). \tag{2.22}$$

Proof. Let

$$A = \{\mathbf{S}_i \text{ is a new point i.e. } \mathbf{S}_i \neq \mathbf{S}_j \text{ } j = 1, 2, \dots, i-1\},$$

$$B = \{\xi(\mathbf{S}_i, i + n^{\alpha}) - \xi(\mathbf{S}_i, i) \geq t-1\},$$

$$D = \{\mathbf{S}_j \text{ is a new point}\},$$

$$E = \{\xi(\mathbf{S}_j, \infty) - \xi(\mathbf{S}_j, j) \geq t-1\},$$

$$D \subset G = \left\{\xi(\mathbf{S}_j, j) - \xi\left(\mathbf{S}_j, i + \frac{2(j-i)}{3}\right) = 0\right\},$$

$$B \subset H = \{\xi(\mathbf{S}_i, \infty) - \xi(\mathbf{S}_i, i) \geq t-1\}.$$

Recall the definition of $\gamma(n)$ in Section 1 and let $j > i + 3n^{\alpha}$. Then

$$\mathbf{P}\{X_i = 1, \ X_j = 1, \ \rho_i < n^{\alpha}\} \le \mathbf{P}\{ABDE\} \le$$

$$\le \mathbf{P}(ABGE) = \mathbf{P}(A)\mathbf{P}(B)\mathbf{P}(G)\mathbf{P}(E) \le$$

$$\le \mathbf{P}(A)\mathbf{P}(H)\mathbf{P}(G)\mathbf{P}(E) =$$

$$= \gamma(i+1)(1-\gamma)^{t-1}\gamma((j-i)/3)(1-\gamma)^{t-1}.$$

Clearly we have

$$\begin{split} III & \leq \sum \gamma(i+1)(1-\gamma)^{t-1}\gamma((j-i)/3)(1-\gamma)^{t-1} \leq \\ & \leq \gamma^2(1-\gamma)^{2t-2} \sum \left(1 + \frac{O(1)}{(j-i)^{d/2-1}}\right) \left(1 + \frac{O(1)}{i^{d/2-1}}\right) \leq \\ & \leq \gamma^2(1-\gamma)^{2t-2} \left[\binom{n}{2} + O(1)(K+L+M)\right] \end{split}$$

where the summations above and below go for $\{i, j: 1 \le i < i + 3n^{\alpha} < j \le n\}$ and

$$K = \sum \frac{1}{i^{d/2-1}} \le na_n,$$

$$L = \sum \frac{1}{(j-i)^{d/2-1}} \le na_n,$$

$$M = \sum \frac{1}{i^{d/2-1}} \frac{1}{(j-i)^{d/2-1}} \le na_n.$$

Using $a_n = O(1)n^{1/2}$ (see Lemma 2.3) we have (2.22).

Lemma 2.11. For $t \leq t_n$, any $\varepsilon > 0$ and large enough n we have

$$\sigma_n^2 = O(1)[n\mu(t) + \mu^2(t)n^{1.8}]. \tag{2.23}$$

Proof is based on Lemmas 2.4, 2.8, 2.9 and 2.10. The numerical values of λ can be obtained by a result of Griffin [4]:

$$1 - \gamma_3 = 0.341,$$

$$1 - \gamma_4 = 0.193,$$

$$1 - \gamma_5 = 0.131,$$

$$1 - \gamma_6 = 0.104.$$

Consequently

$$\lambda_3 = 0.929,$$

 $\lambda_4 = 0.608,$
 $\lambda_5 = 0.492,$
 $\lambda_6 = 0.442.$

By using $t_n < \lambda \log n$, one can verify (numerically)

$$\left(\frac{2}{2-\gamma}\right)^{2t_n} < n^{2\lambda \log(2/(2-\gamma))} < n^{0.75}$$

for d=3 and hence also for all $d\geq 3$. By choosing an appropriate ε and putting the estimations (2.19), (2.21), (2.22) into (2.2), we can see, that the term $n^2\mu^2$ cancels out and all the other terms are smaller than the right hand side of (2.23), proving Lemma 2.11.

Lemma 2.12. For any 0 < C < B, $t \le t_n$ and large enough n we have

$$\sigma_n(\log n)^{C/2} \le O(1)((n\mu(t))^{1/2}(\log n)^{C/2} + \mu(t)n^{0.9}(\log n)^{C/2}) = o(1)n\mu(t).$$

3. Proof of the Theorem

First we prove (1.24).

Lemma 2.11 implies

By Markov's inequality for any C > 0 we have

$$\mathbf{P}(|V(t,n) - n\mu(t)| \ge \sigma_n(\log n)^{C/2}) \le (\log n)^{-C}.$$

By Lemma 2.12, if C < B,

$$\mathbf{P}(|V(t,n) - n\mu(t)| > o(1)n\mu(t)) < (\log n)^{-C}.$$

Consequently, since $t_n < \lambda \log n$,

$$\mathbf{P}\left(\sup_{t \le t_n + 1} \frac{|V(t, n) - n\mu(t)|}{n\mu(t)} \ge o(1)\right) \le O(1)(\log n)^{-C+1}.$$
 (3.1)

Choose C > 2, $n(k) = \exp(k/\log k)$. (3.1) and Borel-Cantelli lemma imply

$$\lim_{k \to \infty} \sup_{t \le t(n(k))+1} \left| \frac{V(t, n(k))}{n(k)\mu(t)} - 1 \right| = 0 \quad \text{a.s.}$$
 (3.2)

Let $n(k) \leq n < n(k+1)$. Then for $t \leq t_n$ we have

$$V(t, n(k)) \le V(t, n) \le V(t, n(k+1))$$

and

$$\lim_{k \to \infty} \frac{n(k+1)}{n(k)} = 1.$$

Hence for any $\varepsilon > 0$ and large enough n,

$$\frac{V(t,n)}{n\mu(t)} \le \frac{V(t,n(k+1))}{n(k+1)\mu(t)} \frac{n(k+1)}{n} \le (1+\varepsilon) \quad \text{a.s.},$$

since $t \leq t_n \leq t(n(k+1))$. Similarly,

$$\frac{V(t,n)}{n\mu(t)} \ge \frac{V(t,n(k))}{n(k)\mu(t)} \frac{n(k)}{n} \ge (1-\varepsilon) \quad \text{a.s.}$$

Hence we have (1.24).

Now we turn to the proof of (1.25).

Let

$$M(t,n) = V(t,n) - R(t,n) = \sum_{i=1}^{n} (X_i - Y_i).$$

Observe that $X_i \geq Y_i$ and hence M(t, n) is non-negative and non-decreasing in n. Moreover, by Lemma 2.2

$$\mathbf{E}(X_i - Y_i) = \mathbf{P}(X_i - Y_i = 1) \le \mathbf{P}(X_i = 1, n - i \le \rho_i(t) < \infty) \le \frac{O(1)\mu(t)t^{d/2}}{(n - i)^{d/2 - 1}}.$$

Consequently

$$0 \le \frac{\mathbf{E}M(t,n)}{n\mu(t)} \le \frac{O(1)(\log n)^{d/2}}{n^{1/2}}.$$

By Markov's inequality

$$\mathbf{P}\left(\sup_{t < t_n} \frac{M(t, n)}{n\mu(t)} > \varepsilon\right) \le \frac{O(1)(\log n)^{d/2+1}}{n^{1/2}}.$$

On choosing $n_k = k^{2+\delta}$, $\delta > 0$, Borel-Cantelli lemma implies

$$\lim_{k \to \infty} \sup_{t \le t_{n_k}} \frac{M(t, n_k)}{n_k \mu(t)} = 0 \quad \text{a.s.}$$

Using the monotonicity of M(t,n) in n, interpolating between n_k and n_{k+1} we get

$$\lim_{n \to \infty} \sup_{t \le t_n} \frac{M(t, n)}{n\mu(t)} = 0 \quad \text{a.s.}$$

This combined with (1.24) gives (1.25).

(1.23) and (1.22) are immediate from (1.25) and (1.24), since Q(t, n) = R(t, n) - R(t+1, n) and U(t, n) = V(t, n) - V(t+1, n).

This completes the proof of the Theorem.

References

- [1] Csáki, E., Földes, A., Révész, P., Rosen, J., Shi, Z., 2005. Frequently visited sets for random walks. Stochastic Process. Appl., to appear.
- [2] Dvoretzky, A., Erdős, P., 1951. Some problems on random walk in space. Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley, pp. 353–367.
- [3] Erdős, P., Taylor, S.J., 1960. Some problems concerning the structure of random walk paths. Acta Math. Acad. Sci. Hungar. 11, 137–162.

- [4] Griffin, P., 1990. Accelerating beyond the third dimension: returning to the origin in simple random walk. Math. Scientist 15, 24–35.
- [5] Hamana, Y., 1992. On the central limit theorem for the multiple point range of random walk. J. Fac. Sci. Univ. Tokyo 39, 339–363.
- [6] Hamana, Y., 1995. On the multiple point range of three dimensional random walk. Kobe J. 12, 95–122.
- [7] Jain, N.C., Pruitt, W.E., 1971. The range of transient random walk. J. Analyse Math. 24, 369–393.
- [8] Pitt, J.H., 1974. Multiple points of transient random walk. Proc. Amer. Math. Soc. 43, 195–199.
- [9] Révész, P., 1990. Random Walk in Random and Non-Random Environments. World Scientific, Singapore.
- [10] Révész, P., 2004. The maximum of the local time of a transient random walk. Studia Sci. Math. Hungar. 41, 379–390.
- [11] Spitzer, F., 1976. Principles of Random Walk, 2nd. ed. Van Nostrand, Princeton.