Joint functional laws for the Wiener process, its local time and principal value by Endre Csáki^{1,2}, Antónia Földes³ and Zhan Shi² Alfréd Rényi Institute of Mathematics, City University of New York & Université Paris VI **Summary.** We present joint functional iterated logarithm laws for the Wiener process and its local time, as well as for the Wiener process and the principal value of its local times. **Keywords.** Wiener process, local time, principal value of the local time, functional law of the iterated logarithm. 2000 Mathematics Subject Classification. 60F15; 60J55; 60J65. $^{^{1}}$ Research supported by the Hungarian National Foundation for Scientific Research, Grant Nos. T 029621 and T 037886. ²Research supported by the joint French-Hungarian Intergovernmental Grant "Balaton", No. F-39/2000. ³Research supported by a PSC CUNY grant, No. 634680032. ## 1 Introduction Let $\{W(t); t \ge 0\}$ be a one-dimensional Wiener process with W(0) = 0, and let $\{L(t, x); t \ge 0, x \in \mathbb{R}\}$ denote its local time process, jointly continuous in t and x. For any Borel function $f \ge 0$, $$\int_0^t f(W(s)) ds = \int_{-\infty}^\infty f(x) L(t, x) dx, \qquad t \geqslant 0.$$ Put L(t,0) = L(t) and $$U_t(x) := \frac{W(xt)}{\sqrt{2t \log \log t}},$$ $$V_t(x) := \frac{L(xt)}{\sqrt{2t \log \log t}}, \quad x \in [0, 1].$$ We consider $x \mapsto U_t(x)$ and $x \mapsto V_t(x)$ as elements of the space $\mathcal{C} = \mathcal{C}[0,1]$ of continuous functions with metric $$d(f,g) = \sup_{x \in [0,1]} |f(x) - g(x)|.$$ Recall the celebrated functional law of the iterated logarithm (FLIL) for W due to Strassen [18]: **Theorem A** With probability one, the set $\{U_t\}_{t\geqslant 1}$ is relatively compact in C, with limit set equal to $$\mathcal{S} := \left\{ f \in \mathcal{C} : f(0) = 0, f \text{ is absolutely continuous, with } \int_0^1 (f'(x))^2 \, \mathrm{d}x \leqslant 1 \right\}.$$ Using that $\{L(t), t \ge 0\}$ has the same distribution as $\{\sup_{s \in [0,t]} W(s), t \ge 0\}$, one can easily obtain (cf. Csáki and Révész [10], Mueller [16], Chen [4]), **Theorem B** With probability one, the set $\{V_t\}_{t\geqslant 1}$ is relatively compact in C, with limit set equal to $$S_M := \{g \in S : g \text{ is non-decreasing}\}.$$ Our concern in this paper is to prove a joint FLIL for the vector $\{(U_t(x), V_t(x)), x \in [0, 1]\}_{t \geq 1}$. We are working on the space $\mathcal{C}^{(2)} := \mathcal{C} \times \mathcal{C}$ with metric $$d((f_1, g_1), (f_2, g_2)) = \sup_{x \in [0, 1]} \sqrt{(f_1(x) - f_2(x))^2 + (g_1(x) - g_2(x))^2}.$$ Our first main result is **Theorem 1.1** With probability one, the set $\{(U_t, V_t)\}_{t\geq 1}$ is relatively compact in $C^{(2)}$, with limit set equal to $$\mathcal{S}_{J}^{(2)} := \left\{ (f, g) : f \in \mathcal{S}, g \in \mathcal{S}_{M}, \int_{0}^{1} (f'(x))^{2} + (g'(x))^{2} \right\} dx \leqslant 1, \ f(x)g'(x) = 0 \text{ a.e.} \right\}.$$ **Remark 1.2** If W and L were independent, then the limit set would be equal to (cf. for example [9]) $$\mathcal{S}^{(2)} = \left\{ (f, g) : f \in \mathcal{S}, g \in \mathcal{S}_M, \int_0^1 (f'(x))^2 + (g'(x))^2 \right\} dx \leqslant 1 \right\}.$$ Obviously, L being the local time of W is not independent of W. The extra condition f(x)g'(x) = 0 a.e. expresses the fact that if W is away from zero, then L does not increase. \square We are also interested in studying the process $$Y(t) = \int_0^t \frac{\mathrm{d}s}{W(s)}, \qquad t \geqslant 0.$$ Rigorously speaking, the integral $\int_0^t ds/W(s)$ should be considered in the sense of Cauchy's principal value, i.e., Y(t) is defined by (1.1) $$Y(t) = \lim_{\varepsilon \to 0^+} \int_0^t \frac{\mathrm{d}s}{W(s)} \mathbf{1}_{\{|W(s)| \ge \varepsilon\}} = \int_0^\infty \frac{L(t,x) - L(t,-x)}{x} \, \mathrm{d}x.$$ Since $x \mapsto L(t, x)$ is Hölder continuous of order ν , for any $\nu < 1/2$, the integral on the right hand side of (1.1) is well-defined. The study of Cauchy's principal value of Brownian local time goes back at least to Itô and McKean [15], and has become very active since the late 70s, due to applications in various branches of stochastic analysis. For a detailed account of various motivations, historical facts and general properties of principal values of local times, we refer to the recent collection of research papers in Yor [20], to Chapter 10 of the lecture notes by Yor [21], and to the survey paper by Yamada [19]. The process $Y(\cdot)$ defined in (1.1) is continuous, having zero quadratic variation. It is easily seen that $Y(\cdot)$ inherits a scaling property from Brownian motion, namely, for any fixed a > 0, $t \mapsto a^{-1/2}Y(at)$ has the same law as $t \mapsto Y(t)$. Although the aforementioned zero quadratic variation property distinguishes $Y(\cdot)$ from Brownian motion (in particular, $Y(\cdot)$ is not a semimartingale), it is a kind of folklore that Y behaves somewhat like a Brownian motion. Hu and Shi [14] proved a law of the iterated logarithm for $Y(\cdot)$: $$\limsup_{t \to \infty} \frac{Y(t)}{\sqrt{8t \log \log t}} = 1 \quad \text{a.s.}$$ FLIL for Y was not known before. Here we show that similarly to Theorem 1.1, a joint FLIL for W and Y holds. Introduce $$Z_t(x) = \frac{Y(xt)}{\sqrt{8t \log \log t}}, \qquad 0 \leqslant x \leqslant 1.$$ Our next result is **Theorem 1.3** With probability one the set $\{(U_t, Z_t)\}_{t\geqslant 1}$ is relatively compact in $C^{(2)}$, with limit set equal to $$\widetilde{\mathcal{S}}_{J}^{(2)} = \left\{ (f,g): \ f \in \mathcal{S}, g \in \mathcal{S}, \int_{0}^{1} (f'(x))^{2} + (g'(x))^{2}) \, \mathrm{d}x \leqslant 1, \ f(x)g'(x) = 0 \ \text{a.e.} \right\}.$$ Some consequences are as follows. Corollary 1.4 With probability one, the set $\{Z_t\}_{t\geqslant 1}$ is relatively compact in C, with limit set equal to S given in Theorem A. Corollary 1.5 With probability one, the set $\{(U_t(1), V_t(1))\}_{t\geq 1}$ is relatively compact in \mathbb{R}^2 with limit set equal to $$\{(x,y) \in \mathbb{R}^2 : y \geqslant 0, |x| + y \leqslant 1\}.$$ Corollary 1.6 With probability one, the set $\{(U_t(1), Z_t(1))\}_{t\geqslant 1}$ is relatively compact in \mathbb{R}^2 with limit set equal to $$\{(x,y) \in \mathbb{R}^2 : |x| + |y| \le 1\}.$$ The organization of the paper is as follows: In Section 2 we present some preliminary results for the distribution of the Wiener process, local time and principal value, as well as certain estimates for the increments of the processes concerned. In Section 3 we prove Theorem 1.1, while Section 4 is devoted to the proof of Theorem 1.3. In Section 5 we prove the Corollaries. Some further remarks and consequences are given in Section 6. Throughout the paper, for any $x \in \mathbb{R}$, we denote \mathbb{P}^x the probability under which the Wiener process W starts from W(0) = x (thus $\mathbb{P} = \mathbb{P}^0$); unimportant constants (which are finite and positive) are denoted by the letter c with subscript. ## 2 Preliminaries ## 2.1 Distribution results for Wiener process and its local time The proof of Theorem 1.1 is based on the formula 1.3.8 in Borodin and Salminen [3]: $$(2.1) \mathbb{P}^{z_1}(L(t) \in dy, W(t) \in dz_2) = p_t(y; z_1, z_2) dy dz_2, y > 0,$$ and (2.2) $$\mathbb{P}^{z_1}(L(t) = 0, W(t) \in dz_2) = q_t(z_1, z_2) dz_2,$$ where (2.3) $$p_t(y; z_1, z_2) = \frac{y + |z_1| + |z_2|}{t} \varphi_t(y + |z_1| + |z_2|),$$ $$(2.4) q_t(z_1, z_2) = \varphi_t(z_2 - z_1) - \varphi_t(|z_1| + |z_2|),$$ (2.5) $$\varphi_t(x) = \frac{1}{\sqrt{2\pi t}} \exp\left(-\frac{x^2}{2t}\right).$$ ### 2.2 Distribution results for Wiener process and principal value First recall some results for principal value. Biane and Yor [1] proved the following result: Let $\{B(s), 0 \le s \le 1\}$ be a Brownian bridge, then $$\frac{\mathrm{d}}{\mathrm{d}x} \mathbb{P}\left(\int_0^1 \frac{\mathrm{d}s}{B(s)} < x\right) = \frac{|x|}{2} \sum_{n=1}^\infty \exp\left(-\frac{(2n-1)^2 x^2}{8}\right)$$ $$\geqslant \frac{|x|}{2} \exp\left(-\frac{x^2}{8}\right).$$ It follows that for $0 < \alpha < \beta$ (2.7) $$\mathbb{P}\left(\int_0^1 \frac{\mathrm{d}s}{B(s)} \in (\alpha, \beta)\right) \geqslant 2\left(\exp\left(-\frac{\alpha^2}{8}\right) - \exp\left(-\frac{\beta^2}{8}\right)\right).$$ It was proved in [7] (cf. (2.11), (2.14) and (2.16) there) that for any $\delta > 0$ there exists $c_1(\delta) > 0$ such that for all s > 0 and x > 0, (2.8) $$\sup_{z \in \mathbb{R}} \mathbb{P}^z(|Y(s)| > x) \leqslant c_1(\delta) \exp\left(-\frac{x^2}{(8+\delta)s}\right).$$ **Lemma 2.1** Let s > 0, $\lambda > 0$, $\delta > 0$ and $0 < \varepsilon < 1$. For $(a, \alpha, z) \in \mathbb{R}^3$, define (2.9) $$I = I(a, \alpha, z) := \mathbb{P}^z \left(a \leqslant W(s) \leqslant a + 2\varepsilon\lambda, \ \alpha \leqslant Y(s) \leqslant \alpha + 4\varepsilon\lambda \right).$$ Then (2.10) $$I \leqslant \frac{\lambda}{\sqrt{s}} \exp\left(-\frac{(|a-z| - 2\varepsilon\lambda)^2 - 4\varepsilon^2\lambda^2}{2s}\right).$$ Moreover, if $|\alpha| \geqslant 4\varepsilon\lambda$, then (2.11) $$I \leqslant c_1(\delta) \exp\left(-\frac{(|\alpha| - 4\varepsilon\lambda)^2}{(8+\delta)s}\right),$$ where $c_1(\delta)$ is the constant in (2.8). **Proof:** Observe that $$I \leqslant \mathbb{P}^z (a \leqslant W(s) \leqslant a + 2\varepsilon\lambda) = \mathbb{P}\left(\frac{a-z}{\sqrt{s}} \leqslant N \leqslant \frac{a-z+2\varepsilon\lambda}{\sqrt{s}}\right),$$ where N is a standard normal variable. Hence (2.10) follows from a straightforward Gaussian estimate. Now for $|\alpha| \ge 4\varepsilon\lambda$, we have $$I \leq \mathbb{P}^z(\alpha \leq Y(s) \leq \alpha + 4\varepsilon\lambda) \leq \mathbb{P}^z(|Y(s)| \geq |\alpha| - 4\varepsilon\lambda),$$ which implies (2.11) by means of (2.8). For the lower estimates we prove several lemmas. **Lemma 2.2** For $\alpha > 0$, $\beta - \alpha > 4$, $0 < \delta < 1$ we have (2.12) $$\mathbb{P}(|W(1)| \leq 1, \ \alpha \leq Y(1) \leq \beta) \geqslant c_2(\delta) \exp\left(-\frac{(\alpha+1)^2}{8(1-\delta)}\right),$$ where
$c_2(\delta)$ is a constant depending only on δ . #### **Proof:** Let $$G := \sup\{t : t \le 1, W(t) = 0\},\$$ $B(s) := \frac{W(sG)}{\sqrt{G}}, \quad s \in [0, 1].$ It is known that $(B(s), s \in [0,1]), G$ and $(\frac{W(G+s(1-G))}{\sqrt{1-G}}, s \in [0,1])$ are independent, and that $(B(s), s \in [0,1])$ is a (standard) Brownian bridge. We have $$\begin{split} & \mathbb{P}(|W(1)| \leqslant 1, \ \alpha \leqslant Y(1) \leqslant \beta) \\ \geqslant & \mathbb{P}(|W(1)| \leqslant 1, \ \alpha + 1 \leqslant Y(G) \leqslant \beta - 1, \ |Y(1) - Y(G)| \leqslant 1, \ G \geqslant 1 - \delta) \\ = & \int_{1-\delta}^{1} \mathbb{P}(|W(1)| \leqslant 1, \ \alpha + 1 \leqslant Y(\kappa) \leqslant \beta - 1, \ |Y(1) - Y(\kappa)| \leqslant 1 \ |G = \kappa) \ \mathbb{P}(G \in d\kappa) \\ = & \int_{1-\delta}^{1} \mathbb{P}(\alpha + 1 \leqslant Y(\kappa) \leqslant \beta - 1 \ |G = \kappa) \times \\ & \times \mathbb{P}(|W(1)| \leqslant 1, \ |Y(1) - Y(\kappa)| \leqslant 1 \ |G = \kappa) \ \mathbb{P}(G \in d\kappa). \end{split}$$ Since under the condition $G = \kappa$, $Y(\kappa)/\sqrt{\kappa}$ has the same distribution as $\int_0^1 ds/B(s)$, where B is a Brownian bridge, we get from (2.7) $$\mathbb{P}(\alpha + 1 \leqslant Y(\kappa) \leqslant \beta - 1 \mid G = \kappa) \geqslant 2\left(\exp\left(-\frac{(\alpha + 1)^2}{8\kappa}\right) - \exp\left(-\frac{(\beta - 1)^2}{8\kappa}\right)\right)$$ $$\geqslant 2(1 - e^{-1})\exp\left(-\frac{(\alpha + 1)^2}{8\kappa}\right)$$ $$\geqslant 2(1 - e^{-1})\exp\left(-\frac{(\alpha + 1)^2}{8(1 - \delta)}\right).$$ This gives (2.12), with $$c_2(\delta) := 2(1 - e^{-1})\mathbb{P}(|W(1)| \le 1, |Y(1) - Y(G)| \le 1, G \ge 1 - \delta).$$ The lemma is proved. Now we introduce the notation $$(2.13) T_b := \inf\{t : t \geqslant 0, W(t) = b\}.$$ By the reflection principle, we have for all u > 0 and $(a, z) \in \mathbb{R}^2$, (2.14) $$\mathbb{P}^{z}(T_{a} \leqslant u) = 2\overline{\Phi}\left(\frac{|z-a|}{\sqrt{u}}\right),$$ where $\overline{\Phi}(x) := \mathbb{P}(N > x)$ is the standard Gaussian tail distribution function. In the sequel we shall use the inequalities: $$(2.15) \overline{\Phi}(x) \geqslant \frac{1}{(2\pi)^{1/2}} \left(\frac{1}{x} - \frac{1}{x^3}\right) \exp\left(-\frac{x^2}{2}\right), x \geqslant 1,$$ (2.16) $$\overline{\Phi}(x) \leq \frac{1}{2} \exp\left(-\frac{x^2}{2}\right), \qquad x > 0.$$ (For (2.16), see Proposition II.1.8 of Revuz and Yor [17].) **Lemma 2.3** For s > 0, $0 < \delta < 1$, $z \in \mathbb{R}$ we have (2.17) $$\mathbb{P}^{z}(T_{0} \leqslant \delta s, |Y(T_{0})| \leqslant 2\sqrt{s}) \geqslant c_{3}(\delta) \overline{\Phi}\left(\frac{||z| - \sqrt{s}|}{\delta\sqrt{s}}\right).$$ **Proof:** By symmetry, it suffices to prove (2.17) for z > 0 (there is nothing to prove if z = 0). Assuming first $z > \sqrt{s}$, we have $$\mathbb{P}^{z}(T_{0} \leqslant \delta s, |Y(T_{0})| \leqslant 2\sqrt{s})$$ $$\geqslant \mathbb{P}^{z}(T_{0} - T_{\sqrt{s}} \leqslant \delta(1 - \delta)s, T_{\sqrt{s}} \leqslant \delta^{2}s, Y(T_{0}) - Y(T_{\sqrt{s}}) \leqslant \sqrt{s})$$ $$= \mathbb{P}^{\sqrt{s}}(T_{0} \leqslant \delta(1 - \delta)s, Y(T_{0}) \leqslant \sqrt{s}) \mathbb{P}^{z}(T_{\sqrt{s}} \leqslant \delta^{2}s),$$ where we used the fact that $T_{\sqrt{s}} \leqslant \delta^2 s$ implies $Y(T_{\sqrt{s}}) \leqslant T_{\sqrt{s}}/\sqrt{s} \leqslant \delta^2 \sqrt{s} < \sqrt{s}$. By scaling, $\mathbb{P}^{\sqrt{s}}(T_0 \leq \delta(1-\delta)s, Y(T_0) \leq \sqrt{s})$ is a positive constant depending only on δ . In view of (2.14), we have proved (2.17) in case $z > \sqrt{s}$. If $0 < z \le \sqrt{s}$, we have, by scaling, $$\mathbb{P}^{z}(T_{0} \leqslant \delta s, |Y(T_{0})| \leqslant 2\sqrt{s}) = \mathbb{P}^{1}\left(T_{0} \leqslant \frac{\delta s}{z^{2}}, |Y(T_{0})| \leqslant \frac{2\sqrt{s}}{z}\right)$$ $$\geqslant \mathbb{P}^{1}\left(T_{0} \leqslant \delta, |Y(T_{0})| \leqslant 2\right)$$ $$=: c_{4}(\delta),$$ from which (2.17) follows. **Lemma 2.4** Let s > 0, $\varepsilon > 0$, $\lambda > 0$, $0 < \delta < 1$, $(\alpha, z) \in \mathbb{R}^2$ be such that $\varepsilon \lambda > 8\sqrt{s}$. Then we have (2.18) $$\mathbb{P}^{z}(|W(s)| \leq \varepsilon \lambda, \ \alpha \leq Y(s) \leq \alpha + 4\varepsilon \lambda) \\ \geqslant c_{5}(\delta) \exp\left(-\frac{(|\alpha| + 2\varepsilon \lambda)^{2}}{8s(1 - \delta)^{2}}\right) \overline{\Phi}\left(\frac{||z| - \sqrt{s}|}{\delta \sqrt{s}}\right).$$ **Proof:** Define, for $n \ge 1$, $$I_{\lambda,z}(\alpha,n) := \mathbb{P}^z(|W(s)| \leqslant \varepsilon \lambda, \ \alpha \leqslant Y(s) \leqslant \alpha + n\varepsilon \lambda).$$ Note that $I_{\lambda,z}(\alpha,n)$ is non-decreasing in n. Moreover, $$I_{\lambda,z}(\alpha,n) \geqslant \mathbb{P}^{z}(|W(s)| \leqslant \varepsilon \lambda, \ \alpha \leqslant Y(s) \leqslant \alpha + n\varepsilon \lambda, \ T_{0} \leqslant \delta s)$$ $$= \int_{0}^{\delta s} \mathbb{P}^{z}(|W(s)| \leqslant \varepsilon \lambda, \ \alpha \leqslant Y(s) \leqslant \alpha + n\varepsilon \lambda \ | \ T_{0} = \tau) \ \mathbb{P}^{z}(T_{0} \in d\tau)$$ $$\geqslant \int_{0}^{\delta s} \mathbb{P}^{z}(A_{\tau} \cap B_{\tau}(n) \ | \ T_{0} = \tau) \ \mathbb{P}^{z}(T_{0} \in d\tau),$$ where $$A_{\tau} := \{|Y(\tau)| \leq 2\sqrt{s}\},$$ $$B_{\tau}(n) := \{|W(s)| \leq \varepsilon\lambda, \ \alpha + 2\sqrt{s} \leq Y(s) - Y(\tau) \leq \alpha + n\varepsilon\lambda - 2\sqrt{s}\}.$$ Under the condition $\{W(0)=z, T_0=\tau\}$, A_{τ} and $B_{\tau}(n)$ are independent, so that $$I_{\lambda,z}(\alpha,n) \geqslant \int_0^{\delta s} \mathbb{P}^z(A_\tau \mid T_0 = \tau) \, \mathbb{P}^z(T_0 \in \mathrm{d}\tau) \times \inf_{\tau \in (0,\,\delta s)} \mathbb{P}^z(B_\tau(n) \mid T_0 = \tau).$$ By Lemma 2.3, $$\int_0^{\delta s} \mathbb{P}^z (A_\tau \mid T_0 = \tau) \, \mathbb{P}^z (T_0 \in d\tau) = \mathbb{P}^z (|Y(T_0)| \leqslant 2\sqrt{s}, \, T_0 \leqslant \delta s)$$ $$\geqslant c_3(\delta) \, \overline{\Phi} \left(\frac{||z| - \sqrt{s}|}{\delta \sqrt{s}} \right),$$ whereas according to Lemma 2.2, and by scaling, $$\mathbb{P}^{z}(B_{\tau}(1) | T_{0} = \tau)$$ $$= \mathbb{P}(|W(s-\tau)| \leq \varepsilon \lambda, \ \alpha + 2\sqrt{s} \leq Y(s-\tau) \leq \alpha + \varepsilon \lambda - 2\sqrt{s})$$ $$\geq \mathbb{P}\left(|W(1)| \leq 1, \ \frac{\alpha + 2\sqrt{s}}{\sqrt{s-\tau}} \leq Y(1) \leq \frac{\alpha + \varepsilon \lambda - 2\sqrt{s}}{\sqrt{s-\tau}}\right).$$ Assume $\alpha \ge 0$ for the moment. By Lemma 2.2, $$\mathbb{P}^{z}(B_{\tau}(1) \mid T_{0} = \tau) \geqslant c_{2}(\delta) \exp\left(-\frac{(\alpha + \varepsilon \lambda)^{2}}{8s(1 - \delta)^{2}}\right),$$ which yields $$(2.19) I_{\lambda,z}(\alpha,1) \geqslant c_6(\delta) \exp\left(-\frac{(\alpha+\varepsilon\lambda)^2}{8s(1-\delta)^2}\right) \overline{\Phi}\left(\frac{||z|-\sqrt{s}|}{\delta\sqrt{s}}\right), \alpha \geqslant 0,$$ with $c_6(\delta) := c_3(\delta)c_2(\delta)$. Since $I_{\lambda,z}(\alpha,4) \geqslant I_{\lambda,z}(\alpha,1)$, this yields (2.18) in case $\alpha \geqslant 0$. To treat the case $\alpha \leq -\varepsilon \lambda$, we observe that $$I_{\lambda,z}(\alpha,4) \geqslant \mathbb{P}^{z}(|W(s)| \leqslant \varepsilon \lambda, \ \alpha \leqslant Y(s) \leqslant \alpha + \varepsilon \lambda)$$ $$= \mathbb{P}^{-z}(|W(s)| \leqslant \varepsilon \lambda, \ -\alpha - \varepsilon \lambda \leqslant Y(s) \leqslant -\alpha),$$ the last identity following via replacing W by -W. This gives $I_{\lambda,z}(\alpha,4) \ge I_{\lambda,-z}(-\alpha-\varepsilon\lambda,1)$. Since $-\alpha-\varepsilon\lambda \ge 0$, we are entitled to apply (2.19) to deduce (2.18). It remains to study the situation $\alpha \in (-\varepsilon \lambda, 0)$. In this case, $$I_{\lambda,z}(\alpha,4) \geqslant \mathbb{P}^{z}(|W(s)| \leqslant \varepsilon \lambda, \ \alpha + \varepsilon \lambda \leqslant Y(s) \leqslant \alpha + 2\varepsilon \lambda) = I_{\lambda,z}(\alpha + \varepsilon \lambda, 1),$$ which yields (2.18) in view of (2.19). Lemma 2.4 is proved. **Lemma 2.5** For s > 0, $\varepsilon > 0$, $\lambda > 0$, $(a, z) \in \mathbb{R}^2$ such that $\varepsilon^2 \lambda^2 \ge 2s$, az > 0, and $$|z| > \frac{s}{2\varepsilon\lambda} + 3\varepsilon\lambda, \quad |a| > \frac{s}{2\varepsilon\lambda} + 3\varepsilon\lambda$$ we have $$(2.20) \mathbb{P}^{z}(a \leqslant W(s) \leqslant a + 2\varepsilon\lambda, |Y(s)| \leqslant 2\varepsilon\lambda) \geqslant \frac{1}{2}\exp\left(-\frac{(|a-z| + 2\varepsilon\lambda)^{2}}{2s}\right).$$ **Proof:** It suffices to prove the lemma for $z > \frac{s}{2\varepsilon\lambda} + \varepsilon\lambda$ and $a > \frac{s}{2\varepsilon\lambda} + \varepsilon\lambda$ (then by symmetry, it will also cover the case a < 0 and z < 0). We have, $$\begin{split} & \mathbb{P}^z \left(a \leqslant W(s) \leqslant a + 2\varepsilon\lambda, \, |Y(s)| \leqslant 2\varepsilon\lambda \right) \\ \geqslant & \mathbb{P}^z \left(\inf_{0 \leqslant u \leqslant s} W(u) > \frac{s}{2\varepsilon\lambda}, \, a \leqslant W(s) \leqslant a + 2\varepsilon\lambda \right) \\ = & \mathbb{P}^z \left(a \leqslant W(s) \leqslant a + 2\varepsilon\lambda \right) \\ & - \mathbb{P}^z \left(\inf_{0 \leqslant u \leqslant s} W(u) \leqslant \frac{s}{2\varepsilon\lambda}, \, a \leqslant W(s) \leqslant a + 2\varepsilon\lambda \right). \end{split}$$ By the reflection principle, $$\mathbb{P}^{z} \left(\inf_{0 \leqslant u \leqslant s} W(u) \leqslant \frac{s}{2\varepsilon\lambda}, \ a \leqslant W(s) \leqslant a + 2\varepsilon\lambda \right)$$ $$= \mathbb{P}^{z} \left(\frac{s}{\varepsilon\lambda} - a - 2\varepsilon\lambda \leqslant W(s) \leqslant \frac{s}{\varepsilon\lambda} - a \right)$$ $$\leqslant \mathbb{P} \left(\frac{W(s)}{\sqrt{s}} \leqslant -\frac{a + z - \frac{s}{\varepsilon\lambda}}{\sqrt{s}} \right)$$ $$\leq \frac{1}{2} \exp\left(-\frac{\left(a+z-\frac{s}{\varepsilon\lambda}\right)^2}{2s}\right),$$ the last inequality following from (2.16). On the other hand, $$\mathbb{P}^{z}(a \leqslant W(s) \leqslant a + 2\varepsilon\lambda) = \mathbb{P}\left(\frac{a - z}{\sqrt{s}} \leqslant \frac{W(s)}{\sqrt{s}} \leqslant \frac{a
- z + 2\varepsilon\lambda}{\sqrt{s}}\right)$$ $$\geqslant \frac{2\varepsilon\lambda}{\sqrt{2\pi s}} \exp\left(-\frac{(|a - z| + 2\varepsilon\lambda)^{2}}{2s}\right)$$ $$\geqslant \exp\left(-\frac{(|a - z| + 2\varepsilon\lambda)^{2}}{2s}\right).$$ Since $a + z - s/(\varepsilon \lambda) \ge |a - z| + 2\varepsilon \lambda$, we obtain (2.20). **Lemma 2.6** For s > 0, $\varepsilon > 0$, $\lambda > 0$, $(a, z) \in \mathbb{R}^2$ such that az < 0, $|a| > 2\varepsilon\lambda + \sqrt{s}$ and $\min(\varepsilon\lambda/2, |z|) > \sqrt{s}$, we have (2.21) $$\mathbb{P}^{z}(a \leqslant W(s) \leqslant a + 2\varepsilon\lambda, |Y(s)| \leqslant 2\varepsilon\lambda) \geqslant c_{7}(\delta) \overline{\Phi}\left(\frac{|a - z| + 2\varepsilon\lambda}{(1 - \delta)\sqrt{s}}\right).$$ **Proof:** First we show for $a > \sqrt{u}$, $\varepsilon \lambda > 2\sqrt{u}$, $$(2.22) \quad P(u) := \mathbb{P}(a \leqslant W(u) \leqslant a + 2\varepsilon\lambda, |Y(u)| \leqslant 2\sqrt{u}) \geqslant c_8(\delta) \exp\left(-\frac{a^2}{2(1-\delta)u}\right).$$ Define $G_{\sqrt{u}} := \sup\{t \leqslant u : W(t) = \sqrt{u}\}$. Then $$P(u) \geqslant \int_0^{\delta u} \mathbb{P}(a \leqslant W(u) \leqslant a + 2\varepsilon\lambda, |Y(u)| \leqslant 2\sqrt{u} |G_{\sqrt{u}} = v) \, \mathbb{P}(G_{\sqrt{u}} \in dv)$$ $$\geqslant \int_0^{\delta u} \mathbb{P}(|Y(v)| \leqslant \sqrt{u} |G_{\sqrt{u}} = v) \, \mathbb{P}(a \leqslant W(u) \leqslant a + 2\varepsilon\lambda |G_{\sqrt{u}} = v) \, \mathbb{P}(G_{\sqrt{u}} \in dv).$$ Under the condition $\{G_{\sqrt{u}}=v\}$, $\{M(r):=\frac{W(v+r(u-v))-\sqrt{u}}{\sqrt{u-v}},\ r\in[0,1]\}$ is a standard Brownian meander, and from the well-known identity (Biane and Yor [1]) $\mathbb{P}(M(1)\leqslant x)=1-\exp(-x^2/2)$, we get that, for $v\in[0,\delta u]$, $a>\sqrt{u}$ and $\varepsilon\lambda>2\sqrt{u}$, $$\mathbb{P}(a \leqslant W(u) \leqslant a + 2\varepsilon\lambda \mid G_{\sqrt{u}} = v) = \mathbb{P}\left(\frac{a - \sqrt{u}}{\sqrt{u - v}} \leqslant M(1) \leqslant \frac{a - \sqrt{u} + 2\varepsilon\lambda}{\sqrt{u - v}}\right) \\ = \exp\left(-\frac{(a - \sqrt{u})^2}{2(u - v)}\right) - \exp\left(-\frac{(a - \sqrt{u})^2}{2(u - v)}\right) \\ \geqslant c_9 \exp\left(-\frac{(a - \sqrt{u})^2}{2(u - v)}\right)$$ $$\geqslant c_9 \exp\left(-\frac{a^2}{2(1-\delta)u}\right)$$ where $c_9 > 0$ is an absolute constant. Hence $$P(u) \geqslant c_{10}(\delta) \exp\left(-\frac{a^2}{2(1-\delta)u}\right),$$ with $$c_{10}(\delta) := c_9 \int_0^{\delta u} \mathbb{P}(|Y(v)| \leq \sqrt{u} \, | \, G_{\sqrt{u}} = v) \, \mathbb{P}(G_{\sqrt{u}} \in dv)$$ $$= c_9 \, \mathbb{P}(G_{\sqrt{u}} \leq \delta u, \, |Y(G_{\sqrt{u}})| \leq \sqrt{u} \,),$$ which, by scaling, does not depend on u. This yields (2.22). We now start proving (2.21). Let $\varepsilon \lambda > 2\sqrt{s}$. Let T_0 and $T_{-\sqrt{s}}$ be as in (2.13). It suffices to prove (2.21) for $z < -\sqrt{s}$ and $a > \sqrt{s}$ (then by symmetry, it will also cover the case $z > \sqrt{s}$, $a < -2\varepsilon\lambda - \sqrt{s}$). Since $|Y(T_{-\sqrt{s}})| \leq \sqrt{s}$ under \mathbb{P}^z (recalling that $z < -\sqrt{s}$), we have $$\mathbb{P}^{z} (a \leqslant W(s) \leqslant a + 2\varepsilon\lambda, |Y(s)| \leqslant 2\varepsilon\lambda)$$ $$\geqslant \mathbb{P}^{z} (T_{0} - T_{-\sqrt{s}} \leqslant \delta s, |Y(T_{0}) - Y(T_{-\sqrt{s}})| \leqslant \sqrt{s},$$ $$a \leqslant W(s) \leqslant a + 2\varepsilon\lambda, |Y(s) - Y(T_{-\sqrt{s}})| \leqslant 2\sqrt{s}).$$ By the strong Markov property at times $T_{-\sqrt{s}}$ and T_0 , we get: $$\mathbb{P}^{z} \left(a \leqslant W(s) \leqslant a + 2\varepsilon\lambda, |Y(s)| \leqslant 2\varepsilon\lambda \right)$$ $$(2.23) \geqslant \int_{0}^{\delta s} \left(\int_{0}^{s-y} P(s-h-y) \mathbb{P}^{z} (T_{-\sqrt{s}} \in dh) \right) \mathbb{P}^{-\sqrt{s}} \left(T_{0} \in dy, |Y(T_{0})| \leqslant \sqrt{s} \right).$$ By (2.22), $$\begin{split} P(s-h-y) &\geqslant c_8(\delta) \, \exp\left(-\frac{a^2}{2(1-\delta)(s-h-y)}\right) \\ &\geqslant 2c_8(\delta) \, \overline{\Phi}\left(\frac{a}{\sqrt{(1-\delta)(s-h-y)}}\right) \\ &= 2c_8(\delta) \, \mathbb{P}^{-z-\sqrt{s}}\left(W(s-h-y) > \frac{a}{\sqrt{1-\delta}} - z - \sqrt{s}\right), \end{split}$$ the second inequality being a consequence of (2.16). Therefore, for $y \in [0, \delta s]$, $$\int_0^{s-y} P(s-h-y) \, \mathbb{P}^z(T_{-\sqrt{s}} \in \mathrm{d}h)$$ $$\geq 2c_8(\delta) \int_0^{s-y} \mathbb{P}^{-z-\sqrt{s}} \left(W(s-h-y) > \frac{a}{\sqrt{1-\delta}} - z - \sqrt{s} \right) \mathbb{P}^z \left(T_{-\sqrt{s}} \in dh \right)$$ $$= 2c_8(\delta) \mathbb{P} \left(W(s-y) > \frac{a}{\sqrt{1-\delta}} - z - \sqrt{s} \right)$$ $$= 2c_8(\delta) \overline{\Phi} \left(\frac{\frac{a}{\sqrt{1-\delta}} - z - \sqrt{s}}{\sqrt{s-y}} \right)$$ $$\geq 2c_8(\delta) \overline{\Phi} \left(\frac{a-z}{(1-\delta)\sqrt{s}} \right),$$ (recalling that z < 0). Plugging this into (2.23), we get $$\mathbb{P}^{z} \left(a \leqslant W(s) \leqslant a + 2\varepsilon\lambda, |Y(s)| \leqslant 2\varepsilon\lambda \right)$$ $$\geqslant 2c_{8}(\delta) \overline{\Phi} \left(\frac{a - z}{(1 - \delta)\sqrt{s}} \right) \mathbb{P}^{-\sqrt{s}} \left(T_{0} \leqslant \delta s, |Y(T_{0})| \leqslant \sqrt{s} \right)$$ $$= c_{11}(\delta) \overline{\Phi} \left(\frac{a - z}{(1 - \delta)\sqrt{s}} \right),$$ where $c_{11}(\delta) := 2c_8(\delta) \mathbb{P}^{-1}(T_0 \leq \delta, |Y(T_0)| \leq 1)$. This yields (2.21). **Lemma 2.7** For s > 0, $\varepsilon > 0$, $\lambda > 0$, $(a, z) \in \mathbb{R}^2$ such that $\varepsilon \lambda > 2\sqrt{s}$ and $|a| > 2\varepsilon \lambda + \sqrt{s}$, we have (2.24) $$\mathbb{P}^{z}(a \leqslant W(s) \leqslant a + 2\varepsilon\lambda, |Y(s)| \leq 2\varepsilon\lambda)$$ $$\geqslant c_{12}(\delta) \exp\left(-\frac{a^{2}}{2(1-\delta)^{2}s}\right) \overline{\Phi}\left(\frac{||z| - \sqrt{s}|}{\delta\sqrt{s}}\right),$$ with a constant $c_{12}(\delta) > 0$. **Proof:** Again, it suffices to treat the case $a > \sqrt{s}$. In this case, we have $$\mathbb{P}^{z}(a \leqslant W(s) \leqslant a + 2\varepsilon\lambda, |Y(s)| \leq 2\varepsilon\lambda)$$ $$\geqslant \int_{0}^{\delta s} \mathbb{P}^{z}(|Y(T_{0})| \leq 2\sqrt{s}, T_{0} \in dh) \, \mathbb{P}(a \leq W(s - h) \leq a + 2\varepsilon\lambda, |Y(s - h)| \leq 2\sqrt{s - h})$$ $$\geqslant c_{13}(\delta) \, \exp\left(-\frac{a^{2}}{2(1 - \delta)^{2}s}\right) \mathbb{P}^{z}(|Y(T_{0})| \leq 2\sqrt{s}, T_{0} \leq \delta s),$$ hence (2.24) follows from Lemma 2.3. #### 2.3 Increments Recall the results for the increments of Wiener process (cf. [12]), local time (cf. [5]) and principal value (cf. [6]). As $T \to \infty$, we have almost surely (2.25) $$\sup_{0 \leqslant t \leqslant T - a_T} \sup_{0 \leqslant s \leqslant a_T} |X(t+s) - X(t)| = \mathcal{O}\left(\sqrt{a_T(\log(T/a_T) + \log\log T)}\right),$$ and for fixed T, as $\delta \to 0$ we have almost surely (2.26) $$\sup_{0 \leq t \leq T} \sup_{0 \leq s \leq \delta} |X(t+s) - X(t)| = \mathcal{O}(\sqrt{\delta \log(1/\delta)}).$$ Here in (2.25) and (2.26) X can be any one of W, L and Y. # 3 Proof of Theorem 1.1 The relative compactness in Theorem 1.1 is obvious from Theorems A and B. Our proof will consist of two steps: - (1) With probability one any $(f,g) \notin \mathcal{S}_J^{(2)}$ is not a limit point. - (2) With probability one every $(f, g) \in \mathcal{S}_J^{(2)}$ is a limit point. **Proof of (1):** Obviously, if either $f \notin \mathcal{S}$, or $g \notin \mathcal{S}_M$, then (f,g) cannot be a limit point almost surely. From now on we assume that $f \in \mathcal{S}$ and $g \in \mathcal{S}_M$. Now let $x_0 \in (0,1]$ be such that $f(x_0) \neq 0$. Since f is continuous, there exists an interval $(x_1, x_2) \subset [0, 1]$ such that $x_0 \in (x_1, x_2]$ and $f(x) \neq 0$ for all $x \in (x_1, x_2)$. If f(x) would be a limit point of $U_t(x)$, then for t big enough, $U_t(x) \neq 0$ for $x \in (x_1, x_2)$, i.e. $W(s) \neq 0$ for $s \in (tx_1, tx_2)$ would hold. Consequently, the local time $L(\cdot)$ would not increase in the interval (tx_1, tx_2) , which means that if $g(x_2) > g(x_1)$, then (f, g) cannot be a limit point of (U_t, V_t) . So we must have $g'(x_0) = 0$, i.e., f(x)g'(x) = 0 a.e. So we assume from now on that this equation is satisfied. Now we prove that if (3.1) $$\int_0^1 \left((f'(x))^2 + (g'(x))^2 \right) dx > 1,$$ then (f, g) cannot be a limit point. To this end, we need a lemma. **Lemma 3.1** Let (f, g) be such that f(x)g'(x) = 0 a.e., and (3.1) holds. Then there exists a partition $x_0 = 0 < x_1 < \ldots < x_{k-1} < x_k = 1$ of [0, 1] such that (3.2) $$\Lambda_k := \sum_{i=1}^k \left(\frac{(f_i - f_{i-1})^2}{x_i - x_{i-1}} \mathbf{1}_{\{g_i - g_{i-1} = 0\}} + \frac{(g_i - g_{i-1})^2}{x_i - x_{i-1}} \right) > 1,$$ where $f_i := f(x_i)$ and $g_i := g(x_i)$. **Proof:** If (3.1) holds, then we can find a partition $x_0 = 0 < x_1 < \ldots < x_{j-1} < x_j = 1$ of [0,1] such that $$\sum_{i=1}^{j} \left(\frac{(f_i - f_{i-1})^2}{x_i - x_{i-1}} + \frac{(g_i - g_{i-1})^2}{x_i - x_{i-1}} \right) > 1$$ holds. Consider a partition interval (x_{i-1}, x_i) . We have to consider the following three cases: (i) $f_{i-1} = f_i$, (ii) $f_{i-1} \neq f_i$, and $f_{i-1}f_i \geq 0$, (iii) $f_{i-1} \neq f_i$, and $f_{i-1}f_i < 0$. In case (i) we can simply write $$\frac{(f_i - f_{i-1})^2}{x_i - x_{i-1}} = \frac{(f_i - f_{i-1})^2}{x_i - x_{i-1}} \mathbf{1}_{\{g_i - g_{i-1} = 0\}}.$$ In case (ii) let $x_i' = \max\{x \leqslant x_i : f(x) = f(x_{i-1})\}$ and $x_i'' = \min\{x \geqslant x_i' : f(x) = f(x_i)\}$. (It is possible that $x_i' = x_{i-1}$ or $x_i'' = x_i$.) Consider the refinement of the partition by replacing (x_{i-1}, x_i) with (x_{i-1}, x_i') , (x_i', x_i'') , (x_i'', x_i) . In the interval (x_i', x_i'') f(x) must strictly be between f_{i-1} and f_i , so $f(x) \neq 0$, hence g'(x) = 0 for all $x \in (x_i', x_i'')$, thus $g(x_i') = g(x_i'')$. Using the elementary inequality $$\frac{(a+b)^2}{c+d} \leqslant \frac{a^2}{c} + \frac{b^2}{d},$$ we may write $$\frac{(f_{i} -
f_{i-1})^{2}}{x_{i} - x_{i-1}} \leqslant \frac{(f(x'_{i}) - f_{i-1})^{2}}{x'_{i} - x_{i-1}} + \frac{(f(x''_{i}) - f(x'_{i}))^{2}}{x''_{i} - x'_{i}} + \frac{(f_{i} - f(x''_{i}))^{2}}{x_{i} - x''_{i}}$$ $$= \frac{(f(x'_{i}) - f_{i-1})^{2}}{x'_{i} - x_{i-1}} \mathbf{1}_{\{g(x'_{i}) - g_{i-1} = 0\}} + \frac{(f(x''_{i}) - f(x''_{i}))^{2}}{x''_{i} - x''_{i}} \mathbf{1}_{\{g(x''_{i}) - g(x''_{i}) = 0\}}.$$ $$+ \frac{(f_{i} - f(x''_{i}))^{2}}{x_{i} - x''_{i}} \mathbf{1}_{\{g_{i} - g(x''_{i}) = 0\}}.$$ In case (iii) let $x'_i = \min\{x \ge x_{i-1} : f(x) = 0\}$ and $x''_i = \max\{x \le x_i : f(x) = 0\}$. Consider again the refinement of the partition by replacing (x_{i-1}, x_i) with (x_{i-1}, x'_i) , (x'_i, x''_i) , (x''_i, x_i) . In the first and the last of these three intervals $f(x) \ne 0$, hence g'(x) = 0, thus $g(x'_i) = g_{i-1}$ and $g(x''_i) = g_i$. On the other hand, $f(x'_i) = f(x''_i) = 0$. So we again have (3.3). This completes the proof of the Lemma. Returning to the main course of the proof, choose $\varepsilon > 0$ such that (3.4) $$\Lambda_k - 8\varepsilon \sum_{i=1}^k \frac{1}{x_i - x_{i-1}} > 1,$$ $$(3.5) \qquad \qquad \varepsilon < \frac{1}{2} \min_{i: 1 \leqslant i \leqslant k, g_i > g_{i-1}} (g_i - g_{i-1}),$$ (3.6) $$\varepsilon < \frac{1}{2} \min_{i: 1 \leq i \leq k, f_i \neq f_{i-1}} |f_i - f_{i-1}|.$$ Note that $g_i - g_{i-1} - 2\varepsilon > 0$ whenever $g_i - g_{i-1} > 0$, and that $(f_{i-1} - \varepsilon, f_{i-1} + \varepsilon)$ and $(f_i - \varepsilon, f_i + \varepsilon)$ are disjoint intervals as long as $f_i \neq f_{i-1}$. We may assume that $|f_i| \leq 1$, $g_i \leq 1$, $i = 1, \ldots, k$, since otherwise (f, g) cannot be a limit point according to the usual law of the iterated logarithm. Consider the event $$A_t := \bigcap_{i=1}^k \left\{ f_i - \varepsilon \leqslant U_t(x_i) \leqslant f_i + \varepsilon, \ g_i - \varepsilon \leqslant V_t(x_i) \leqslant g_i + \varepsilon \right\}.$$ If we write, for $1 \leq i \leq k$, $$s_i := x_i t, (s_0 := 0),$$ $$a_i := (f_i - \varepsilon)(2t \log \log t)^{1/2}, b_i := (f_i + \varepsilon)(2t \log \log t)^{1/2},$$ $$\alpha_i := (g_i - g_{i-1} - 2\varepsilon)^+ (2t \log \log t)^{1/2}, \beta_i := (g_i - g_{i-1} + 2\varepsilon)(2t \log \log t)^{1/2},$$ then by the conditional independence of $\{L(s_i) - L(s_{i-1})\}_{1 \leq i \leq k}$ given $\{W(s_1), \dots, W(s_k)\}$, we obtain: $$\mathbb{P}(A_{t}) = \mathbb{P}(a_{i} \leq W(s_{i}) \leq b_{i}, \ \alpha_{i} \leq L(s_{i}) - L(s_{i-1}) \leq \beta_{i}, \ i = 1, \dots, k) (3.7) = \int_{a_{1}}^{b_{1}} \cdots \int_{a_{k}}^{b_{k}} \prod_{i=1}^{k} \mathbb{P}(\alpha_{i} \leq L(s_{i}) - L(s_{i-1}) \leq \beta_{i} | W(s_{1}) = z_{1}, \dots, W(s_{k}) = z_{k}) \times \\ \times \mathbb{P}(W(s_{1}) \in dz_{1}, \dots, W(s_{k}) \in dz_{k}).$$ According to (2.1) and (2.2) (with the same notation there), the integrand above is equal to $$\prod_{i=1}^{k} \left[\left(\int_{\alpha_{i}}^{\beta_{i}} p_{s_{i}-s_{i-1}}(y_{i}; z_{i-1}, z_{i}) \, dy_{i} \right) \mathbf{1}_{\{\alpha_{i}>0\}} + \left(\int_{0}^{\beta_{i}} p_{s_{i}-s_{i-1}}(y_{i}; z_{i-1}, z_{i}) \, dy_{i} + q_{s_{i}-s_{i-1}}(z_{i-1}, z_{i}) \right) \mathbf{1}_{\{\alpha_{i}=0\}} \right].$$ We now estimate $p_t(y; z_1, z_2)$ and $q_t(z_1, z_2)$. If $0 < \alpha \le y \le \beta \le \beta^*$, $|z_1| \le \beta^*$ and $|z_2| \le \beta^*$ (for some β^*), then $$p_{t}(y; z_{1}, z_{2}) \leq \frac{\beta + 2\beta^{*}}{t} \varphi_{t}(\alpha),$$ $$\int_{\alpha}^{\beta} p_{t}(y; z_{1}, z_{2}) dy \leq \frac{3(\beta^{*})^{2}}{t} \varphi_{t}(\alpha),$$ $$\int_{0}^{\beta} p_{t}(y; z_{1}, z_{2}) dy \leq \frac{3(\beta^{*})^{2}}{t} \varphi_{t}(|z_{1}| + |z_{2}|),$$ where $\varphi_t(\cdot)$ is defined in (2.5). On the other hand, if $3(\beta^*)^2 \ge t$, then $$q_t(z_1, z_2) \leqslant \frac{3(\beta^*)^2}{t} \left(\varphi_t(z_1 - z_2) - \varphi_t(|z_1| + |z_2|) \right).$$ Consequently, $$\left(\int_{\alpha}^{\beta} p_{t}(y; z_{1}, z_{2}) \, dy \right) \mathbf{1}_{\{\alpha > 0\}} + \left(\int_{0}^{\beta} p_{t}(y; z_{1}, z_{2}) \, dy + q_{t}(z_{1}, z_{2}) \right) \mathbf{1}_{\{\alpha = 0\}}$$ $$\leq \frac{3(\beta^{*})^{2}}{t} \left(\varphi_{t}(\alpha) \mathbf{1}_{\{\alpha > 0\}} + \varphi_{t}(z_{2} - z_{1}) \mathbf{1}_{\{\alpha = 0\}} \right)$$ $$= \frac{3(\beta^{*})^{2}}{t^{3/2} \sqrt{2\pi}} \exp \left(-\frac{\alpha^{2} \mathbf{1}_{\{\alpha > 0\}} + (z_{2} - z_{1})^{2} \mathbf{1}_{\{\alpha = 0\}}}{2t} \right)$$ $$= \frac{3(\beta^{*})^{2}}{t^{3/2} \sqrt{2\pi}} \exp \left(-\frac{\alpha^{2} + (z_{2} - z_{1})^{2} \mathbf{1}_{\{\alpha = 0\}}}{2t} \right) .$$ Putting this estimate into (3.7) and using that $\alpha_i \leq 2(t \log \log t)^{1/2}$, $\beta_i \leq 2(t \log \log t)^{1/2}$, we obtain $$\mathbb{P}(A_t) \leqslant \frac{c_{14} (\log \log t)^k}{t^{k/2}} \exp\left(-\frac{1}{2t} \sum_{i=1}^k \frac{\alpha_i^2}{(x_i - x_{i-1})}\right) \\ \times \int_{a_1}^{b_1} \cdots \int_{a_k}^{b_k} \exp\left(-\frac{1}{2t} \sum_{i=1}^k \frac{(z_i - z_{i-1})^2}{(x_i - x_{i-1})} \mathbb{1}_{\{g_i = g_{i-1}\}}\right) dz_1 \dots dz_k,$$ with some constant c_{14} depending on ε , and x_1, \ldots, x_k but not on t. Recall Λ_k from (3.2). Using the estimates $\alpha_i^2 \ge (2t \log \log t)((g_i - g_{i-1})^2 - 4\varepsilon)$ and $(z_i - z_{i-1})^2 \ge (2t \log \log t)((f_i - f_{i-1})^2 - 4\varepsilon)$, we obtain by means of (3.4) that $$\mathbb{P}(A_t) \leqslant c_{15} (\log \log t)^{3k/2} \exp\left(-(\log \log t) \left(\Lambda_k - 8\varepsilon \sum_{i=1}^k \frac{1}{x_i - x_{i-1}}\right)\right)$$ $$= c_{15} (\log \log t)^{3k/2} \exp\left(-(1+\delta) \log \log t\right),$$ for some $\delta > 0$. Let $t = t_n = \exp(n/(\log n))$. Then $\sum_n \mathbb{P}(A_{t_n}) < \infty$. By the Borel-Cantelli lemma, (3.8) $$\liminf_{n \to \infty} d\left(\left(U_{t_n}, V_{t_n} \right), \left(f, g \right) \right) \geqslant \varepsilon \quad \text{a.s.}$$ On the other hand, we infer from increment results in Section 2.3 that (3.9) $$\lim_{n \to \infty} \sup_{t \in [t_n, t_{n+1}]} \sup_{x \in [0,1]} |U_t(x) - U_{t_n}(x)| = 0 \quad \text{a.s.},$$ (3.10) $$\lim_{n \to \infty} \sup_{t \in [t_n, t_{n+1}]} \sup_{x \in [0, 1]} |V_t(x) - V_{t_n}(x)| = 0 \quad \text{a.s.},$$ Combining (3.9)–(3.10) with (3.8) gives that $$\lim_{t \to \infty} \inf d((U_t, V_t), (f, g)) \geqslant \varepsilon \quad \text{a.s.}$$ for some $\varepsilon > 0$. Thus we proved that if $(f,g) \notin \mathcal{S}_J^{(2)}$, then it is not a limit point with probability one, i.e. (f,g) has an open ball of radius ε not containing (U_t,V_t) for large enough t. However the exceptional ω -set of probability zero may depend on (f,g). Now we prove that the totality of these exceptional ω -sets is still of probability zero. Denote the complement of $\mathcal{S}_J^{(2)}$ by \mathcal{D} and for each $(f,g) \in \mathcal{D}$ consider the open balls defined above. Their union covers \mathcal{D} and being $\mathcal{C}^{(2)}$ separable, we can select a countable subcover (cf. e.g. [2], p. 217). The union of exceptional ω -sets belonging to this countable subcover is still of probability zero. We call the complement of this last set of probability zero as our universal ω -set. Each $(f,g) \in \mathcal{D}$ has a neighborhood which is completely contained in one of the elements of the countable subcover, hence on the universal set this neighborhood for large enough t does not contain (U_t, V_t) , i.e. (f,g) is not a limit point. This completes the proof of (1). **Proof of (2):** Assume that $(f,g) \in \mathcal{S}_J^{(2)}$ with strict inequality in the integral criterion, i.e. $$\int_0^1 ((f'(x))^2 + (g'(x))^2) \, \mathrm{d}x < 1.$$ For given $\varepsilon_1 > 0$, choose a partition $x_0 = 0 < x_1 \ldots < x_k = 1$ of the interval [0, 1] such that $$\sup_{1 \leqslant i \leqslant k} (x_i - x_{i-1}) \leqslant \varepsilon_1^2,$$ $$\sup_{1 \leqslant i \leqslant k} \sup_{x \in [x_{i-1}, x_i]} |f(x) - f_i| \leqslant \varepsilon_1,$$ $$\sup_{1 \leqslant i \leqslant k} \sup_{x \in [x_{i-1}, x_i]} |g(x) - g_i| \leqslant \varepsilon_1,$$ where $f_i = f(x_i)$, $g_i = g(x_i)$. We may assume that if $g_{i-1} \neq g_i$, then $f_{i-1} = f_i = 0$. Otherwise if it happens that $g_{i-1} \neq g_i$ but either $f_{i-1} \neq 0$ or $f_i \neq 0$ (or both), then we can choose $x' = \min\{x : x > x_{i-1}, f(x) = 0\}$, $x'' = \max\{x : x < x_i, f(x) = 0\}$. We must have $g(x') = g_{i-1}$ and $g(x'') = g_i$ so by refining the original partition by inserting new points x', x'', the new partition satisfies the above assumption. Since $$\frac{(f(x_i) - f(x_{i-1})^2}{x_{i-1} - x_i} \leqslant \int_{x_{i-1}}^{x_i} (f'(x))^2 dx, \qquad \frac{(g(x_i) - g(x_{i-1}))^2}{x_{i-1} - x_i} \leqslant \int_{x_{i-1}}^{x_i} (g'(x))^2 dx,$$ (cf. for example [13], p. 52), we have $\Lambda_k < 1$, where Λ_k is given by (3.2). Then choose $\varepsilon > 0$ such that $$\Lambda_k + 21\varepsilon \sum_{i=1}^k \frac{1}{x_i - x_{i-1}} < 1,$$ and that $$(f_i - \varepsilon)(f_i + \varepsilon) > 0$$ if $f_i \neq 0$. Now define the events $E_t = \bigcap_{i=1}^k E_t^{(i)}$ with $$E_t^{(i)} = \{ a_i \leqslant W(s_i) \leqslant b_i, \ \alpha_i \leqslant L(s_i) - L(s_{i-1}) \leqslant \beta_i \},$$ $s_i = tx_i$ $$a_{i} = (f_{i} - \varepsilon)(2t \log \log t)^{1/2}, \quad b_{i} = (f_{i} + \varepsilon)(2t \log \log t)^{1/2},$$ $$\alpha_{i} = (g_{i} - g_{i-1} - \varepsilon)^{+}(2t \log \log t)^{1/2}, \quad \beta_{i} = (g_{i} - g_{i-1} + \varepsilon)(2t \log \log t)^{1/2}.$$ This time we bound $\mathbb{P}(E_t)$ from below. We get $$\int_{\alpha}^{\beta} p_s(y; z_1, z_2) \, \mathrm{d}y \geqslant \frac{(\beta - \alpha)^2}{2s} \varphi_s(\beta + |z_1| + |z_2|) \geqslant \varphi_s(\beta + |z_1| + |z_2|),$$ provided that $(\beta - \alpha)^2 \ge 2s$. But $(\beta_i - \alpha_i)^2 \ge 2\varepsilon^2 t \log \log t \ge 2t(x_i - x_{i-1}) = 2(s_i - s_{i-1})$ for all i = 1, ..., k if t is large enough. Therefore we have (cf. 3.7)
$$\mathbb{P}(E_t) \geqslant \int_{a_1}^{b_1} \cdots \int_{a_k}^{b_k} \prod_{i=1}^k \left(\varphi_{s_i - s_{i-1}}(\beta_i + |z_{i-1}| + |z_i|) + \left(\varphi_{s_i - s_{i-1}}(z_i - z_{i-1}) - \varphi_{s_i - s_{i-1}}(|z_i| + |z_{i-1}|) \right) \mathbf{1}_{\{g_i = g_{i-1}\}} \right) dz_1 \dots dz_k.$$ for all t large enough. Now we consider 3 cases. Case 1: $g_i > g_{i-1}$, $f_{i-1} = f_i = 0$. We have $$\varphi_{t(x_{i}-x_{i-1})}(\beta_{i}+|z_{i-1}|+|z_{i}|) \geqslant \frac{1}{\sqrt{2\pi t(x_{i}-x_{i-1})}} \exp\left(-\frac{(g_{i}-g_{i-1}+3\varepsilon)^{2}}{x_{i}-x_{i-1}}\log\log t\right)$$ $$\geqslant \frac{1}{2\sqrt{2\pi t(x_{i}-x_{i-1})}} \exp\left(-\frac{(g_{i}-g_{i-1})^{2}+21\varepsilon}{x_{i}-x_{i-1}}\log\log t\right).$$ Case 2: $g_i = g_{i-1}, f_i f_{i-1} \le 0$. In this case $\beta_i = \varepsilon (2t \log \log t)^{1/2}, |z_i| \le (|f_i| + \varepsilon)(2t \log \log t)^{1/2}, |z_{i-1}| \le (|f_{i-1}| + \varepsilon)(2t \log \log t)^{1/2}, \text{ hence we have}$ $$\varphi_{t(x_{i}-x_{i-1})}(\beta_{i}+|z_{i-1}|+|z_{i}|) \geqslant \frac{1}{\sqrt{2\pi t(x_{i}-x_{i-1})}} \exp\left(-\frac{(|f_{i-1}|+|f_{i}|+3\varepsilon)^{2}}{x_{i}-x_{i-1}}\log\log t\right)$$ $$\geqslant \frac{1}{2\sqrt{2\pi t(x_{i}-x_{i-1})}} \exp\left(-\frac{(f_{i}-f_{i-1})^{2}+21\varepsilon}{x_{i}-x_{i-1}}\log\log t\right).$$ Case 3: $g_i = g_{i-1}$, $f_i f_{i-1} > 0$. Assume $f_i > 0$, $f_{i-1} > 0$, the other case being similar. In this case we have also $f_i - \varepsilon > 0$, $f_{i-1} - \varepsilon > 0$, so that $z_i > 0$, $z_{i-1} > 0$. Hence $$= \frac{\varphi_{t(x_{i}-x_{i-1})}(z_{i}-z_{i-1}) - \varphi_{t(x_{i}-x_{i-1})}(z_{i}+z_{i-1})}{\sqrt{2\pi t(x_{i}-x_{i-1})}} \exp\left(-\frac{(z_{i}-z_{i-1})^{2}}{2t(x_{i}-x_{i-1})}\right) \left(1 - \exp\left(-\frac{2z_{i}z_{i-1}}{t(x_{i}-x_{i-1})}\right)\right)$$ $$\geq \frac{1}{2\sqrt{2\pi t(x_{i}-x_{i-1})}} \exp\left(-\frac{(f_{i}-f_{i-1})^{2}+21\varepsilon}{x_{i}-x_{i-1}}\log\log t\right),$$ if t is large enough. Assembling these 3 cases we get $$\mathbb{P}(E_t) \geqslant c_{16} \left(\log\log t\right)^{k/2} \exp\left(-\left(\Lambda_k + 35\varepsilon \sum_{i=1}^k \frac{1}{x_i - x_{i-1}}\right) \log\log t\right),\,$$ where Λ_k is given by (3.2). Hence we obtain that (3.11) $$\mathbb{P}(E_t) \geqslant \exp(-(1-\delta)\log\log t)$$ for some $0 < \delta < 1$. Now let $t_i = \exp(7i \log i)$, $i = 1, 2, \ldots$ and define $$\eta_0 = 0$$, $T_i = \eta_{i-1} + t_i$, $\eta_i = \inf\{t : t > T_i, W(t) = 0\}$, $i = 1, 2, ...$ It was shown in [8] that for large n we have almost surely $$t_n \leqslant T_n \leqslant t_n \left(1 + \frac{1}{n}\right).$$ Define $$\widehat{W}^{(n)}(t) = W(t + \eta_{n-1}), \quad t \geqslant 0, \widehat{L}^{(n)}(t) = L(t + \eta_{n-1}) - L(\eta_{n-1}), \quad t \geqslant 0, \widehat{U}^{(n)}(x) = \frac{\widehat{W}^{(n)}(xt_n)}{\sqrt{2t_n \log \log t_n}}, \quad x \in [0, 1], \widehat{V}^{(n)}(x) = \frac{\widehat{L}^{(n)}(xt_n)}{\sqrt{2t_n \log \log t_n}}, \quad x \in [0, 1].$$ Now let $x_0 = 0 < x_1 < \ldots < x_k$ be a partition as before and consider the events $\widehat{E}_n = \bigcap_{i=1}^k \widehat{E}_n^{(i)}$ with $$\widehat{E}_n^{(i)} = \{\widehat{a}_i \leqslant \widehat{W}^{(n)}(\widehat{s}_i) \leqslant \widehat{b}_i, \ \widehat{\alpha}_i \leqslant \widehat{L}^{(n)}(\widehat{s}_i) - \widehat{L}^{(n)}(\widehat{s}_{i-1}) \leqslant \widehat{\beta}_i\},$$ $\hat{s}_i = x_i t_n,$ $$\widehat{a}_i = (f_i - \varepsilon)(2t_n \log \log t_n)^{1/2}, \quad \widehat{b}_i = (f_i + \varepsilon)(2t_n \log \log t_n)^{1/2},$$ $$\widehat{\alpha}_i = (g_i - g_{i-1} - \varepsilon)^+ (2t_n \log \log t_n)^{1/2}, \quad \widehat{\beta}_i = (g_i - g_{i-1} + \varepsilon)(2t_n \log \log t_n)^{1/2}.$$ Since $\mathbb{P}(\widehat{E}_n) = \mathbb{P}(E_{t_n})$, it follows from (3.11) that $\sum_n \mathbb{P}(\widehat{E}_n) = \infty$ and since \widehat{E}_n are independent, we have by the Borel–Cantelli lemma $\mathbb{P}(\widehat{E}_n \text{ i.o.}) = 1$. Since $\varepsilon > 0$ is arbitrary, this implies $$\lim_{n \to \infty} \inf_{1 \leqslant i \leqslant k} |\widehat{U}^{(n)}(x_i) - f(x_i)| = 0 \quad \text{a.s.}$$ $$\lim_{n \to \infty} \inf_{1 \leqslant i \leqslant k} |\widehat{V}^{(n)}(x_i) - g(x_i)| = 0 \quad \text{a.s.}$$ Again, from the increment results in Subsection 2.3 it follows that $$\limsup_{n\to\infty} \sup_{1\leqslant i\leqslant k} \sup_{x\in [x_{i-1},x_i)} |\widehat{U}^{(n)}(x_{i-1}) - \widehat{U}^{(n)}(x)| \leqslant \varepsilon_1 \quad \text{a.s.}$$ $$\limsup_{n\to\infty} \sup_{1\leqslant i\leqslant k} \sup_{x\in [x_{i-1},x_i)} |\widehat{V}^{(n)}(x_{i-1}) - \widehat{V}^{(n)}(x)| \leqslant \varepsilon_1 \quad \text{a.s.}$$ Since $\varepsilon_1 > 0$ is arbitrary, these yield $$\liminf_{n \to \infty} d\left((\widehat{U}^{(n)}, \widehat{V}^{(n)}), (f, g)\right) = 0 \quad \text{a.s}$$ On the other hand, the increment results in Subsection 2.3 once again yields that, as $n \to \infty$, $d((\widehat{U}^{(n)}, \widehat{V}^{(n)}), (U_{T_n}, V_{T_n}))$ converges to 0 almost surely. Therefore, $$\liminf_{n \to \infty} d\left((U_{T_n}, V_{T_n}), (f, g) \right) = 0 \quad \text{a.s.},$$ Hence, (f, g) is a limit point of (U_t, V_t) with probability 1. To complete the proof of Theorem 1.1, we have to show that there exists an ω -set of probability one for which every $(f,g) \in S_J^{(2)}$ is a limit point. First we show that there exists a countable dense subset $K \subset S_J^{(2)}$. For any $(f,g) \in S_J^{(2)}$ and $\varepsilon > 0$, as before, choose a partition $x_0 = 0 < x_1 < \ldots < x_{k-1} < x_k = 1$ such that $$\sup_{x_{i-1} \leqslant x \leqslant x_i} |f(x) - f(x_i)| \leqslant \varepsilon, \qquad \sup_{x_{i-1} \leqslant x \leqslant x_i} |g(x) - g(x_i)| \leqslant \varepsilon$$ and $g(x_{i-1}) \neq g(x_i)$ implies $f(x_{i-1}) = f(x_i) = 0$. Define $(\widetilde{f}, \widetilde{g}) \in S_J^{(2)}$ such that $\widetilde{f}(x_i) = f(x_i)$, $\widetilde{g}(x_i) = g(x_i)$, i = 1, 2, ..., k and let \widetilde{f} and \widetilde{g} be linear in between. Then $$d((f,g), (\widetilde{f}, \widetilde{g})) < 2\sqrt{2\varepsilon},$$ meaning that the set of pairs (f, g), where both f and g are piecewise linear (with the same cut-off points), is dense. It can be seen that one can choose a countable dense subset $K = \{(f_n, g_n)\}_{n=1}^{\infty}$ (for example by taking all x_i , $f_n(x_i)$, $g_n(x_i)$ rational) such that $$\int_0^1 (f'_n(x))^2 + (g'_n(x))^2 \, \mathrm{d}x < 1.$$ It follows that there exists an ω -set of probability one such that all $(f_n, g_n) \in K$ are limit points. Next we show that for this ω -set every $(f, g) \in S_J^{(2)}$ is a limit point. Since K is dense, for each n we find $(f_n, g_n) \in K$ such that $$d((f,g), (f_n,g_n)) < \frac{1}{n}$$ and since (f_n, g_n) is a limit point, we can find t_n such that $d((f_n, g_n), (U_{t_n}, V_{t_n})) < \frac{1}{n}$. Hence $d((f, g), (U_{t_n}, V_{t_n})) < \frac{2}{n}$. Consequently, $$\lim_{n\to\infty} (U_{t_n}, V_{t_n}) = (f, g),$$ i.e., (f, g) is a limit point. This completes the proof of Theorem 1.1. ## 4 Proof of Theorem 1.3 According to (2.25) for Y, $$\lim_{\delta \to 0} \sup_{t \geqslant 1} \sup_{0 \leqslant x, x' \leqslant 1, |x-x'| \leqslant \delta} |Z_t(x) - Z_t(x')| \to 0, \quad \text{a.s}$$ Now the relative compactness of $\{Z_t\}_{t\geq 1}$ in \mathcal{C} follows from the Arzelà-Ascoli theorem. Hence $\{(U_t, Z_t)\}$ is relatively compact in $\mathcal{C}^{(2)}$. As in the case of Theorem 1.1, our proof will consist of two steps: - (1) With probability one any $(f,g) \notin \widetilde{\mathcal{S}}_J^{(2)}$ is not a limit point. - (2) With probability one every $(f,g) \in \widetilde{\mathcal{S}}_J^{(2)}$ is a limit point. **Proof of (1):** Let $x_0 \in (0,1]$ be a point, where $f(x_0) \neq 0$. Since f is continuous, there exists an interval $(x_1, x_2) \subset [0,1]$ such that $x_0 \in (x_1, x_2]$ and $f(x) \neq 0$ for all $x \in (x_1, x_2)$. We show that if (f, g) is a limit point, then g is constant in (x_1, x_2) . Since (f, g) is a limit point, there exists a sequence $\{t_n\}_{n\geqslant 1}$ such that $$|W(xt_n)| \geqslant c_{17} \sqrt{2t_n \log \log t_n}, \quad x \in (x_1, x_2)$$ for some $c_{17} > 0$ and for every $x \in (x_1, x_2)$ $$\left| \frac{Y(xt_n) - Y(x_0t_n)}{\sqrt{8t_n \log \log t_n}} \right| = \frac{1}{\sqrt{8t_n \log \log t_n}} \left| \int_{x_0t_n}^{xt_n} \frac{\mathrm{d}s}{W(s)} \right|$$ $$\leqslant \frac{|xt_n - x_0t_n|}{4c_{17} t_n \log \log t_n} \to 0 = g(x) - g(x_0),$$ as $n \to \infty$. So $g(x) = g(x_0)$ for every $x \in (x_1, x_2)$. So if (f, g) is a limit point and g is absolutely continuous (which is not guaranteed so far), then we must have f(x)g'(x) = 0 a.e. Now if either g is not absolutely continuous, or g is absolutely continuous but $\int_0^1 ((f'(x))^2 + (g'(x))^2) dx > 1$, by Lemma 3.1 we can find a partition $x_0 = 0 < x_1 ... < x_{k-1} < x_k = 1$ and $\delta > 0$ such that $$\widetilde{\Lambda}_k := \sum_{i=1}^k \left(\frac{(f_i - f_{i-1})^2}{x_i - x_{i-1}} \mathbf{1}_{\{g_i - g_{i-1} = 0\}} + \frac{8}{8 + \delta} \frac{(g_i - g_{i-1})^2}{x_i - x_{i-1}} \right) > 1.$$ Then choose $\varepsilon > 0$ such that $$\widetilde{\Lambda}_k - 20\varepsilon \sum_{i=1}^k \frac{1}{x_i - x_{i-1}} > 1,$$ $$(f_{i-1} - \varepsilon, f_{i-1} + \varepsilon)$$ and $(f_i - \varepsilon, f_i + \varepsilon)$ are disjoint if $f_i \neq f_{i-1}$, $|g_i - g_{i-1}| > 6\varepsilon$ if $g_i \neq g_{i-1}$. Here $f_i = f(x_i)$ and $g_i = g(x_i)$, i = 1, ..., k. We may also assume that $|f_i - f_{i-1}| \le 1$ and $|g_i - g_{i-1}| \le 1$, i = 1, ..., k, otherwise (f, g) cannot be a limit point by the usual law of the iterated logarithm. Define the events $$\widetilde{A}_{t}^{(i)} = \{ f_{i} - \varepsilon \leqslant U_{t}(x_{i}) \leqslant f_{i} + \varepsilon, \ g_{i} - g_{i-1} - 2\varepsilon \leqslant Z_{t}(x_{i}) - Z_{t}(x_{i-1}) \leqslant g_{i} - g_{i-1} + 2\varepsilon \}$$ $$= \{ a_{i} \leqslant W(s_{i}) \leqslant b_{i}, \ \alpha_{i} \leqslant Y(s_{i}) -
Y(s_{i-1}) \leqslant \beta_{i} \}$$ with $s_i = x_i t$ and $$a_i = (f_i - \varepsilon)(2t \log \log t)^{1/2}, \quad b_i = (f_i + \varepsilon)(2t \log \log t)^{1/2},$$ $$\alpha_i = (g_i - g_{i-1} - 2\varepsilon)2(2t \log \log t)^{1/2}, \quad \beta_i = (g_i - g_{i-1} + 2\varepsilon)2(2t \log \log t)^{1/2}.$$ It follows from Lemma 2.1 putting $\lambda = (2t \log \log t)^{1/2}$ there $$\mathbb{P}(\widetilde{A}_{t}^{(i)} \mid W(s_{i-1}) = z_{i-1}) \leqslant \sqrt{\frac{2\log\log t}{x_{i} - x_{i-1}}} \exp\left(-\frac{(f_{i} - f_{i-1})^{2} - 8\varepsilon}{x_{i} - x_{i-1}} \log\log t\right)$$ and if $g_i \neq g_{i-1}$, then $$\mathbb{P}(\widetilde{A}_{t}^{(i)} \mid W(s_{i-1}) = z_{i-1}) \leqslant c_{18} \exp\left(-\frac{(g_{i} - g_{i-1})^{2} - 20\varepsilon}{(8 + \delta)(x_{i} - x_{i-1})} 8 \log \log t\right)$$ with some $c_{18} > 0$. So for large enough t we have $$\mathbb{P}(\widetilde{A}_{t}^{(i)} | W(s_{i-1}) = z_{i-1}) \leqslant c_{19} \sqrt{\frac{\log \log t}{x_{i} - x_{i-1}}} \left[\exp\left(-\frac{(f_{i} - f_{i-1})^{2} - 8\varepsilon}{x_{i} - x_{i-1}} \log \log t\right) \mathbf{1}_{\{g_{i} = g_{i-1}\}} + \exp\left(-\frac{(g_{i} - g_{i-1})^{2} - 20\varepsilon}{(8 + \delta)(x_{i} - x_{i-1})} 8 \log \log t\right) \mathbf{1}_{\{g_{i} \neq g_{i-1}\}} \right].$$ It follows that for all large t and some constants $c_{20} > 0$ and $\tilde{\delta} > 0$, $$\mathbb{P}(\cap_{i=1}^{k} \widetilde{A}_{t}^{(i)}) \leqslant c_{20} (\log \log t)^{3k/2} \exp\left(-\left(\widetilde{\Lambda}_{k} - 20\varepsilon \sum_{i=1}^{k} \frac{1}{x_{i} - x_{i-1}}\right) \log \log t\right)$$ $$\leqslant \exp(-(1+\widetilde{\delta}) \log \log t).$$ From here, we can complete the proof of part (i) just as in part (i) of the proof of Theorem 1.1. **Proof of (2):** Assume that $(f,g) \in \widetilde{\mathcal{S}}_J^{(2)}$ with strict inequality in the integral criterion, i.e., $$\int_0^1 ((f'(x))^2 + (g'(x))^2) \, \mathrm{d}x < 1.$$ For given $\varepsilon_1 > 0$, choose a partition $x_0 = 0 < x_1 \dots < x_k = 1$ of the interval [0, 1] such that $$\sup_{1 \leqslant i \leqslant k} (x_i - x_{i-1}) \leqslant \varepsilon_1^2,$$ $$\sup_{1\leqslant i\leqslant k}\sup_{x\in[x_{i-1},x_i]}|f(x)-f_i|\leqslant \varepsilon_1,\qquad \sup_{1\leqslant i\leqslant k}\sup_{x\in[x_{i-1},x_i]}|g(x)-g_i|\leqslant \varepsilon_1,$$ where $f_i = f(x_i)$, $g_i = g(x_i)$. Exactly as in Theorem 1.1, we may assume that $f_{i-1} = f_i = 0$ whenever $g_{i-1} \neq g_i$. Also, as in the proof of Theorem 1.1, since $$\frac{(f(x_i) - f(x_{i-1})^2}{x_{i-1} - x_i} \leqslant \int_{x_{i-1}}^{x_i} (f'(x))^2 dx, \qquad \frac{(g(x_i) - g(x_{i-1}))^2}{x_{i-1} - x_i} \leqslant \int_{x_{i-1}}^{x_i} (g'(x))^2 dx,$$ we have (4.1) $$\bar{\Lambda}_k := \sum_{i=1}^k \frac{(f_i - f_{i-1})^2 + (g_i - g_{i-1})^2}{x_i - x_{i-1}} < 1.$$ Now choose $0 < \delta < 1$ such that $\bar{\Lambda}_k < (1 - \delta)^2$ and then choose $\varepsilon > 0$ such that (4.2) $$\Gamma := \frac{\bar{\Lambda}_k}{(1-\delta)^2} + \left(\frac{20\varepsilon}{(1-\delta)^2} + \frac{2\varepsilon}{\delta^2}\right) \sum_{i=1}^k \frac{1}{x_i - x_{i-1}} < 1$$ and $5\varepsilon < |f_i|, i = 1, 2, ..., k$. Introduce the notations $\lambda = (2t \log \log t)^{1/2}$, $s_i = tx_i$, $$a_i = (f_i - \varepsilon)\lambda,$$ $b_i = (f_i + \varepsilon)\lambda,$ $\alpha_i = 2(g_i - g_{i-1} - \varepsilon)\lambda,$ $\beta_i = 2(g_i - g_{i-1} + \varepsilon)\lambda.$ By using the strong Markov property of the Wiener process, it is readily seen that $$\mathbb{P}(a_{i} \leqslant W(s_{i}) \leqslant b_{i}, \alpha_{i} \leqslant Y(s_{i}) - Y(s_{i-1}) \leqslant \beta_{i}, i = 1, 2, ..., k) \geqslant \mathbb{P}(a_{i} \leqslant W(s_{i}) \leqslant b_{i}, \alpha_{i} \leqslant Y(s_{i}) - Y(s_{i-1}) \leqslant \beta_{i}, i = 1, 2, ..., k - 1) \times \times \inf_{a_{k-1} \leqslant z_{k-1} \leqslant b_{k-1}} \mathbb{P}(a_{k} \leqslant W(s_{k}) \leqslant b_{k}, \alpha_{k} \leqslant Y(s_{k}) - Y(s_{k-1}) \leqslant \beta_{k} \mid W(s_{k-1}) = z_{k-1}).$$ Iterating this argument we can see that $$\mathbb{P}(a_{i} \leqslant W(s_{i}) \leqslant b_{i}, \ \alpha_{i} \leqslant Y(s_{i}) - Y(s_{i-1}) \leqslant \beta_{i}, \ i = 1, 2, \dots, k)$$ $$(4.3) \geqslant \prod_{i=1}^{k} \inf_{a_{i-1} \leqslant z_{i-1} \leqslant b_{i-1}} \mathbb{P}(a_{i} \leqslant W(s_{i}) \leqslant b_{i}, \ \alpha_{i} \leqslant Y(s_{i}) - Y(s_{i-1}) \leqslant \beta_{i} \mid W(s_{i-1}) = z_{i-1}).$$ Next we show that for i = 1, 2, ..., k we have $$\mathbb{P}(a_{i} \leqslant W(s_{i}) \leqslant b_{i}, \ \alpha_{i} \leqslant Y(s_{i}) - Y(s_{i-1}) \leqslant \beta_{i} \mid W(s_{i-1}) = z_{i-1}) (4.4) \frac{c_{21}(\delta)}{(\log \log t)^{1/2}} \exp\left(-\left(\frac{(f_{i} - f_{i-1})^{2} + (g_{i} - g_{i-1})^{2} + 20\varepsilon}{(1 - \delta)^{2}(x_{i} - x_{i-1})} + \frac{2\varepsilon}{\delta^{2}(x_{i} - x_{i-1})}\right) \log \log t\right)$$ with some $c_{21}(\delta) > 0$. To see (4.4) we apply Lemmas 2.4–2.7 with $s = s_i - s_{i-1} = t(x_i - x_{i-1})$, $\lambda = (2t \log \log t)^{1/2}$ and t large enough and use the inequalities $|f_i - f_{i-1}| \leq 1$, $|g_i - g_{i-1}| \leq 1$, $\varepsilon < 1$. - (1) In case $f_i = f_{i-1} = 0$, apply Lemma 2.4 with $\alpha = (g_i g_{i-1} \varepsilon)\lambda$, $|z| \leq \varepsilon \lambda$ and observe that by (2.15), $\overline{\Phi}$ gives a constant×(log log t)^{-1/2} factor in front of the exponent. - (2) In case $g_i = g_{i-1}$, $f_i f_{i-1} > 0$, apply Lemma 2.5 with $a = (f_i \varepsilon)\lambda$ and use $|z f_{i-1}\lambda| \le \varepsilon\lambda$. - (3) In case $g_i = g_{i-1}$, $f_i f_{i-1} < 0$, apply Lemma 2.6 with $a = (f_i \varepsilon)\lambda$ and use $|z f_{i-1}\lambda| \le \varepsilon\lambda$. - (4) In case $g_i = g_{i-1}$, $f_i = 0$, $f_{i-1} \neq 0$, apply Lemma 2.4 with $\alpha = -2\varepsilon\lambda$, use that $|z f_{i-1}\lambda| \leq \varepsilon\lambda$ and replace δ by 1δ . - (5) In case $g_i = g_{i-1}$, $f_i = 0$, $f_{i-1} \neq 0$, apply Lemma 2.7 with $a = (f_i \varepsilon)\lambda$, $|z| \leqslant \varepsilon\lambda$. Assembling all these estimations, (4.4) follows. This combined with (4.3) gives $$\mathbb{P}(a_i \leqslant W(s_i) \leqslant b_i, \ \alpha_i \leqslant Y(s_i) - Y(s_{i-1}) \leqslant \beta_i, \ i = 1, 2, \dots, k)$$ $$\geqslant \frac{(c_{21}(\delta))^k}{(\log \log t)^{k/2}} \exp(-\Gamma \log \log t),$$ where $\Gamma < 1$ is given by (4.2). Now the proof can be completed exactly the same way as that of Theorem 1.1. ## 5 Proof of Corollaries The proof of Corollary 1.4 is obvious. To show Corollaries 1.5 and 1.6 we need the following lemma. **Lemma 5.1** If f and g are absolutely continuous functions and f(x)g'(x) = 0 a.e., then (5.1) $$\int_0^1 (f'(x))^2 \, \mathbf{1}_{\{g'(x) \neq 0\}} \, \mathrm{d}x = 0.$$ #### **Proof:** Let $$\mathcal{A} = \{ x \in [0, 1] : f(x) = 0, f'(x) \neq 0 \}.$$ For each $x \in \mathcal{A}$, there exists $\delta_x > 0$ such that $f(y) \neq 0$ for all $y \in (x - \delta_x, x + \delta_x) \setminus \{x\}$. The intervals $\{(x - \delta_x, x + \delta_x)\}_{x \in \mathcal{A}}$ being disjoint and thus containing each a different rational number, they are at most countably many. This means \mathcal{A} is a countable set. Now (5.1) follows immediately. This proof, more elegant than our original one, was kindly communicated to us by Omer Adelman. \Box Now we prove Corollary 1.6. It follows from Lemma 5.1 that if $(f,g) \in \widetilde{S}_J^{(2)}$, then $$\int_0^1 (f'(x) + g'(x))^2 dx \le 1, \qquad \int_0^1 (f'(x) - g'(x))^2 dx \le 1,$$ from which (cf. [18]) $$|f(1) + g(1)| \le 1,$$ $|f(1) - g(1)| \le 1$ showing that a limit point cannot be outside the set given in the Corollary. To show that every point is a limit point, define $$f(u) = \frac{x(u-1+|x|)}{|x|} \mathbf{1}_{\{1-|x| \le u \le 1\}}, \qquad g(u) = \frac{yu}{|y|} \mathbf{1}_{\{0 \le u \le |y|\}} + y\mathbf{1}_{\{|y| \le u \le 1\}}.$$ It is easy to see that $(f,g) \in \widetilde{S}_J^{(2)}$ and f(1) = x, g(1) = y. So (x,y) is a limit point. The proof of Corollary 1.5 is a straightforward modification of the above, so we omit it.□ # 6 Further consequences: additive functionals Consider the additive functional $$A(t) = \int_0^t \psi(W(s)) ds = \int_{\mathbb{R}} \psi(x) L(t, x) dx,$$ where ψ is an integrable function such that $\overline{\psi} := \int_{\mathbb{R}} \psi(x) dx \neq 0$. Then by the ratio ergodic theorem (cf. [15], p. 228) $$\lim_{t \to \infty} \frac{A(t)}{\overline{\psi} L(t)} = 1 \quad \text{a.s.}$$ Hence, introducing $$\widetilde{V}_t(x) := \frac{A(xt)}{\overline{\psi}\sqrt{2t\log\log t}},$$ Theorem 1.1 implies Corollary 6.1 With probability one, the set $\{(U_t, \widetilde{V}_t)\}_{t\geqslant 1}$ is relatively compact in $C^{(2)}$, with limit set equal to $$\mathcal{S}_J^{(2)} := \left\{ (f, g) : f \in \mathcal{S}, g \in \mathcal{S}_M, \int_0^1 (f'(x))^2 + (g'(x))^2 \right\} dx \le 1, \ f(x)g'(x) = 0 \text{ a.e.} \right\}.$$ On the other hand, there are additive functionals which can be approximated by the principal value Y(t). Let ψ be a function as above and consider its Hilbert transform: $$\mathcal{H}(\psi)(x) = \frac{1}{\pi} \text{ p.v.} \int_{\mathbb{R}} \frac{\psi(y)}{x - y} dy,$$ where p.v. indicates that the integral should be considered as a principal value. It was shown in [11] that if ψ is a Borel function on \mathbb{R} such that $$\int_{\mathbb{R}} x^{\kappa} |\psi(x)| \, \mathrm{d}x < \infty,$$ for some $\kappa > 0$, then for all sufficiently small $\varepsilon > 0$, when $t \to \infty$, $$B(t) := \int_0^t (\mathcal{H}\psi)(W(s)) \, \mathrm{d}s = \frac{\overline{\psi}}{\pi} Y(t) + o(t^{1/2 - \varepsilon}), \quad \text{a.s.}$$ Introducing the notation $$\widetilde{Z}_t(x) = \frac{\pi B(xt)}{\overline{\psi} \sqrt{8t \log \log t}},$$ we have Corollary 6.2 With probability one, the set $\{(U_t, \widetilde{Z}_t)\}_{t\geqslant 1}$ is relatively compact in $C^{(2)}$, with limit set equal to $$\widetilde{\mathcal{S}}_{J}^{(2)} = \left\{ (f,g) : f \in \mathcal{S}, g \in
\mathcal{S}, \int_{0}^{1} (f'(x))^{2} + (g'(x))^{2}) \, \mathrm{d}x \le 1, \ f(x)g'(x) = 0 \ \text{a.e.} \right\}.$$ # Acknowledgements We are grateful to Omer Adelman for helpful discussions. ## References - [1] Biane, P. and Yor, M. (1987). Valeurs principales associées aux temps locaux browniens. Bull. Sci. Math. 111, 23–101. - [2] Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York. - [3] Borodin, A.N. and Salminen, P. (1996). *Handbook of Brownian Motion* Facts and Formulae. Birkhäuser, Basel. - [4] Chen, B. (1997). Large deviations and Strassen's limit points of Brownian local time processes. *Statist. Probab. Lett.* **34**, 385–395. - [5] Csáki, E., Csörgő, M., Földes, A. and Révész, P. (1983). How big are the increments of the local time of a Wiener process? *Ann. Probab.* 11, 593–608. - [6] Csáki, E., Csörgő, M., Földes, A. and Shi, Z. (2000). Increment sizes of the principal value of Brownian local time. *Probab. Theory Related Fields* **117**, 515–531. - [7] Csáki, E., Csörgő, M., Földes, A. and Shi, Z. (2001). Path properties of Cauchy's principal values related to local time. *Studia Sci. Math. Hungar.* **38**, 149–169. - [8] Csáki, E. and Földes, A. (1987). A note on the stability of the local time of a Wiener process. Stoch. Process. Appl. 25, 203–213. - [9] Csáki, E., Földes, A. and Révész, P. (1997). Strassen theorems for a class of iterated processes. *Trans. Amer. Math. Soc.* **349**, 1153–1167. - [10] Csáki, E. and Révész, P. (1983). A combinatorial proof of P. Lévy on the local time. Acta Sci. Math. (Szeged) 45, 119–129. - [11] Csáki, E., Shi, Z. and Yor, M. (2000). Fractional Brownian motions as "higher-order" fractional derivatives of Brownian local times. Preprint. - [12] Csörgő, M. and Révész, P. (1981). Strong Approximations in Probability and Statistics. Academic, New York. - [13] Freedman, D. (1971). Brownian Motion and Diffusion. Holden-Day, San Francisco. - [14] Hu, Y. and Shi, Z. (1997). An iterated logarithm law for Cauchy's principal value of Brownian local times. In: *Exponential Functionals and Principal Values Related to Brownian Motion* (M. Yor, ed.), pp. 131–154. Biblioteca de la Revista Matemática Iberoamericana, Madrid. - [15] Itô, K. and McKean, H.P. (1965). Diffusion Processes and their Sample Paths. Springer, Berlin. - [16] Mueller, C. (1983). Strassen's law for local time. Z. Wahrsch. Verw. Gebiete 63, 29-41. - [17] Revuz, D. and Yor, M. (1999). Continuous Martingales and Brownian Motion. Second ed. Springer, Berlin. - [18] Strassen, V. (1964). An invariance principle for the law of the iterated logarithm. Z. Wahrsch. Verw. Gebiete 3, 211–226. - [19] Yamada, T. (1996). Principal values of Brownian local times and their related topics. In: *Itô's Stochastic Calculus and Probability Theory* (N. Ikeda et al., eds.), pp. 413–422. Springer, Tokyo. - [20] Yor, M., editor. (1997). Exponential Functionals and Principal Values Related to Brownian Motion. Biblioteca de la Revista Matemática Iberoamericana, Madrid. - [21] Yor, M. (1997). Some Aspects of Brownian Motion. Part II: Some Recent Martingale Problems. ETH Zürich Lectures in Mathematics. Birkhäuser, Basel. Endre Csáki Alfréd Rényi Institute of Mathematics Hungarian Academy of Sciences P.O.B. 127 H-1364 Budapest Hungary csaki@renyi.hu Antónia Földes Department of Mathematics City University of New York 2800 Victory Blvd. Staten Island, New York 10314 U.S.A. afoldes@gc.cuny.edu Zhan Shi Laboratoire de Probabilités UMR 7599 Université Paris VI 4 Place Jussieu F-75252 Paris Cedex 05 France zhan@proba.jussieu.fr