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1 Introduction

Let {B(t), t > 0} be a standard one-dimensional Brownian motion, i.e. a continuous centered
Gaussian process with covariance

]E(B(tl)B(tz)) =t Aty, b,y > 0.

It is well-known that almost all sample paths of B consists of countable many zero-free
intervals called excursions. Let (a,b) an excursion interval, i.e. B(a) = B(b) = 0 and either
B(s) > 0,a < s < b called positive excursion, or B(s) < 0, a < s < b called negative
excursion. The height of this excursion is defined by

H*Y max |B(s)|.

a<s<b
Pitman and Yor [11] introduced the ranked heights of excursions up to time ¢: let
Hi(t) > Hy(t) > ...Hj(t) > ...
and
HY(t) > Hy(t) > ... H;(t) > ...
be the heights of positive and all excursions, resp. of {B(s),0 < s < t}, including the
meander heights sup,, <,<; B(s) and sup,,<,<; |B(s)|, where g, denotes the last zero before 2.

Let furthermore {K(s,t),0 < s < 1,t > 0} be a Kiefer process, i.e. a continuous two-
parameter centered Gaussian process indexed by [0,1] x R, whose covariance function is
given by

E(K(Sl,tl)K(SQ,t2)> = (min(sl,SQ) - 8182) min(tl,tQ), 0 S 51,59 S 1, tl,tg Z 0.

Kiefer [7] introduced this process K to approximate the empirical process. See Csérgé and
Révész [4] for detailed studies and related references on Kiefer process and on the invariance
principle between empirical process and Kiefer process. Note that for fixed ¢ > 0, the process
s€0,1] — % is a standard Brownian bridge. Denote by

My(t) > My(t) > ... > M(t) > ...

the ranked heights of the positive excursions of the Brownian bridge K (-, t) over the whole
time interval [0, 1]. Denote by

M;(t) > M3 (t) > ... > MI(t) > ...

the ranked heights of the excursions of |K(-,t)|. By scaling properties, the distributions of

M; . M} (1)
(M2,5 > 1) and (=5

standard Brownian bridge. See Pitman and Yor [12] for studies on these distribution.

,J > 1) are the same as that of the ranked excursions heights of a
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We are interested in the path properties of the processes t — M;(t) and ¢ — M; (). In
particular, we aim at the asymptotic behaviors of M;(t) and M (t) as t — oc.

Observe that M, (t) = supg<,<; K(s,t) and M7 (t) = suppc<q |[K(s,t)|. The following
LILs are known, see respectively Csorgé and Révész ([4], pp. 81), Mogul’skii [8] and Cséki
and Shi [3]:

Theorem A ([4], [8], [3]). We have

liﬁgp% = %, a.s. (1.1)
lim inf loglog? , /.y — % as (1.2)
iy < 1
lim in (IO%V M (1) { " Z'fX : j a8 (1.3)
oo ifx>3
In (1.1), we may replace M; by M.
The almost sure behavior of H;(t) was studied in Csdki and Hu [2]:
Theorem B ([2]). We have
H*
liﬁgp% = 2]_\/_51, a.s. j>1. (1.4)
liminf (lo\g/;)xH;(t) - { go g;‘ § 1 as.  j>2. (1.5)

A natural question is to ask what happens with (M;(t),t > 0) for j > 2. As a process
indexed by ¢, the j-highest heights M7 (t) may share some unusual properties different from
M (t). For instance, t — M; (t) is not continuous for j > 2 in contrast with the continuity
of M; ().

Theorem 1.1 Fiz j > 1. We have

. Mp@) 1
lim sup a.s.

t—o00 tloglogt N jﬂ’

The same result remains true when we replace My by M.

It is also of interest to find the liminf behavior of M;:



Theorem 1.2 Fiz j > 2. We have

0 ifx<

log £)X =
lim inf (1980 M;(t) = as.
e Vi oo if x >

N =

N[

The same result remains true when we replace M; by M;.

The proof of Theorem 1.1 is based on an estimate on the downcrossings of a Brownian
bridge, this estimate will be given in Section 2. To show Theorem 1.2, an usual way is to esti-
mate P(infi<;<o M;(t) < €) as € goes to 0. This problem remains open to our best knowledge.
To overcome this difficulty, we shall adopt the method of Csaki and Shi [3], which consists
of reducing the problem for the Kiefer process to that for an Ornstein-Uhlenbeck process.
Section 2 also contains several preliminary results to complete the proofs of Theorems 1.1
and 1.2, which will be presented respectively in Sections 3 and 4.

Throughout this paper, (Cj, 1 < j < 6) denote some positive constants whose exact
values are unimportant.

2 Downcrossings

Consider a continuous function f : I = [a,b] — R with a,b € R. For two real numbers
x <y, we define inductively

a=ai(y) € inf{fo>a: flv) >yl (2.1)
Be=B(z) ¥ inf{v>ap: fv) <z}, k>1, (2.2)
ar=cap(y) € inflv>Bi:f) >y},  k>2 (2.3)

with the convention inf) = oc. Define the number of downcrossings of (z,y) by f during
the time interval I as
D¢(x,y; I) = sup{k : oy (y) < b}. (2.4)

We adopt the above definition of downcrossings, which is slightly different from the usual
one, to keep the following equivalence:

sup f(v) >y = Dy(z,y; 1) > 1.

vel

Remark that the condition {Dy(z,y; ) > 1} does not depend on z. In the following two sub-
sections, we shall discuss respectively the numbers of downcrossings by a standard Brownian
motion, a Brownian bridge and by an Ornstein-Uhlenbeck process.



2.1 Brownian bridge

Let {B(s), s > 0} be a standard Brownian motion and let {p(s),0 < s < 1} be a standard
Brownian bridge from 0 to 0. First, we present a preliminary result based on the reflection
principle.

Lemma 2.1 Fiz j > 1 and max(z,0) <y. We have

0(2jy —2(j — 1)x — z)dz if z <y,
P(Ds(r,1:00.1)) > 5. B(1) € dz) = (25)
e2(j —Dy—2(j — Dz +2)dz if z >y,

where ¢ is the standard normal density function.

Proof: We use the reflection principle formulated by (cf., eg. [5])

Fact 2.2 Let {B(s), s > 0} be a standard Brownian motion and let T be a stopping time for

B. Then
B(s) if0<s<7
BM(5) ¥
2B(t) — B(s) ifr<s

18 also a standard Brownian motion.

Let us make use of the stopping times ay = ax(y) and By = fx(z) introduced in (2.1)-
(2.3), corresponding to f(t) = B(t), I =[0,1].

Our Lemma 2.1 is well-known for j = 1.

We illustrate the proof in the simple case 7 = 2, using the reflection principle subsequently
for our stopping times. Let {B(s), 0 < s < 1} be a Brownian motion such that o, < 1 and

B(1) = z < y. Then by Fact 2.2, By(s) & B1)(s), 0 < s < 1 is a Brownian motion with
Bi(1) =2y — z, (3 is its first hitting time of 2y — z and «» is its first hitting time of y after
B1. In the next step consider Bs(s) défB&gl)(s), 0 < s <1. Then By(1l) = 2y — 2z + 2, and
g is its first hitting time of 3y — 2z. Finally, consider Bs(s) = Béw)(s), 0 < s <1 for which
we have B3(1) = 4y — 2z — z. By reversing this procedure, starting from a Brownian motion
with endpoints 4y — 2x — z at s = 1, we get a Brownian motion with «; < 1 and B(1) = z.
This proves the first equality of (2.5) in the case j = 2. The procedure is similar for z > y,
except that we stop with By, so the last reflection (at ) is not performed. Using this idea
in obvious manner for the general case j > 2, yields our lemma. [ |

Since a Brownian bridge {p(s), 0 < s < 1} is a Brownian motion conditioned to p(1) = 0,
we have the following



Corollary 2.3 For j > 1 and max(zx,0) < y, we have

P(Dy(a,5: [0,1]) > j) = exp ( =205y — (G — )a)?).

Proof: Putting z = 0 in (2.5) we get

p(27y —2(j — 1)z)

P(Dylz,1:(0.1)) > ) = =exp (—2(jy - (7 - 1)2)").

¢(0)
|
Taking = = 0, we recover Pitman and Yor [12]’s formula for the distribution of M;(1):
P(Mj(l) > y) = P(Dp(ﬂ,y; [0,1]) = j) = exp ( - 2j2y2). (2.6)

Another corollary can be obtained by taking z = 0 and integrating out with respect to

Corollary 2.4 For j > 1, y > 0 we have

P(H,(1) >y) =2(1- (25 - y),

where ® is the standard normal distribution function, and H;(1) denotes the height of the
j-th highest positive Brownian excursion up to time 1.

Now we present an estimate on supg,<7 M7 (t).

Proposition 2.5 Fizx j > 2. There exists some constant C; > 1 such that for all u > 0 and
A > \/u, we have

]P’(OS;EUM;(t) > /\) < exp(—2 <\j/—% - 2j2_ 1>2>

Proof: First we prove

Lemma 2.6 For0<z <y, 7> 1, we have

P(Dyi(z,5:[0,1]) > 5) < 2B(Dy(e,:(0,1]) > 5).



Proof of Lemma 2.6: Again, we present the proof for j = 2. Upcrossings from x to y by
|p| are either upcrossings by p from z to y or downcrossings by p from —z to —y. Define the
following events:

At {There are at least two upcrossings by p from z to y}
At {There is at least one downcrossing by p from —x to —y
after an upcrossing by p from z to y}
At {There is at least one upcrossing by p from z to y
after a downcrossing by p from —z to —y}
A« {There are at least two downcrossings by p from —z to —y}.
Obviously

P( Dy (2, 35[0,1]) > 2) <P(AT) +P(AT) +P(4 ) +P(4 )

and by symmetry, P(AT") = P(A~"), P(A"") = P(A"*). Moreover, P(A*") < P(A*T),
since by Corollary 2.3 we have

P(A™Y) =exp (—2(2y — 2)?)
and an argument, similar to the proof of Lemma 2.1 shows that
P (A*7) =exp (—8y7).
Hence,
P(D\pl(xa% [0,1]) > 2) < AP (ATF) =2%exp (—2(2y — 2)?),

proving Lemma 2.6 for 7 = 2. Extension of the above argument in an obvious manner for
j > 2, proves our Lemma, 2.6. [ |

Now we proceed with the proof of Proposition 2.5. For ¢t > 0, we define a(()t)(O) =0 and
fori>1,

@) € int{s > o (0) : |K(s, 1) = 2},

71—

1
o) € inf{s>79(2): K(s,t) =0},

(write 7

.+ (z) = 1 if such s does not exist). Therefore,

]P’( sup M () > A) - IP’(EIt € [0,u]: 7O\ < 1) - ]P(@ < u)

0<t<u

where we define © % inf{t > 0: M(t) > A}. Let F; = o{K(s,u),0 <5< 1,0 <u <t}
Then O is a stopping time with respect to (F;). Notice that the process t — (K (-,© +t) —
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K(-,0)) is independent of Fg and has same law as (K(-,t),t > 0). Using the self similarity:
K(,v+0)-K(-0) aw VUK(+,1) for any fixed v > 0, we get

1\ def 27
IP’( sup |K(s,u) —K(s,@)‘ < @‘6 < u) > ]P’( sup |K(s,1)| < —) “Z o
0<s<1 2 0<s<1 2 Cy
Denote by
Eldéf{ sup K(s,u)—K(s,@)‘ < ﬂ} N {@ < u},
0<s<1 2

we have shown that IP’(@ < u) <277¢ P(El)'

On E,, we can decompose K(s u) = K(s,0) + K(s) with SUPg<s<1 1K (s)| < 4 Since
| K ( Z.(G)( A),©)] = A and K( ( ) ©) =0 for 1 < ¢ < j, it follows that for such random
times 0 < s, & Tl(e)()\) < def ( ) < s-def 7'(@) (M) < 1, we have respectively,

u
K (s1,u)| > A - 4 K (o1, )| < @ oy [ K (35,u) 2 A — %

Namely, we have

E, C {D|K(-,u)| (g, A— — \/_ [0 1]) 2]}

It follows from scaling, Corollary 2.3 and Lemma 2.6 that

IF’(E1> < IP(D\K(-,u)\ (%a A— \é_ [0, 1]) )

:u»(p,,| G%_ %;[0,1]) 2].) §2jexp(_2m— (zju— 1)4)2»

proving the result. [ |

2.2 Ornstein-Uhlenbeck process

Let us consider a stationary Ornstein-Uhlenbeck process (U(t),¢ > 0) with parameter 3,
D . . , . lt=s|
which is a stationary centered Gaussian process with covariance E(U (U (s)) =e 7. We

mention a paper by Pitman and Yor [10] for the study of distributions of excursion lengths
of U.



Recall some known facts on the hitting times of U. Fix —oo < z; < 29 < 0o and define
0(z1,22) = inf{s > 0:U(s) & [21, 22]}

to be the first exit time from the interval [z1, z5]. Consider the Sturm-Liouville equation:

1

5¢'(@) = 58 (@) =-Xé(2), wE(m ) Ba)=0if 5] <00, i=1,2

x
2
Fact 2.7 ([14], [6], [9]) Assume that min(|z],|22]) < oco. There is a sequence of sim-
ple eigenvalues 0 < Ai(z1,22) < ... < An(21,22) < ... whose corresponding eigenfunc-
tions 1 (21, 22, X)), ey Un(21, 20; %), ... form a complete orthonormal system with respect to
m(dz) = e */2dxz. The function (z1,2) — M (21, 20) is strictly positive and jointly con-
tinuous on = = {(z1,20) € [—00,0]% : 21 < 2o, min(|z1], |22|) < oo}, strictly increasing in
z1 € (—00, 29] for zo < o0 and strictly decreasing in z3 € [z1,00) for z3 > —o0:
1
)\1(—00,0) = )\1(0, OO) = -, lim )\1(21,2’2) = 0Q, lim )\1(2’1,22) =0.

2 (21,22)—=0 (21,22)—(—00,00)

Fact 2.8 ([14], [6], [9], [1], [3]) Assume that min(|z],|22]) < oo. There exists some
constant Cy > 0 such that uniformly on x € R,

P(a(zl, z9) > t|U(0) = x) = e_)‘l(zl’z"’)t(e(zl, 29)01 (21, 22; ) + 7 (8, a:)),

where 0(21,29) = f;lz 1(21, 295 x)m(dzx) and
2 ¢
Ir(t,z)| < Cy exp (% - —).
When zy = —z9 = —z with z > 0, we get
1

lim —log]P’( sup |U(s)| < z) = —Ai(—2,2).

t—o0 t 0<s<t
Moreover, lim, o, A1 (—2,2) = 0.

We shall need the probability that the process U downcrosses a given interval (zi, z2) a
few times only during [—¢,¢]. This is stated in the following lemma:

Lemma 2.9 Fix —00 < 21 < 29 < 00 and k > 1; We have

1 1
lim — logP(Du (21, 2[4, 1]) < k) = lim ~ logB(Dy (=1, 2: [0, 2t]) < k) = —2p(=1, ),
— 00

t—oo t

where (21, 2) o min(A;(—00, 22), A1(21,00)) > 0. Moreover, we have

1

ziggou(zl’ ) = 2°



Proof: The above first equality is due to the stationarity of the Ornstein-Uhlenbeck process.
Using again the stopping times «; and §; defined in (2.1)—(2.3) associated with a = 0, b = 2t,

T =2,y =2, =][02tand f(v) =U(v), we have ]P’(DU(zl,zQ; 0,2t]) < k) = ]P(ak+1 >

2t> .

Remark that a; = inf{s > 0: U(s) > 23} = 0(—00, 22). The strong Markov property
implies that the random variables of the family {§; — o, @j41 — B, 01, j > 1} are mutually
independent. Furthermore, 3; — a; = o(21,00) 0f,, where 6 is the usual shift operator. And
for j > 2, B; — a; (resp: o — Bj_1) has the same law as T,_,,, (vesp: T}, ,), where T,_,,
denotes the hitting time of y by an Ornstein-Uhlenbeck process starting from x. Based on
Fact 2.8, the simple convolution computation yields that

1
lim 7 log]P’(akH > t) = —u(z1, 22),

t—o0

and the desired conclusion follows. [ ]

2.3 A technical lemma

Recall that {p(s),0 < s < 1} denotes a standard Brownian bridge. Let 0 < y < z/4 and
consider the event

Gy, = {30<a1<01<b1<a2<02<b2<1:
pla)] <y, Ip(v9)] <y, lp(ci)| > 2,0 =1,2] (2.7)

Remark that G, , D Gy, and that G, is in fact the event that the height of the second
highest excursion of |p(-)| is larger than z. We shall need to bound P(G,) in the proof of
the upper bound of Theorem 1.2.

Lemma 2.10 There erists an absolute constant C3 > 0 such that for all 0 < y < £ and
O0<z< %,
P(Gy:) <1-Cy22,

We can also obtain a lower bound from (2.6) as follows:
1
> = F(1) > z) > >z) >1—C4° -
]P’(GW) > P(Go,z) ]P’(MQ(l) > z) > ]P(MQ(1) > z) >1-02, 0<2< 5.

Proof of Lemma 2.10: Define

T (p) inf{t > 0: [p(t)| > 2}
Y(p) € inf{t>Tr(p): [p(t)] <y},

def
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with inf() = co. Let § = z2. Observe that

Gy D {TI () <6120 <X <16 sup |p(t)] <

3

DN | W

The strong Markov property at Y(p) implies that

]P’(G;Z) > E(l(T;(p)<5;1—26§T(p)§1—5) f(p(1),1- T)),

with
f(z,s) déf]P’( Brownian bridge from z to 0 of length s lives in [—%, g])

Sincex =y or —yand 6§ < s=1—T" < 2§, we have from scaling that

flz,s) = IP(a Brownian bridge from x to 0 of length s lives in [—g, g])
> P(a Brownian bridge from 7= to 0 of length 1 lives in [—22%, QL\/E])
1 1
> inf IP’(a Brownian bridge from = to 0 of length 1 lives in [———, ——= )
z  nf, g 8 =3 75’2 \/5]
def Cs5 >0,

hence we have shown that

P(G;,z) > 05]P(T;(p) <8 1-20<T(p)<1— 5).

Recall the following absolute continuity between the law of Brownian bridge and that of
Brownian motion: Denote by Pyo the law of p(:) and by Py that of B(-), on the canonical
space (X¢, Xy)o<i<1, we have for any ¢ < 1,

! ( X7 )dIP’ | t<1
= —— e&X — .
%= oo P\ T aa—g) Tl

Applying the above formula to the stopping time Y and observing that | X (Y (X))| = y, we
obtain that

dPO,O

IP’(Tz*(p) <5 1-20<T(p)<1- 5)
2

1 Y
= 1 q_ _5) —————— X -
E)( (T () <O1-2<T(X)<1-0) 7= T p ( 21 = T(X))))

\/%e—’éi P, (T;(X) < g) IP’Z(l —20<T,(X)<1- 335)

v

where P, means that the Brownian motion starts from z and 7, (X) denotes the first hitting
time at y. Using the well-known distribution of the first hitting time: P,(7,(X) € dt) =

11



%e*(“yw (2Y)d¢t, and the relation: y < z/4, § = 2%, we obtain that the above probability

is bounded below by Cgz?. Assembling these estimates, we get
]P’(G;z) > O522,

for some universal constant C3 > 0. [ |

3 Proof of Theorem 1.1

We begin with the proof of the upper bound:

Mx(t 1
lim sup i1 <

, a.s. 3.1
t—00 tloglogt — jv/2 (31)

This follows from Proposition 2.5: Fix an arbitrary constant a > Lf Let n > 3 and

V2
t, = e"/1°8" We have from Proposition 2.5 that

P( sup M (t) > a\/t,loglogt,) < Ci exp | — (25%a® + o(1)) loglogt, ),
J

0<t<tn+1

whose sum over n converges; this in view of a simple application of Borel-Cantelli lemma
yields (3.1).

Now, fix an arbitrary constant a < ]% It suffices to prove that

M;(t
lim sup M) > a, a.s.. (3.2)

twoo  V/tloglogt —
To this end, let t, = n® and \, = a/t, loglogt,, we consider the event
E, & {Mj(tn) > An},
which is F;, défa{K(s, u),0 < s<1,0 <wu < t,}-measurable. If we can show that

ZIF’(ER\.En_I) =00,  as. (3.3)

n

then according to Lévy’s version of Borel-Cantelli lemma (cf. [13]), we get IP’(E,L, i.o. ) =1
hence (3.2).

12



Consider the process K (s, u) d:efK(s, U~+tn—1) —K(s,t,—1) for 0 < s <1andu > 0. The
independent increment property says that K (-,-) is independent of F; _, and has the same
law as K(-,-). Fix a small € > 0 such that 252a*(1 4 2¢) < (1 — 2¢).

Recall the notation D g
tn—1). Observe that

tnt) in Section 2 for the downcrossings by the process K (- tn—

.’tn_

{Dicttrtrny (=, 1+ N3 [0,1]) > j} 0 { D (tas) < o} C B,

where M} (t,_1) o SUD(<s<1,0<u<ty_ 1 |K (s, u)|. Therefore, we apply Corollary 2.3 and obtain

that for all large n,

P(Eﬂftn*l) 2 1(M;‘<tn71)<exn)P<Dk(-,tn—tn_1)(—€)\m(1+6)/\n; [0,1]) > j)

An An ,
= I(M;(tn_l)«,\n)P<Dp(—€7ma(1 +€)7,m; 0,1]) > J)
2 L (t0-1)<ern) OXP ( —2j%a’(1 + 2¢) loglog tn)
—(1—e¢
Z LGt (taey<ern) ™ -, (3.4)

where the above equality is due to the self-similarity: K (-,v) o Vv p(+) for any fixed v > 0,
and p(-) is a standard Brownian bridge. Now, we apply (1.1) and obtain that almost surely,

M (t,-1) < €A, for all large n. This together with (3.4) implies (3.3), completing the proof
of Theorem 1.1. [

4 Proof of Theorem 1.2

4.1 Upper bound

It suffices to show that

VIog?
liminf Y2  ME(#) =0,  as.
t—o0 \/E

According to Lévy’s version of Borel-Cantelli’s lemma (cf. [13]), the above result follows if
we can prove that for any constant € > 0 and for some sequence (¢, 1 00),

Z P(M;(tn) <€/ lotgnt |7:tn_1> = 00, a.s. (4.1)

n
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where F, = 0{K(s,u),0 < s <1,0 <u <t}. Let us consider ¢, = n*". By means of (1.1),
we have almost surely for all large n,

sup |K(s,tn 1) < Vtn 1 lognd:ef)\n. (4.2)

0<s<1

Consider large n. Observe that A, < ie, /lotg”tn dof . By the independent increment

property,

K(tn) = K(-ytn1) + K (st — ta1),

with K a Kiefer process independent of F; _,. The key observation is that

{M;(tn) > 2.} N { sup |K(s,t, 1)| < /\n}

0<s<1

C {30<CL1 < <b<ag<ca<b<l: \I?(ai,t”—tn,l)\ S)\n;

1K (bt — o) < Any [K (Ciytn — tn1)| > 2 — Anyi = 1, 2} f

which implies that

Fen { sup |K(s,tn_1)| < )\n} - {M;(tn) <z}

0<s<1
It follows from the independence of }7’5 and F;, , that

]P)<M; (tn) < Zn |‘7:tn—1) > 1(SUP0gsg1 K (s,tn—1)|<An) P(Frf)

l(supOSssl |K(S’tn—1)|$)‘n) P(G;7z>

v

2
C31(supye,cr [K(sstnm1)|<An) 2

€ 1
Cs Z l(supogsgl [K(s,tn—1)]<An)

\Y

nlogn’

Tn—An

where the above equality is due to scaling with y = #, 2= et and Gy , was

defined in (2.7) and the second inequality follows from Lemma 2.10. The above lower bound
together with (4.2) implies (4.1). |

4.2 Lower bound

Fix j > 2 and x > % We want to show that almost surely for all large ¢:

M;(t) > vt (logt) ™.
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Consider the two-parameter Ornstein-Uhlenbeck process (U(v,t),v € R ¢t > 0) defined
by

s ) t) _ K(s,t)

1—s” s(1—s)

Namely, {U(v,t),v € Rt > 0} is a centered Gaussian process with covariance

U(log( 0<s<l1,t>0.

[v1—vo|

]E(U(Ul,tl)U(Uz, tg)) =e 2 min(tl,tg), V1,V € R, tl,tg > 0.

Let 0 < 6 < 1 be small. First, if there exist some (random) times § < u; < v; < ... <
uj_1 < vj—1 < uj <1—4such that U(log(lfzi),t) >gxfori=1,...,jand U(log(lfivi),t) =
0fori=1,...,5—1, then K(u;,t) > x1/6(1 — §) and K (v;,t) = 0; This implies in particular
that M;(t) > z/0(1 —6).

If we denote by Dy (z,y;[—1
by U(-,t) during the time interval

(DU 05 [=1og (5,10 (50 2 5} € {50 2 /BT =)},

'_‘O
o

(1=9), log (152 ]) the number of downcrossings of (z, y)
—log(*52), log(*52)], then

Fix a small constant ¢ = ¢(x) > 0 whose value will be determined later. Define n; =

exp(por gk) and let &6, = (logng)~, I = [—log(:5 ‘5’“) log (L ‘Sk)] Ty = cy/ngyy for k > 3.
Consider the event

def

F, = {Hi € [nk,nkH) : DU(.,t)(O,.’Ek;Ik) <j— 1}

If we can show that

Z]P’(Fk) < 0, (4.3)

then the Borel-Cantelli lemma implies that almost surely for all large k, F realizes; hence
for all large ¢, we have that ny < t < ngyq1, and Dy (0, 2x;Ix) > j, this implies that

M;(t) > zp/0k(1 —d;) > gx/f(logt)_x, proving the convergence part of Theorem 1.2,
since x > % is arbitrary.

To estimate ]P’(Fk) , we consider the stopping time ¢ with respect to FY = o{U(z,s),x €
R,s <t}
= lnf{t >Nyt DU(-,t)(Oa Tk; [_vka Uk]) < ] - ]‘}

We want to estimate P(Fk) = IP(C < nk+1> Define U (v, ) der(v,t—!— ¢) — U(v,¢) for

v € R and ¢t > 0. The independent increments property says that U is independent of fCU
and has the same law as U. On {¢ < ng41}, we have Dy ¢)(0, 245 1) < j — 1; Fix a small
constant € > 0. Consider the event

e = 1—
def{ sup U(log(TS),nkH—C)‘ < €Xp; C<nk+1} C F.

0p<s<1—dy

15



Using the scaling property: U(-,1)  St0 U(-,1) for any fixed ¢ > 0, we obtain:

1 — s
]P’(Gk> = E[l((<nk+1)]P( sup (l ), Ngy1 — s)‘ < exk> \S:C}
0, <s<1—0g
~ 1 — s €Tk,
- ]E[l . 11[”( su U(lo s ,1)‘<7) _ }
(C<ng41) 5kSSS11)*5k g( 3 ) \/m |S¥CZ'H]C
~ 1—s €X

> ]P’( <n )IP’( su U(lo —,1)‘<7). 4.4
¢ i akgsgllj—dk g( ) VN1 — Ng ( )

Observe that on Gy, the number of downcrossings of (—ex, (1 + €)xx) by U(-, ngy1)
during I, = [—log(%5 ‘5’“) log(%5 Jk)] can not be larger or equal to j; otherwise, we would get
Dy(.0)(0, 23 ) > 5. In view of this remark, we get

P(DU("nkﬂ)(_exk’ (1 + G)xk; Ik) < ] - 1)

P<SUP5kgsg1—5k ﬁ(log(%), 1) < %)
IP(DU(.,l)(—ec, 1+e)el) <j— 1)

P(F) <

= , (4.5)
]P’(supdkSssl,dk U(log(%), 1) < 7\/&%%)
by using the scaling property. Now, we apply Facts 2.8 and 2.7. Since % — 00, We
have .
— S €Tk o(1)
IP’( sup U(lo ,1)‘<7)25 , k — o0,
8, <s<1—0y g( S ) VIE+1 — Nk k

and as k — oo, we have from Lemma 2.9 that

—€C €)C 0 k
IP(DU(.J)(—GC, (1+6)c Iy) < j — 1) < 51(€2u( (1+e)e)+o(1)) _ (—

)—4)( (u(—ec,(1+€)c)+o(1)) )
log k

Recall that x > 1. Since pu(—ec, (1 + €)c) — 1 as ¢ — 0, it follows that we can choose a
sufficiently small constant ¢ = ¢(x) > 0 such that 4y p(—ec, (1 4+ €)c) > 1. This in view of
(4.5) implies that there exists some constant a > 1 such that for all large £,

]P(Fk> < ke

proving (4.3), as desired. [ |
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