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1 Introduction

Let {B(t), t > 0} be a standard one-dimensional Brownian motion, i.e. a continuous centered
Gaussian process with covariance

E(B(tl)B(tQ)) = tl N tQ, tl, tg 2 0

We consider also standard Brownian bridge {p(s), 0 < s < 1}, i.e. a centered Gaussian
process with covariance

E (p(s1)p(s2)) = s1 A S2 — $159, 0<s,s8 <1

It is well-known that almost all sample paths of B consists of countable many zero-free
intervals called excursions. Let (a,b) an excursion interval, i.e. B(a) = B(b) = 0 and either
B(s) > 0,a < s < b called positive excursion, or B(s) < 0, a < s < b called negative
excursion. The height of excursion is defined by either

HY max B(s)

a<s<b

or

H*Y max |B(s)|.

a<s<b

Clearly, H > 0 holds only for positive excursions. Pitman and Yor [11] introduced the ranked
heights of excursions up to time ¢: let

Hy(t) > Hy(t) > ... Hy(t) > ...

and
Hi(t) > Hy(t) > H]*(t) > ...

be the heights of positive and all excursions respectively, of {B(s),0 < s < t}, including
the meander heights sup,, ..., B(s) and sup,, .., |B(s)|, where g; denotes the last zero of B
before t. The ranked heights of excursions of p can be defined similarly.

Let furthermore {K(s,¢),0 < s < 1,¢ > 0} be a Kiefer process, i.e. a continuous two-
parameter centered Gaussian process indexed by [0,1] x R, whose covariance function is
given by

E(K(slatl)K(s%tQ)) = (51 A\ 53 — 5152) 11 A ta, 0<s5s1,8 <1, 4,8, > 0.

Kiefer [7] introduced this process K to approximate the empirical process. See Csérgé and
Révész [4] for detailed studies and related references on Kiefer process and on the invariance



principle between empirical process and Kiefer process. Note that for fixed ¢ > 0, the process
se€0,1] — % is a standard Brownian bridge. Denote by

My(t) > My(t) > ... > M(t) > ..

the ranked heights of the positive excursions of the Brownian bridge K (-, %) over the whole
time interval [0, 1]. Denote by

M;(t) > Mj(t) > ... > M(t) > ...

the ranked heights of the excursions of |K(-,t)|. By scaling properties, the distributions of

(M\j/(;), j > 1) and (M\j*/gt), j > 1) are the same as that of the ranked excursion heights of a

standard Brownian bridge. See Pitman and Yor [12] for studies on these distribution.

We are interested in the path properties of the processes t — M;(t) and t — M;(t). In
particular, we aim at the asymptotic behaviors of M;(t) and M;(t) as t — oc.

Observe that M;(t) = supyc,<; K(s,t) and M7 (t) = supyc,<; [K(s,t)[. The following
laws of the iterated logarithm are known, see respectively Csorgé and Révész ([4], pp. 81),
Mogul’skii [8] and Csdki and Shi [3]:

Theorem A ([4], [8], [3]). We have

. M (t) 1
lim sup ———— —, a.s. 1.1
t_mp Vtloglogt V2 (1)
.. loglogt . . o
hg(glf Mi(t) = 75 a.s. (1.2)
0 ify<i
logt)X =2
lim inf (log ) M (t) = a.s. (1.3)
e Vi oo if x > %

In (1.1) we may replace M (t) by M (t).
The almost sure behavior of H;(t) was studied in Csdki and Hu [2]:

Theorem B ([2]). We have

H:(t) V2
limsup —X——>— = —, a.s. > 1 1.4
t—)oop Vtloglogt 2j—1 7= (1.4)
.. o (logt)yx . 0 ify<1 .
htrgclxr)lf i H;(t) 00 ify>1 a.s. j>2. (1.5)

A natural question is to ask what happens with (M (t), > 0) for j > 2. As a process
indexed by ¢, the j-highest heights M (¢) may share some unusual properties different from
M; (t). For instance, t — M (t) is not continuous for j > 2 in contrast with the continuity
of My (-).



Theorem 1.1 Fiz j > 1. We have

Lo M)
im sup = a.s.

100 Vtloglogt /2

The same result remains true when M (t) is replaced by M;(t).

It is also of interest to find the liminf behavior of A (-):

Theorem 1.2 Fiz j > 2. We have

0 ifx<

log t)X =

lim inf 1089 M;(t) = a.s.
o Vi oo if x >

N[

N[

The same result remains true when we replace M (t) by M;(t).

Comparing (1.2) with Theorem 1.2, we can see that the liminf behaviors of M; and M}
(j > 1) are completely different.

The proof of Theorem 1.1 is based on an estimate on the downcrossings of a Brownian
bridge, this estimate will be given in Section 2. To show Theorem 1.2, a usual way would
be to estimate P(infi<;<o M;(t) < €) as € goes to 0. This problem remains open to our
best knowledge. To overcome this difficulty, we shall adopt the method of Csaki and Shi
[3], which consists of reducing the problem for the Kiefer process to that for an Ornstein-
Uhlenbeck process. Section 2 also contains several preliminary results to complete the proofs
of Theorems 1.1 and 1.2, which will be presented respectively in Sections 3 and 4.

Throughout this paper, (Cx, 1 < k < 6) denote some positive constants whose exact
values are unimportant.

2 Downcrossings

Consider a continuous function f : I = [a,b] — R with a,b € R. For two real numbers
x <y, we define inductively

o =an(y) ¥ inf{o>a: f(v) >y}, (2.1)
Be=B(z) ¥ inf{v>ap:fl)<z}, k>1, (2.2)
ar=0ap(y) ¥ inf{v>Bi:f) >y},  k>2 (2.3)

with the convention inf ) = oc. Define the number of downcrossings of (z,y) by f during
the time interval I as
D¢(x,y; I) = sup{k : s (y) < b}. (2.4)
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We adopt the above definition of downcrossings, which is slightly different from the usual
one, to keep the following equivalence:

sup f(v) >y = Dy(z,y; 1) > 1.
vel

Remark that the condition {D(z,y; ) > 1} does not depend on z. In the following two sub-
sections, we shall discuss respectively the numbers of downcrossings by a standard Brownian
motion, a Brownian bridge and by an Ornstein-Uhlenbeck process.

2.1 Brownian motion and Brownian bridge

Let {B(s), s > 0} be a standard Brownian motion and let {p(s),0 < s < 1} be a standard
Brownian bridge from 0 to 0. First, we present a preliminary result based on the reflection
principle.

Lemma 2.1 Fiz j > 1 and max(z,0) <y. We have

©(2jy —2(j — 1)z — 2)dz if z <y,
P(Ds(z,5;[0,1]) > 4, B(1) € dz) = (2.5)
02—y —2(j — Dz +2)dz if 2>y,

where ¢ is the standard normal density function.

Proof: We use the reflection principle formulated by (cf., e.g. [5])

Fact 2.2 Let {B(s), s > 0} be a standard Brownian motion and let T be a stopping time for
B. Then
B(s) fo<s<r
BM(5) ¥
2B(r) — B(s) ifr<s

18 also a standard Brownian motion.

Let us make use of the stopping times ay = ax(y) and f; = f(x) introduced in (2.1)-
(2.3), corresponding to f(t) = B(t), I =[0,1].

Our Lemma 2.1 is well-known for j = 1.

We illustrate the proof in the simple case 7 = 2, using the reflection principle subsequently
for our stopping times. Let {B(s), 0 < s < 1} be a Brownian motion such that ap < 1 and
B(1) = z < y. Then by Fact 2.2, By(s) o B(@1)(5), 0 < s < 1 is a Brownian motion with

B (1) =2y — z, (3 is its first hitting time of 2y — z and «» is its first hitting time of y after
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B1. In the next step consider By(s) défBg’l)(s), 0 < s <1. Then By(1) = 2y — 2z + 2, and
g is its first hitting time of 3y — 2z. Finally, consider Bs(s) = Bé‘m)(s), 0 < s <1 for which
we have B3(1) = 4y — 2z — z. By reversing this procedure, starting from a Brownian motion
with endpoints 4y — 2x — z at s = 1, we get a Brownian motion with «; < 1 and B(1) = .
This proves the first equality of (2.5) in the case j = 2. The procedure is similar for z > y,
except that we stop with By, so the last reflection (at ) is not performed. Using this idea
in obvious manner for the general case j > 2, yields our lemma. [ |

Since a Brownian bridge {p(s), 0 < s < 1} is a Brownian motion conditioned to B(1) = 0,
we have the following

Corollary 2.3 For j > 1 and max(z,0) < y, we have

P(Dy(w,:0,1)) > §) = exp (= 2y — (G — 1)2)?).

Proof: Putting z = 0 in (2.5) we get

N _ 2y —2(j —1)z) y 2
N > = — — — — )
P(Dy(r,4:(0,1)) > 5) e exp (= 207y - (j — 1)2)°)
|
Taking « = 0, we recover Pitman and Yor [12]’s formula for the distribution of M;(1):
P(M;(1) > y) = P(Dy(0,4:[0,1)) > j) = exp - 27%7). (2.6)

Another corollary can be obtained by taking x = 0 and integrating with respect to z:
Corollary 2.4 For j > 1, y > 0 we have

P(H,(1) > y) =2(1 - (2] - D),

where ® is the standard normal distribution function, and H;(1) denotes the height of the
j-th highest positive Brownian excursion up to time 1.

Now we present an estimate on supy,<7 M (t).

Proposition 2.5 Fiz j > 2. There exists some constant Cy; > 1 such that for all u > 0 and
A > /u, we have

P( sup Mi(t)>A) <C YL Y
(s a0 >0) <ciew (—2( 20 -2 21))




In the proof of Proposition 2.5, we need the following lemma:
Lemma 2.6 For0 <z <y, j>1, we have
P( Dy, :10.1)) > §) < 2P(D,(,:00,1]) > ).

Proof of Lemma 2.6: Again, we present the proof for j = 2. Upcrossings from x to y by
Ip| are either upcrossings by p from z to y or downcrossings by p from —z to —y. Define the
following events:

At © {There are at least two upcrossings by p from z to y}
At “ {There is at least one downcrossing by p from —x to —y
after an upcrossing by p from z to y}
At {There is at least one upcrossing by p from z to y
after a downcrossing by p from —z to —y}
A {There are at least two downcrossings by p from —z to —y}.
Obviously

P(Dy (2, 5[0,1]) > 2) <P(A™) +P(A*7) + P (A7) +P (A7)

and by symmetry, P(A*T) = P(A™7), P(AT7) = P(A~*). Moreover, P(AT7) < P(A*T),
since by Corollary 2.3 we have

P(A™") =exp (—2(2y — 2)?)
and an argument, similar to the proof of Lemma 2.1 shows that
P (A+_) = exp (—8y2) .

Hence,
]P’(D\m(x, y;[0,1]) > 2) <AP(ATH) = 2%exp (—2(2y — 2)?),

proving Lemma 2.6 for j = 2. Extension of the above argument in an obvious manner for
j > 2, proves our Lemma, 2.6. [ |

Now we proceed with the proof of Proposition 2.5.
Proof of Proposition 2.5: For ¢ > 0, we define ¢’ (0) = 0 and for i > 1,

@) ¥ inf{s >0, (0): |K(s,1)| = z},

71—

1
o) ¥ inf{s>7"(2): K(s,t) =0},
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(write Ti(t) (x) = 1 if such s does not exist). Therefore,

]P’( sup M;(t) > /\) :]P’(Elt € [0, u] :T;t)(/\) < 1) = IP’(@ < u),

0<t<u

where we define © % inf{t > 0 : M;(t) > A}. Let ft(iéfa{K(s,u),O <s<1,0<u <t}
the sigma-algebra generated by {K(s,u),0 < s < 1,0 <wu <t}. Then © is a stopping time
with respect to (F;). Notice that the process t — (K (-,© +t) — K(-,0)) is independent
of Fo and has the same law as (K(-,t),t > 0). Using the self similarity: K(-,v + ©) —

K(-,0) aw VUK (-, 1) for any fixed v > 0, we get

1N\ o 2
)dﬁf > 0.

K(&U)—K(s,@)\ < 4‘@90 zP( sup |K(s,1)| < 5)= &

]P’( sup
0<s<1

0<s<1

Denote by

K(s,u)—K(s,@)‘ < ﬂ} N {®<u},

IP’(@ < u) < 2‘jCl]P’(E1).

On FEi, we can decompose K(s u) = K(s,0) + K(s) with SUPg<s<1 1K (s)| < 4 Since
|K (T, -(9)( A),0)| = X and K( ( ) ©) =0 for 1 <4 < j, it follows that for such random
) <

times 0 < 1 = def 1(@)()\) < dﬁf ( <8 = < 9(9)

def
E, = { sup
0<s<1

we have shown that

(A\) < 1, we have respectively,

K(si,u)] > A - %\K(m, W) < L K (sp) 2 A=

Namely, we have

E, C {D|K(-,u)| (4, A— {, [0, 1]) > ]}

It follows from scaling, Corollary 2.3 and Lemma 2.6 that

]P’(E1> < P<D\K(-,u)\ (4, A= 4; [0, 1]) > j)

proving the result. [ |




2.2 Ornstein-Uhlenbeck process

Let us consider a stationary Ornstein-Uhlenbeck process (U(t),t > 0) with parameter 3,
which is a stationary centered Gaussian process with covariance ]E(U U (s)) =e 3", We

mention a paper by Pitman and Yor [10] for the study of distributions of excursion lengths
of U.

Recall some known facts on the hitting times of U. Fix —oco < 27 < 2, < 0o and define
0(z1,22) =inf{s > 0: U(s) & [21, 22|}

to be the first exit time from the interval [21, 25]. Consider the Sturm-Liouville equation:

2@~ 29(@0) =), TE(mmh (=) =0t |a <ooi=1,2.

Fact 2.7 ([14], [6], [9]) Assume that min(|z1],|22]) < oco. There is a sequence of sim-
ple eigenvalues 0 < Ai(z1,22) < ... < Ay(21,22) < ... whose corresponding eigenfunc-
tions (21, 22, %), ooy Un(21, 20, X), ... form a complete orthonormal system with respect to
m(dz) = e~ 2dz. The function (21,22) = Ai(z1,29) is strictly positive and jointly con-
tinuous on E = {(z1,22) € [—00,00]* : 21 < z9,min(|z1], |22|) < o0}, strictly increasing in
21 € (—00, 29] for zo < oo and strictly decreasing in zo € [21,00) for z; > —o0:

1
)\1(—00, 0) = )\1(0, OO) = 5, lim )\1(21, 22) = 0Q, lim )\1(21, ZQ) = 0.

(21,22)—0 (21,22)—(—00,00)

Fact 2.8 ([14], [6], [9], [1], [3]) Assume that min(|z1],|z2]) < oo. There exists some
constant Cy > 0 such that uniformly on x € R,

P(a(zl, z9) > t|U(0) = x) = e’)‘l(“’”)t(e(zl, 29)01 (21, 22; ) + 7 (8, a:)),

where 0(z1,29) = f:f 1 (21, 205 x)m(dzx) and

2t
Ir(t,z)| < Cy exp (5 — 5)
When zy = —2z9 = —z with z > 0, we get
o1
lim —log]P’( sup |U(s)] < z) = —X\i(—2,2). (2.7)
t—oo ¢ 0<s<t

Moreover, lim,_,o A1 (—2,2) = 0.



We shall need the probability that the process U downcrosses a given interval (z1, 2)
only a few times during [—¢,¢]. This is stated in the following lemma:

Lemma 2.9 Fiz —00 < 21 < 20 < 00 and k > 1; We have
1 1
tlim i lOg]P(DU(Zl,ZQ; [—t,1]) < k) = tlim i log]P’(DU(zl,zg; [0,2¢t]) < k) = —2u(z, 22),
— 00 — 00

where (21, 2) o min(A;(—00, 22), A1(21,00)) > 0. Moreover, we have

1

i o) = 5.

Note that the constant &, arbitrary but fixed, does not influence the rate of exponential
decay of the two probability terms in the above lemma.

Proof: The above first equality is due to the stationarity of the Ornstein-Uhlenbeck process.
Using again the stopping times «; and f; defined in (2.1)—(2.3) associated with a = 0, b = 2¢,

T =z, Yy =2, =10,2t] and f(v) = U(v), we have IP(DU(Zl,Z2; [0,2¢t]) < k) = IF’(a,H_l >

2t).

Remark that oy = inf{s > 0 : U(s) > 20} = 0(—00, 22). The strong Markov property
implies that the random variables of the family {1, 3; — o, aj11 — §;,j > 1} are mutually
independent. Furthermore, #; — a; = 0(21,00) 0f,, where 6 is the usual shift operator. And
for j > 2, B; — o (resp: a; — Bj_1) has the same law as T,_,,, (resp: T},_,,,), where T,_,,
denotes the hitting time of y by an Ornstein-Uhlenbeck process starting from z. Based on
Fact 2.8, simple convolution computation yields that

1
lim i logIF’(ak+1 > t) = —u(z1, 22),

t—o0

and the desired conclusion follows. [ ]

2.3 A technical lemma

Recall that {p(s),0 < s < 1} denotes a standard Brownian bridge. Let 0 < y < 2z/4 and
consider the event

Gy, = {Elo<a1<c1<b1<a2<c2<b2<1:
[pla) < 9, p(80)] <y, p(es)] > 2,0 = 1,2} (2.8)
Remark that Gy, D Gy, and that G, is in fact the event that the height of the second

highest excursion of |p(-)| is larger than z. We shall need to bound P(G,,,) in the proof of
the upper bound of Theorem 1.2.
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Lemma 2.10 There erists an absolute constant C3 > 0 such that for all 0 < y < £ and
0<z<3,
P(Gy,z) S 1— 03 22.

We note that this estimate is nearly sharp, since we can also obtain a lower bound from
(2.6) as follows:

P(Gy,z) > P(Go,z) = ]P’(M;(l) > z) > ]P(MQ(l) > z) >1-Cy2% 0< 2 < %

Proof of Lemma 2.10: Fix (y,2) such that 0 <y < Zand 0 < z < % Define two stopping
times for any continuous process X (-):

T;(X) = inf{t>0:|X() >z}
T(X) ¥ inf{t>THX):|X@)| <yl
with inf ) = co. Observe that

. z
Gy D {Tz (p) < 2% 1-222<Y(p) <1—2% sup |pt)] < 5}
T(p)<t<1

Applying the strong Markov property at Y(p), we deduce from the symmetry that

P(Gi,z) > E(l(T; (p) <z 1-222<v(p)<1-22) f (¥, 1 = T(p); Z)),

because p(Y(p)) = £y on the event {Y(p) < 1}, and where the function f is given by

f(y,s;2) déf]P’(The Brownian bridge from y to 0 of length s always lives in [—g, g} )

It follows from the scaling property that for all 22 < s < 222,

1 e
inf f (a,l,—) d:fC'5 > 0,

= f( L 1. A
f(yasaz)_f<\/§ala\/§) EOSGS% \/5

> L Hence we have shown that

and ﬁ .

AN,

— Y
because a = 7 < -

S

P(G§,z> > C5P(T;(p) < 1-22<T(p)<1- z2).

Recall the following absolute continuity between the law of a standard Brownian bridge
and that of a standard Brownian motion: Denote by Py the law of p(-) and by Py that of
B(:), on the canonical space (C([0,1] = R), (X (¢),0 <t <1),(X)o<t<1), we have

1 X2(1)
\/1—teXp(_ 2(1— 1)

11

dPo,0 |Xt =

)dRﬂ%, t<1.



Applying the above formula to the stopping time Y (X), we have

IF’(TZ*(p) <2%1-222<T(p)<1- 22>

1 2
= B (l(Tz*(X)<22;17222<T(X)<17z2) —F————————¢€XD ( — y—))
I 1-7(X) 2(1 -7Y(X))
1/32
> e\/i ;PO(T;(X)<22;1—2Z2§T(X)§1—22)
6_1/321IPTX zz]Pl 02 < T (% ) 2,2
2 ~Po(T7 = — 222 < <1-°%
> () < G)R (12 <70 <1- ),

where P, means that the Brownian motion X (-) starts from z and 7} (X) denotes the first
hitting time at y of X. Thanks to the scaling property, the first probability in the above

inequality Py (Tz* (X) < %) is bounded below by some numerical constant. Using the well-

known distribution of the Brownian hitting time: P,(T,(X) € dt) = %e*(%y)z/ ) dt, we
obtain that

P,(1-22<T,(X <1—§i > Cg 2°
z Z—y( )— 2 - 62 -

Assembling these estimates, we get
P(G5.) > 0y,

for some universal constant C3 > 0, as desired. [ |

3 Proof of Theorem 1.1

We begin with the proof of the upper bound:

M)
im su ,
Hoop Vitloglogt — jv/2

This follows from Proposition 2.5: Fix an arbitrary constant a > ]% Let n > 3 and

t, = e™/1%8" We have from Proposition 2.5 that

IP’( sup  M;(t) > av/t, loglogtn> < Cy exp ( — (25%a* + o(1)) loglogtn),

0<t<tn+1

a.s. (3.1)

whose sum over n converges; this in view of a simple application of Borel-Cantelli lemma
yields (3.1).

Now, fix an arbitrary constant a < g%ﬁ It suffices to prove that

M;(t
lim sup _ M) > a, a.s. (3.2)

t»oo  Vtloglogt —

12



To this end, let ¢, = n™ and \, = a+/t, loglogt,, we consider the event
E, S M;(t0) > M},
which is F;, o o{K(s,u),0 <s<1,0<u < t,}-measurable. If we can show that

Z]P(En\};n_l) — 0,  as. (3.3)

n

then according to Lévy’s version of Borel-Cantelli lemma (cf. [13]), we get IP(En, i.o. ) =1
hence (3.2).

Consider the process K (s, u) dzefK(s,u—i—jn_l) —K(s,tp_1) for 0 < s <1andu > 0. The
independent increment property says that K(-,-) is independent of F; _, and has the same
law as K (-,-). Fix a small € > 0 such that 25%a*(1 + 2¢) < (1 — 2¢).

Recall the notation Dz, _, . yin Section 2 for the downcrossings by the process K(- t,—
tn—1). Observe that

{ Dttt (0 L+ O3 [0,1]) 2 5} 0 { M (tar) < A} € B,

where M} (t,_1) o SUD(<s<1,0<u<tn_ 1 |K (s, u)|. Therefore, we apply Corollary 2.3 and obtain

that for all large n, T
P<En | ]:tn—1> = I(Mf(tn—1)<€)\n) P<Dk(-,tn7tn_1)(_6)\n: (I+€e)A;[0,1]) > j)

An An _
1(Mf(tn—1)<€/\n) P(Dp (‘6\/ﬁ, (1+ e)ﬁ; [0, 1]) > ])

1(Mf(tn_1)<e/\n) exp ( — 2]'2@2(1 + 2¢) loglog tn)
> 1 n~ (79, (3.4)

AV

(M (tn-1)<€An)

where the above equality is due to the self-similarity: K (-, v) aw Vup(-) for any fixed v > 0,
and p(-) is a standard Brownian bridge. Now, applying (1.1), we obtain that almost surely,

M (tn—1) < €\, for all large n. This together with (3.4) implies (3.3), completing the proof
of Theorem 1.1. [ |

4 Proof of Theorem 1.2

4.1 Upper bound

It suffices to show that

VIogt
liminf 28! M) =0, as.
t—o0 \/E

13



According to Lévy’s version of Borel-Cantelli’s lemma (cf. [13]), the above result follows if
we can prove that for any constant € > 0 and for some sequence (¢, T 00),

S B(Mj (1) < ey /lotg”t Fuy) =00, as (4.1)

where F; = 0{K(s,u),0 < s < 1,0 < u < t}. Let us consider ¢, = n*". By means of (1.1),
we have almost surely for all large n,

sup |K(8,tn-1)| < V/tn1 lognd:ef)\n. (4.2)

0<s<1

Consider large n. Observe that )\, < e, [ tn M o By the independent increment

4 logtn,
property, _
K(': tn) = K(a tn—l) + K(a tn - tn—l)v

with K a Kiefer process independent of F; _,. The key observation is that

{M5(t) >} 0 { sup K (5,80 1)] < A}
0<s<L1
C {30 <ar<c<b <ay<cyg<by<l: \f((ai,tn —tnfl)‘ < )\n,
K (biy tn — tne1)| < Ay [ K (it — tnot)| > @n — Anyi = 1, 2} o

which implies that

Fen { sup |K(s,tn_1)| < )\n} - {M;(tn) <z},

0<s<1

It follows from the independence of l?’nC and F;, _, that

]P’(M5 (tn) < Tn |7’tn71) 2 Lsupogcs [K(s,tn-1)|<An) P(Fﬁ)
Hsupocacs [K(s,ta-1)1<An) P(Gi,z)
> O3 supge,cy [K (st 1)|<A) 2
€ 1

> C3 1 Lsupgc <y 1K (5,tn—1)|<An) nlogn’
where the above equality is due to scaling with y = \/tn’li"ﬁ, z = ﬁ:_’%, G¢, is the
complement event of G, , which was defined in (2.8), and the second inequality follows from
Lemma 2.10. The above lower bound together with (4.2) implies (4.1). |
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4.2 Lower bound
Fix j > 2 and x > % We want to show that almost surely for all large ¢:
M;(t) > Vi (logt)™

Consider the two-parameter Ornstein-Uhlenbeck process (U(v,t),v € R/t > 0) defined

by
K
U(log(i>,t)=&, 0<s<1,t>0.
I—s s(1—s)

Namely, {U(v,t),v € Rt > 0} is a centered Gaussian process with covariance

lvi— vzl

]E(U(’Ul,tl)U(’Ug,tQ)) =e t1 N to, V1,V € R, t1,t0 > 0.

Let 0 < § < 1 be small. First,if there exist some (random) times § < u; < v1 < ... <
uj—1 < vj—1 < uj <1—4such that U(log(lfzi),t) >xfori=1,...,75and U(log(lfivi),t) =
0fori=1,...,5—1, then K(u;,t) > z+/6(1 — 0) and K (v;,t) = 0. This implies in particular

that M;(t) > z/0(1 —6).

Recall (2.4). If we denote by Dy(.4(z, y; [— log(152), lo )]) the number of downcross-
ings of (z,y) by U(+,t) during the time interval [— log( g(352)], then

(e (0 o (1)t (S50)]) 2} {30 2 T

(T"
6}

Y

5g
50,1

Fix a small constant ¢ = ¢(x) > 0 whose value will be determined later. Define n; =

exP(jorp gk) and let 0 = (logng)™2X, I, = [~ log(lgfk),log(lg:k)], Ty = cy/Ngyy for k > 3.
Consider the event

def .
= {375 € [, Mt1) : Dy (0,255 1) < j — 1}-

If we can show that

Z]P’(Fk) < 0, (4.3)

then the Borel-Cantelli lemma implies that almost surely for all large k, F} realizes; hence
for all large ¢, we have that n, <t < ng4q, and Dy(.4(0,2x; Ix) > j, which implies that
M;(t) > mp\/0k(1 — 6) > £/t (logt)™X. This yields the convergence part of Theorem 1.2,
since x > % is arbitrary.

To estimate P(Fk), we consider the following stopping time ¢ with respect to F/ =
o{U(z,s),z € R s < t}:

=inf{t > ny : Dy(.p(0, 25 1) < j — 1}
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We want to estimate P(Fk> = IP(Q < nk+1). Define U (v, t) défU(v,t-l— ¢) —U(v,() for

v € R and ¢ > 0. The independent increments property says that U is independent of .’FCU
and has the same law as U. On {¢ < ng41}, we have Dy (0, z; Ix) < j — 1; Fix a small
constant € > 0. Consider the event

ﬁ(log (1;S> s Mkt —CN <exp; (< nk+1} C Fy.

Gy, def { sup

0, <s<1—0p

Using the scaling property: U(-,1) ' VU (-, 1) for any fixed t > 0, we obtain:

ﬁ(log(lgs) ,nk+1—v)‘ <exk>
[7<1°g<1;8>’1)\<¢%)

0 (1og (?) 1)‘ < \/%) (4.4)

Observe that on Gy, the number of downcrossings of (—ex, (1 + €)xx) by U(-, ngs1)
during I, = [— log(lT_:k), log(%f&)] can not be larger or equal to j; otherwise, we would get
Dy.)(0, x5 Iy) > j. In view of this remark, we get

P(Gk) = /[nk,nkH)P(CEdv)P(ékgss?l)—dk

:/ IP’(CEdv)IF’( sup
[nksnE41) 0 <s<1—0p

IP’(C < nk+1) IP( sup

‘Sk SSSl*Jk

Vv

B( Dy (—err, (1 + i 1) < j = 1)

P(sup5k§5§1_5k U(log(%),l) < %)

_ IP(DU(-,1)(—€Ca A +e)ely) <j- 1) (4.5)

P(SUPdkgsgl—ak U(log($)al> < %)

]P’(Fk) <

by using the scaling property. We shall bound below the denominator and bound above the
numerator in (4.5): the denominator equals

€L
]P( sup |U(v,1)| < 7)
—log((1—d)/dx) <v<log((1—dx)/dx) V1 — T
€L
= ]P( sup Uv,1)| < 7)
0<v<2log((1—8%)/d%) U, 1)l V141 — Tk
> ¢ k- oo, (4.6)
where the above equality follows from the stationarity and the above inequality follows from
(2.7) in Fact 2.8 with z = % — 00. On the other hand, we have from Lemma 2.9 that

P(DU(-,I)(_GQ I+ec ) <j-— 1) < 5£2N(*5C:(1+6)c)+o(1))
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( i >—(4xu<—ec,(1+e>c)+o(1))

4.
log k (47)

1

Recall that x > 5. Since p(—ec, (1 +¢€)c) = 5 as ¢ — 0, we can choose a sufficiently

1

5.
small constant ¢ = ¢(x) > 0 such that 4x u(—ec, (14 €)c) > 1. Putting (4.6) and (4.7) into
(4.5), we obtain some constant ¢ > 1 such that for all large &,

]P(Fk> < ke

proving (4.3), as desired. |
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