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1. Introdu
tionLet X0 = 0, X1, X2, . . . be a Markov 
hain with
Ei := P(Xn+1 = i + 1 | Xn = i) = 1 −P(Xn+1 = i − 1 | Xn = i) (1.1)

=

{
1 if i = 0
1/2 + pi if i = 1, 2, . . . ,where 0 ≤ pi < 1/2, i = 1, 2, . . .. This sequen
e {Xi} des
ribes the motion of a parti
lewhi
h starts at zero, moves over the nonnegative integers and going away from 0 with a largerprobability than to the dire
tion of 0. We will be interested in the 
ase when {pi, i = 1, 2...}goes to zero. That is to say 0 has a repelling power whi
h be
omes small if the parti
le isfar away from 0. We intend to 
hara
terize the lo
al time of this motion.A slightly di�erent but symmetri
 variation of the same motion 
an be de�ned as follows.Let X∗

0 = 0, X∗
1 , X

∗
2 , . . . be a Markov 
hain with

E∗
i := P(X∗

n+1 = i + 1 | X∗
n = i) = 1 −P(X∗

n+1 = i − 1 | X∗
n = i) =

=





1/2 if i = 0,
1/2 + pi if i = 1, 2, . . . ,
1/2 − p−i if i = −1,−2, . . .Our results 
an be rephrased with the obvious modi�
ation for this walk as well. Howeverto be in line with the existing literature we will use the de�nition in (1.1).The properties of this model, often 
alled birth and death 
hain, 
onne
tions with or-thogonal polynomials in parti
ular, has been treated extensively in the literature. See e.g.the 
lassi
al paper by Karlin and M
Gregor [11℄, or more re
ent papers by Coolen-S
hrijnerand Van Doorn [3℄ and Dette [5℄.As it will turn out in this paper, the properties of the walk and its lo
al time is verysensitive even for small 
hanges in {pi}-s. There is a well-known result in the literature(
f. e.g. Chung [2℄) 
hara
terizing those sequen
es {pi} for whi
h {Xi} is transient (resp.re
urrent).Theorem A: ([2℄, page 74) Let Xn be a Markov 
hain with transition probabilities given in(1.1). De�ne

Ui :=
1 − Ei

Ei
=

1/2 − pi

1/2 + pi
i = 1, 2... (1.2)Then Xn is transient if and only if

∞∑

k=1

k∏

i=1

Ui < ∞.2



This 
riteria however does not reveal expli
itly what are the transient/re

urent type of
{pi} sequen
es. Lamperti [13℄, [15℄ proved a more general theorem about re
urren
e andtransien
e of real nonnegative pro
esses (not ne
essarily Markov 
hains). Here we spell outhis result in our setup only, whi
h easily follows from Theorem A as well.Corollary: If for all i large enough,

pi ≤
1

4i
+ O

(
1

i1+δ

)
δ > 0, (1.3)then {Xi} is re
urrent. If instead, for some θ > 1

pi ≥
θ

4i
(1.4)for i large enough, then {Xi} is transient.As we pro
eed to �nd the ne
essary tools for getting results about the lo
al time, as abyprodu
t, we will get a mu
h sharper version of this Corollary.In this paper we 
on
entrate only on the transient 
ase.There are many results in the literature about the limiting behavior of {Xn}, dependingon the sequen
e {pi}. Lamperti [14℄ determined the limiting distribution of Xn.Theorem B: ([14℄) If limi→∞ ipi = B/4 > 0, then

lim
n→∞

P

(
Xn√

n
< x

)
=

1

2B/2−1/2Γ(B/2 + 1/2)

∫ x

0
uBe−u2/2 du.In fa
t, Lamperti [14℄ (see also Rosenkrantz [17℄) proved weak 
onvergen
e of Xn/

√
nto a Bessel pro
ess as well. We intend to give further 
onne
tions (strong invarian
e, et
.)between Xn and Bessel pro
ess in a subsequent paper.The law of the iterated logarithm for Xn was given by Brézis et al. [1℄, Székely [19℄,Gallardo [8℄, Voit [20℄. Their somewhat more general results spe
ialized in our setup, readsas follows.Theorem C: ([1℄, [19℄, [8℄, [20℄)If limi→∞ ipi = c > 0, then

lim sup
n→∞

Xn√
2n log log n

= 1 a.s.Voit [21℄ has proved a law of large numbers for 
ertain Markov 
hains, whi
h we quotein our setup only. 3



Theorem D: ([21℄) If limi→∞ iαpi = c > 0 for some 0 < α < 1, then
lim

n→∞

Xn

n1/(1+α)
= 2c(1 + α) a.s.Our main 
on
ern in this paper is to study the lo
al time of {Xn}, de�ned by

ξ(x, n) := #{k : 0 ≤ k ≤ n, Xk = x}, x = 0, 1, 2, . . . , (1.5)and
ξ(x,∞) := lim

n→∞
ξ(x, n). (1.6)2. Lemmas and NotationsFor Ui de�ned in (1.2) we get by elementary 
al
ulation thatFa
t 1.

Ui =
1 − Ei

Ei
=

1/2 − pi

1/2 + pi
= 1 − 4pi + O(p2

i )

= exp(−4pi + O(p2
i )) (i = 0,±1,±2, . . .). (2.1)Introdu
e the notation

D(m, n) :=





0 if n = m,
1 if n = m + 1,

1 +
n−m−1∑

j=1

j∏

i=1

Um+i =

1 +
n−m−1∑

j=1

exp


−(1 + om(1))4

m+j∑

i=m+1

pi


 if n ≥ m + 2.Denote

lim
n→∞

D(m, n) =: D(m,∞).Lemma 2.1. If pi ↓ 0 when i → ∞, then for m large enough
D(m,∞) ≥ C

pm

,where C is an absolute 
onstant. Consequently,
lim

m→∞
D(m,∞) = +∞.4



Proof: Let 1

pm
≤ j ≤ 2

pm
, then from (2.1) for m big enough we have

m+j∑

i=m

(pi + Cp2
i ) ≤

2

pm

(pm + Cp2
m) ≤ 2(1 + Cpm) ≤ 2(1 + C).Consequently

exp



−
m+j∑

i=m

(pi + Cp2
i )



 ≥ exp(−2(1 + C))and
D(m,∞) ≥ 1 +

∞∑

j=0

exp


−

m+j∑

i=m

(pi + Cp2
i )




≥ 1 +

[ 2

pm
]∑

j=[ 1

pm
]

exp(−2(1 + C)) ≥ 1 +
1

pm
exp(−2(1 + C)).

2 For 0 ≤ a ≤ b ≤ c de�ne
p(a, b, c) :=

= P(min{j : j > m, Xj = a} < min{j : j > m, Xj = c} | Xm = b),i.e. p(a, b, c) is the probability that a parti
le starting from b hits a before c.Lemma 2.2. For 0 ≤ a ≤ b ≤ c

p(a, b, c) = 1 − D(a, b)

D(a, c)
.Espe
ially

p(0, 1, n) = 1 − 1

D(0, n)
, p(n, n + 1,∞) = 1 − 1

D(n,∞)
. (2.2)
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Proof: The proof of this lemma is fairly standard, we give it for 
ompleteness. Clearly wehave
p(a, a, c) = 1,

p(a, c, c) = 0,

p(a, b, c) = Ebp(a, b + 1, c) + (1 − Eb)p(a, b − 1, c).Consequently
p(a, b + 1, c) =

1

Eb
p(a, b, c) − 1 − Eb

Eb
p(a, b − 1, c)and

p(a, b + 1, c) − p(a, b, c) =
1 − Eb

Eb
(p(a, b, c) − p(a, b − 1, c)) =

= Ub(p(a, b, c) − p(a, b − 1, c)).By iteration we get
p(a, b + 1, c) − p(a, b, c) = (2.3)
= UbUb−1(p(a, b − 1, c) − p(a, b − 2, c))

= . . . = UbUb−1 · · ·Ua+1(p(a, a + 1, c) − p(a, a, c)) =

= UbUb−1 · · ·Ua+1(p(a, a + 1, c) − 1).Starting with the trivial identity
p(a, a + 1, c) − p(a, a, c) = p(a, a + 1, c) − 1and adding to it the above equations for b = a + 1, . . . , c − 1 we get

−1 = p(a, c, c) − p(a, a, c) = D(a, c)(p(a, a + 1, c) − 1),i.e.
p(a, a + 1, c) = 1 − 1

D(a, c)
. (2.4)Hen
e (2.3) and (2.4) imply 6



p(a, b + 1, c) − p(a, b, c) = − 1

D(a, c)
UbUb−1 · · ·Ua+1.Adding these equations we obtain

p(a, b + 1, c) − 1 = p(a, b + 1, c) − p(a, a, c) =

= − 1

D(a, c)
(1 + Ua+1 + Ua+1Ua+2 + · · · + Ua+1Ua+2 · · ·Ub) =

= −D(a, b + 1)

D(a, c)
.Hen
e we have the lemma. 2Introdu
e the following notations:

λ(0, i) = 1,

λ(1, i) = i,

λ(2, i) = λ(1, i) log i, . . . ,

λ(k, i) = λ(k − 1, i) logk−1 i (k = 3, 4, . . .),where
log0 i = i,

log1 i = log i, . . . ,

logk i = log logk−1 i,and
Λ(0, i) = 0,

Λ(K, i) =
K∑

k=1

1

λ(k, i)
, (K = 1, 2, . . .)

Λ(K, i, B) = Λ(K − 1, i) +
B

λ(K, i)
(B > 0).Note that 7



Λ(1, i, B) =
B

i
,

Λ(2, i, B) =
1

i
+

B

i log i
,

Λ(3, i, B) =
1

i
+

1

i log i
+

B

i log i log log i
.For some K = 1, 2, . . . , B > 0 fixed, de�ne

i0 = min
{
i :

1

4
Λ(K, i, B) <

1

2

}and let
pi =

{
pi0 , if 1 ≤ i ≤ i0
1
4
Λ(K, i, B) if i > i0.

(2.5)Now we are interested in the 
ase {pi} above. In fa
t, in the future for 
onvenien
e, whenwe say that
pi =

1

4
Λ(K, i, B)we a
tually mean that pi is de�ned by (2.5).Lemma 2.3. Let pi =

1

4
Λ(K, i, B). Then

D(0,∞)

{
= ∞ if B ≤ 1,
< ∞ if B > 1,

(2.6)
p(0, 1,∞)

{
= 1 if B ≤ 1,
< 1 if B > 1.

(2.7)For n ≥ m + 2, B 6= 1 and m big enough
D(m, n) = (1 + om(1))λ(K − 1, m)(logK−1 m)B × (2.8)

× 1

B − 1

(
1

(logK−1 m)B−1
− 1

(logK−1 n)B−1

)
.If B > 1,

D(m,∞) = (1 + om(1))
λ(K, m)

B − 1
, (2.9)8



p(m, m + 1,∞) = 1 − (1 + om(1))
(B − 1)

λ(K, m)
. (2.10)Proof: To prove (2.8), observe that from (2.1) we have for n ≥ m + 2

D(m, n) = 1 +
n−m−1∑

j=1

j∏

i=1

Um+i (2.11)
= 1 +

n−m−1∑

j=1

exp


−

m+j∑

i=m+1

(Λ(K, i, B))


 exp


O(1)

m+j∑

i=m+1

Λ2(K, i, B)




= 1 + (1 + om(1))
n−m−1∑

j=1

exp


−

m+j∑

i=m+1

Λ(K, i, B)




=: 1 + (1 + om(1))A(m, n, K).Now we give a lower bound for A(m, n, K).

A(m, n, K) ≥
n−m−1∑

j=1

exp
(
−
∫ m+j

m
Λ(K, x, B) dx

) (2.12)
=

n−m−1∑

j=1

λ(K − 1, m)(logK−1 m)B

λ(K − 1, m + j)(logK−1(m + j))B

= λ(K − 1, m)(logK−1 m)B
n−1∑

ℓ=m+1

1

λ(K − 1, ℓ)(logK−1 ℓ)B

≥ λ(K − 1, m)(logK−1 m)B
∫ n

m+1

1

λ(K − 1, x)(logK−1 x)B
dx

= λ(K − 1, m)(logK−1 m)B

(
(logK−1 m)1−B − (logK−1 n)1−B

B − 1

)
.It is easy to see that the proof of the upper bound goes the same way, resulting the sameexpression as in (2.12) with m repla
ed by m + 1 whi
h 
ombined with (2.11) proves (2.8).The proof of (2.6) is similar, and the rest of the lemma follows from these two. 2
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Consequen
e: If for any K = 1, 2...

pi =
Λ(K, i, B)

4
,then the Markov 
hain is re
urrent if B ≤ 1 and transient if B > 1.Now we would like to 
onsider the 
ase when pi is essentially B

4iα
, whi
h should beunderstood in the same way as it was de�ned in (2.5). Namely, let

i0 = min
{
i :

B

4iα
<

1

2

}and let
pi =





pi0 , if 1 ≤ i ≤ i0
B

4iα
if i > i0.

(2.13)Lemma 2.4. In 
ase pi =
B

4iα
(0 < α < 1) we have
D(m,∞) = (1 + om(1))

mα

B
, (2.14)

1 − p(m, m + 1,∞) = (1 + om(1))
B

mα
. (2.15)Proof: Consider the 
ase 0 < α < 1/2 �rst. By (2.1)

j∏

i=1

Um+i ≤ exp


−B

m+j∑

ν=m+1

ν−α +
m+j∑

ν=m+1

Cν−2α


 =

≤ (1 + om(1)) exp
( −B

1 − α

[
(m + j)1−α − (m)1−α

]
+

C

1 − 2α

[
(m + j)1−2α − (m)1−2α

])
.Consequently,

D(m, n)

≤ (1 + om(1)) exp

(
Bm1−α

1 − α
− Cm1−2α

1 − 2α

)
n∑

k=m+1

exp(

(
−Bk1−α

1 − α
+

Ck1−2α

1 − 2α

)

≤ (1 + om(1)) exp

(
Bm1−α

1 − α
− Cm1−2α

1 − 2α

)∫ n

m+1
exp

(
−Bx1−α

1 − α
(1 − C

1 − α

1 − 2α
x−α)

)
dx

≤ (1 + om(1)) exp

(
Bm1−α

1 − α
− Cm1−2α

1 − 2α

)∫ n

m+1
exp

(
−Bx1−α

1 − α
hm

)
dx,10



where
hm = 1 − C

1 − α

1 − 2α
(m + 1)−α.In the 
al
ulation above C is a positive 
onstant the value of whi
h is not important. Inthe future we will use C, C∗ or C1, C2 . . . for whi
h this remark applies, and their valuesmight 
hange from line to line. Using substitution and the asymptoti
 representation of thein
omplete Gamma fun
tion (see e.g. Gradsteyn and Ryzhik [9℄ page 942, formula (8.357))

Γ(β, x) =
∫ ∞

x
tβ−1e−t dt = xβ−1e−x

(
1 +

O(1)

x

)
as x → ∞,we 
on
lude that as m → ∞

D(m,∞) ≤
(
1 + O(

1

m1−α
)
)

mα

Bhm
exp

(
Bm1−α

1 − α
− Cm1−2α

1 − 2α

)
exp

(
−hmBm1−α

1 − α

)

=
(
1 + O(

1

m1−α
)
)

mα

B
.A similar 
al
ulation (whi
h we omit) gives the same lower bound. The 
ase of α = 1/2 goesalong the same lines with obvious modi�
ations. On the other hand, the 
ase 1/2 < α < 1
an be worked out similarly, but it is obvious with less pre
ise 
al
ulations as well. 2Lemma 2.5. In 
ase pi =

B

4(log i)α
with α > 0, there exist 0 < K1 < K2 su
h that

K1(log m)α ≤ D(m,∞) ≤ K2(log m)α, (2.16)
1 − p(m, m + 1,∞) =

O(1)

(log m)α
. (2.17)Proof: First we give the upper bound. For m ≥ m0

m+j∑

i=m

(
B

(log i)α
− C

(log i)2α

)
=

m+j∑

i=m

B

(log i)α

(
1 − C∗

(log i)α

)

≥
m+j∑

i=m

B(1 − ε)

(log i)α
=: A(m, j, ε).Then for

ℓ(log m)α ≤ j < (ℓ + 1)(log m)α (ℓ = 0, 1, 2, . . .)11



we have
A(m, j, ε) ≥ B(1 − ε)ℓ(log m)α

(log[m + (ℓ + 1)(log m)α])α
=: H(m, ℓ, α).It is easy to see now, that if (ℓ + 1)(log m)α ≤ m then for an appropriate C1

H(m, ℓ, α) ≥ B(1 − ε)ℓ(log m)α

(log(2m))α
≥ C1ℓ.On the other hand, if (ℓ + 1)(log m)α ≥ m, then for an appropriate C2

H(m, ℓ, α) ≥ B(1 − ε)ℓ(log m)α

(log(2(ℓ + 1)(log m)α)α
≥ C2ℓ

1/(2α).Then with N = N(α) := [ m
(log m)α ] − 1.

D(m,∞) ≤
N∑

ℓ=0

e−C1ℓ (log m)α +
∞∑

ℓ=N

e−C2ℓ
1

2α

(log m)α = O(1)(logm)α.The lower bound follows from Lemma 2.1. 23 Lo
al timeWe intend to study the limit properties of the lo
al time ξ(R,∞) in 
ase of transient randomwalks. To this end we also de�ne the number of up
rossings by
ξ(R, n, ↑) := #{k : 0 ≤ k ≤ n, Xk = R, Xk+1 = R + 1}. (3.1)

ξ(R,∞, ↑) := lim
n→∞

ξ(R, n, ↑). (3.2)It is a well known fa
t that the lo
al time of a transient Markov 
hain follows geometri
distribution. It was �rst formulated in the seminal paper of Erd®s and Taylor ([7℄) thoughthey just stated it for random walk in dimension d ≥ 3. So we 
ould only 
al
ulate theparameter of this geometri
 distribution. However we still provide a proof for 
ompleteness.Lemma 3.1. For R = 0, 1, 2, . . .

P(ξ(R,∞) = L) =
1 + 2pR

2D(R,∞)

(
1 − 1 + 2pR

2D(R,∞)

)L−1

, L = 1, 2, . . . (3.3)12



Moreover, the sequen
e
ξ(R,∞, ↑), R = 0, 1, 2, . . .is a Markov 
hain and

P(ξ(R,∞, ↑) = L) =
1

D(R,∞)

(
1 − 1

D(R,∞)

)L−1

, L = 1, 2, . . . (3.4)Remark: De�ning p0 = 1/2 whi
h is in agreement with our de�nition E0 = 1 we see thatthe lo
al time and the up
rossing of the site 0 have the same distribution.Proof: Clearly we have for L = 1, 2, . . .

P(ξ(R,∞) = L) =
(

1

2
+ pR

)
(1 − p(R, R + 1,∞))×

×
L−1∑

j=0

(
L − 1

j

)(
1

2
− pR

)j ((1

2
+ pR

)
p(R, R + 1,∞)

)L−j−1

=

=
(

1

2
+ pR

)
(1 − p(R, R + 1,∞)) ×

×
(
1 −

(
1

2
+ pR

)
(1 − p(R, R + 1,∞))

)L−1

,implying (3.3) by (2.2).The other statements of the Lemma are obvious. 2Theorem 3.1. If pR → 0, as R → ∞, then
lim

R→∞
P

(
ξ(R,∞)

2D(R,∞)
> x

)
= lim

R→∞
P

(
ξ(R,∞, ↑)
D(R,∞)

> x

)
= e−x,that is to say, ξ(R,∞)

2D(R,∞)
and ξ(R,∞, ↑)

D(R,∞)
have exponential limiting distributions.The proof is a trivial 
onsequen
e of Lemma 3.1.Theorem 3.2. Assume that pR → 0 as R → ∞. Then with probability 1 we have

ξ(R,∞) ≤ 2(1 + ε)D(R,∞) logR (3.5)for any ε > 0 if R is large enough.Moreover,
ξ(R,∞) ≥ MD(R,∞) i.o. a.s. (3.6)for any M > 0. 13



In 
ase pR =
Λ(K, R, B)

4
with B > 1, instead of (3.5) and (3.6) we have the mu
h sharperTheorem 3.3. For pR =
Λ(K, R, B)

4
, B > 1, we have

lim sup
R→∞

ξ(R,∞)

2D(R,∞) log log R
≤ 1. (3.7)and

lim sup
R→∞

ξ(R,∞)

2D(R,∞) logK+1 R
≥ 1. (3.8)Espe
ially in 
ase pR =

Λ(1, R, B)

4
=

B

4R
, B > 1, being D(R,∞) =

R

B − 1
, we have

lim sup
R→∞

(B − 1)ξ(R,∞)

2R log log R
= lim sup

R→∞

(B − 1)ξ(R,∞, ↑)
R log log R

= 1. (3.9)Consequen
es:
• If pR =

1

4
Λ(K, R, B), (B > 1) then for any ε > 0

ξ(R,∞) ≤ 2(1 + ε)

B − 1
λ(K, R) log log R a.s. (3.10)if R is large enough,

ξ(R,∞) ≥ 2(1 − ε)

B − 1
λ(K, R) logK+1 R i.o. a.s. (3.11)and

lim
R→∞

P

(
B − 1

2λ(K, R)
ξ(R,∞) > x

)
= e−x. (3.12)

• If pR =
B

4Rα
(0 < α < 1), then

ξ(R,∞) ≤ 2

B
(1 + ε)Rα log R a.s. (3.13)if R is large enough, 14



ξ(R,∞) ≥ MRα i.o. a.s. (3.14)for any M > 0 and
lim

R→∞
P

(
B ξ(R,∞)

2Rα
> x

)
= e−x. (3.15)

• If pR =
B

4(log R)α
(α > 0), then

ξ(R,∞) ≤ O(1)(logR)1+α a.s. (3.16)if R is large enough and
ξ(R,∞) ≥ M(log R)α i.o. a.s. (3.17)for any M > 0.Proof of Theorem 3.2: (3.5) follows from Lemma 3.1. On the other hand, (3.3) alsoimplies that for any M > 0

lim inf
R→∞

P (ξ(R,∞) ≥ MD(R,∞)) > 0from whi
h it follows that
P (ξ(R,∞) ≥ MD(R,∞) i.o.) > 0.Now to �nish our proof we need to apply the zero-one law (in a non-independent setup)exa
tly in the same way as in Doob [6℄ page 103, observing that the 
onditional probabilityof our tail event given the �rst n steps of our walk is the same as its un
onditional probability,that is for any n = 1, 2, . . .

P (ξ(R,∞) ≥ MD(R,∞) i.o. | X1, X2, ...Xn) = P (ξ(R,∞) ≥ MD(R,∞) i.o.) .A

ording to the zero-one law mentioned above, the 
onditional probability on the left-handside is either zero or one, and sin
e the un
onditional probability on the right-hand side isstri
tly positive, it should be equal to one, whi
h, in turn, implies (3.6).Proof of Theorem 3.3: To prove (3.7), we need a few lemmas. Re
all the de�nition of theup
rossing in (3.1) and (3.2). For large values of the lo
al time and up
rossing we have thefollowing invarian
e prin
iple. 15



Lemma 3.2. As R → ∞

ξ(R,∞) − 2ξ(R,∞, ↑) = O((D(R,∞) logR)1/2+ε + pRD(R,∞) logR) a.s. (3.18)Proof: Under the 
ondition ξ(R,∞) = L, ξ(R,∞, ↑) − 1 has binomial distribution withparameters (L − 1, 1/2 + pR). A

ording to Hoe�ding inequality,
P

(∣∣∣∣ξ(R,∞, ↑)− 1 −
(

1

2
+ pR

)
(L − 1)

∣∣∣∣ ≥ u(L − 1)1/2
)
≤ e−Cu2with some C > 0, from whi
h as L → ∞,

ξ(R,∞, ↑)− L

2
= O(L1/2+ε + LpR) a.s.Putting L = ξ(R,∞), we get (3.18) from (3.5).Lemma 3.3. Let

γR =
(

1

2
+ pR

)
p(R, R + 1,∞),and

cR =
γR

1 − γR

.Then
ζ(R) :=

ξ(R,∞, ↑)
c1 · · · cR

, R = 1, 2, . . .is a submartingale.Proof: Let TR be the �rst hitting time of R by {Xn}, e.g. TR = min{n : Xn = R}. Thenwe have
PR(ξ(R, TR−1, ↑) = j, TR−1 < ∞) =

(
1

2
− pR

)
γj

R, j = 0, 1, . . . , (3.19)
PR(ξ(R,∞, ↑) = j, TR−1 = ∞) =

(
1

2
+ pR − γR

)
γj−1

R , j = 1, 2, . . . (3.20)Observe that
ξ(R,∞, ↑) =

ξ(R−1,∞,↑)−1∑

m=1

ξm + ξ̃,16



where ξm, m = 1, 2... has distribution (3.19) and ξ̃ has distribution (3.20). Then
E(eλξ(R,∞,↑), ξ(R − 1,∞, ↑) = i) = (E(eλξ1))i−1

E(eλξ̃) (3.21)
=

(
1
2

+ pR − γR

)
eλ
(

1
2
− pR

)i−1

(1 − γReλ)i
,hen
e

E(eλξ(R,∞,↑) | ξ(R − 1,∞, ↑) = i) = eλ

(
1 − γR

1 − γReλ

)i

,from whi
h
E(ξ(R,∞, ↑) | ξ(R − 1,∞, ↑)) = cRξ(R − 1,∞, ↑) + 1, (3.22)whi
h easily implies the lemma. 2Now we prove the upper bound, i.e.

lim sup
R→∞

ξ(R,∞, ↑)
D(R,∞) log log R

≤ 1 a.s., (3.23)whi
h also implies (3.7) by Lemma 3.2.With an easy 
al
ulation we get from (3.21) that
E(eλξ(R,∞,↑)) =

eλ

D(R,∞) − eλ(D(R,∞) − 1)
. (3.24)Using that ζ(R) is submartingale, from (3.24) we have with Rk = [exp(k/ log k)], Ck =

c1c2 . . . cRk
,

uk = (1 + ε)D(Rk,∞) log log Rk,

P

(
max

Rk≤R<Rk+1

ζ(R) ≥ uk+1

Ck+1

)

≤ exp(−λuk+1/Ck+1)E(exp(λζ(Rk+1)))

=
exp(λ/Ck+1)(1 − uk+1)

D(Rk+1,∞) − exp(λ/Ck+1)(D(Rk+1,∞) − 1)
.It 
an be seen that the optimal 
hoi
e for λ is given by

exp(λ/Ck+1) =
(uk+1 − 1)D(Rk+1,∞)

uk+1(D(Rk+1,∞) − 1)
,17



and we get �nally
P

(
max

Rk≤R<Rk+1

ζ(R) ≥ uk+1

Ck+1

)
=

O(1) log log Rk+1

(log Rk+1)1+ε
.Hen
e by Borel-Cantelli lemma for large k and Rk ≤ R < Rk+1 we have

ζ(R) ≤ (1 + ε)D(R,∞) log log R

c1 · · · cRcR+1 · · · cRk+1

,i.e.
ξ(R,∞, ↑) ≤ (1 + ε)D(R,∞) log log R

cR+1 · · · cRk+1

.If pR = Λ(K, R, B)/4, then as R → ∞ (
f. (2.9))
D(R,∞) ∼ λ(K, R)

B − 1and
cR ∼ 1 + 2pR − 1/D(R,∞)

1 − 2pR + 1/D(R,∞)
∼ exp(4pR − 2/D(R,∞)) ∼ exp

(
Λ(K, R, B) − 2(B − 1)

λ(K, R)

)
.If K = 1, then

Λ(1, R, B) − 2(B − 1)

λ(1, R)
∼ 2 − B

R
, B 6= 2and

Λ(1, R, 2) − 2

λ(1, R)
=

o(1)

R
,and if K > 1, then

Λ(K, R, B) − 2(B − 1)

λ(K, R)
∼ 1

R
.Hen
e for large k and Rk ≤ R ≤ Rk+1 we have

cR+1 · · · cRk+1
∼ exp

(
C log

Rk+1

R

)with some 
onstant C if K = 1, B 6= 2 or K > 1 and C = o(1) if K = 1, B = 2. In view of
limk→∞ Rk+1/Rk = 1, for any ε > 0, one 
an 
hoose k large enough su
h that

cR+1 · · · cRk+1
≥ 1 − ε,18



i.e.
ξ(R,∞, ↑) ≤ (1 + ε)D(R,∞) log log R

1 − ε
.Sin
e ε > 0 is arbitrary, (3.23) follows.To prove the lower bound (3.8), 
onsider an in
reasing sequen
e of sites Rk to be deter-mined later. Let

τk = min{n : Xn = Rk},the time of the �rst visit at the site Rk, and de�ne
Z(k) := ξ(Rk, τk+1).Observe that {Z(k), k = 1, 2...} are independent. Following the proof of Lemma 3.1 we 
an
on
lude that

P(Z(k) ≥ L) = (1 + oRk
(1))×

×
[(

1 − 1

2
(1 − p(Rk, Rk + 1, Rk+1))

)
(1 + O((1 − p(Rk, Rk + 1, Rk+1))pRk

))
]L−1

.(3.25)Based on (2.8) it is easy to 
al
ulate that
D(Rk, Rk+1) = (1 + oRk

(1))
λ(K − 1, Rk)

B − 1
logK−1 Rk

(
1 −

(
logK−1 Rk

logK−1 Rk+1

))
=

= (1 + oRk
(1))

λ(K, Rk)

B − 1

(
1 −

(
logK−1 Rk

logK−1 Rk+1

))
. (3.26)De�ne the sequen
e Rk by

logK Rk := k log Qwith some Q > 1 (we intentionally forget about the te
hni
alities arising from the fa
t thatthe sites should be integers). It is easy to see that with this 
hoi
e of Rk

logK−1 Rk

logK−1 Rk+1

=
1

Q
.Let

L(k) = 2
λ(K, Rk)

B − 1

Q − 1

Q
logK+1 Rk.From (2.4) we get that

P(Z(k) ≥ L(k)) ∼ exp(− logK+1 Rk) =
1

logK Rk

=
1

k log Q
.19



Applying Borel-Cantelli lemma and then letting Q → ∞, we get (3.8). 2Our next issue was to investigate how small 
ould be the lo
al time of our pro
ess. Morepre
isely we wanted to know whether it is true that in the transient 
ase there are alwaysin�nitely many sites with lo
al time equal to 1. In fa
t we managed to prove in some sensemu
h more, and in some sense mu
h less. Namely, we prove the following two theorems.De�ne for N ≥ 2

f(N, R) = f(N, R, ε) =
1

log 2




N∑

j=2

logj R + ε logN R


and

g(N, R) = f(N, R, 0).Theorem 3.4. Let pR =
Λ(1, R, B)

4
with B > 1 and let N ≥ 2. Then

• with probability 1 there exist in�nitely many R for whi
h
ξ(R + j,∞) = 1for ea
h j = 0, 1, 2, . . . , [g(N, R)].

• with probability 1 for any ε > 0 and R large enough there exists an S

R ≤ S ≤ f(N, R, ε)su
h that
ξ(S,∞) > 1.Let

f ∗(R, ǫ) =
(1 + ε)(1 − α) logR

log 2
and g∗(R) = f ∗(R, 0).Theorem 3.5. Let pR =

B

4Rα
(0 < α < 1). Then

20



• with probability 1 there exists in�nitely many R for whi
h
ξ(R + j,∞) = 1for ea
h j = 0, 1, 2, . . . , g∗(R).

• with probability 1 for ea
h R large enough and ε > 0 there exists an S,
R ≤ S ≤ f ∗(R, ε)su
h that

ξ(S,∞) > 1.Furthermore, we 
onje
ture that for pi ≥ B/(4i), where B > 1, with probability 1 thereare always in�nitely many sites with lo
al time 1. On the other hand, re
ently James et al.[10℄ proved that for pi ∼ Λ(2, i, B) with B > 1 with probability 1 there are only �nitelymany 
utpoints, hen
e �nitely many points with lo
al time 1. We note that it 
an be seenwith a similar argument that this is the 
ase for pi ∼ Λ(K, i, B) for all K ≥ 2 as well.Proof of Theorem 3.4: At first we prove the se
ond statement. Re
all the notation of
λ(N, R) and observe that

R2g(N,R) = λ(N, R) and R2f(N,R) = λ(N − 1, R)(logN−1 R)1+ǫ. (3.27)Now the proof of the se
ond statement is a trivial 
onsequen
e ofLemma 3.4. For every N ≥ 2 integer as R → ∞

P






f(N,R)⋂

j=1

{ξ(R + j,∞) = 1}



 =

=
f(N,R)∏

j=1

(
1

2
+

B

4(R + j)

)
(1 − p(R + f(N, R), R + f(N, R) + 1,∞)) =

= (1 + oR(1))
1

2f(N,R)

B − 1

R
= (1 + oR(1))

B − 1

λ(N − 1, R)(logN−1 R)1+ε
.21



Proof: Obvious by (2.10). 2The proof of the �rst statement of the theorem is based on the followingLemma 3.5. For every N ≥ 2 integer as R → ∞

P






g(N,R)⋂

j=1

{ξ(R + j,∞) = 1}



 =
O(1)

λ(N, R)
, (3.28)

P := P(N, R, S) := (3.29)
= P





g(N,R)⋂

j=1

{ξ(R + j,∞) = 1} ∩
g(N,S)⋂

j=1

{ξ(S + j,∞) = 1}


 ≤

≤






(1 + oR(1))(B − 1)2

λ(N, R)λ(N, S − R)
if S ≥ R + g(N, R),

O(1)2R

2S+g(S,N)

B − 1

S + g(N, S)
if R < S < R + g(N, R).Proof: (3.28) follows from Lemma 3.1 and (3.27). In 
ase R < S < R + g(N, R) we have

P =
S+g(N,S)∏

i=R

(
1

2
+

B

4i

)
(1 − p(S + g(N, S), S + g(N, S) + 1,∞)) ≤

≤ O(1)
1

2S+g(N,S)−R

B − 1

S + g(N, S)
.In 
ase S > R + g(N, R) we have

P = (1 + oR(1))
1

2g(N,R)
(1 − p(R, R + 1, S))

1

2g(N,S)
(1 − p(S, S + 1,∞)) =

= (1 + oR(1))
1

2g(N,R) 2g(N,S)

B − 1

RB

1

R1−B − S1−B

B − 1

S
=

= (1 + oR(1))
1

2g(N,R) 2g(N,S)

(B − 1)2

R

SB−2

SB−1 − RB−1
≤

≤ (1 + oR(1))
1

2g(N,R) 2g(N,S−R)

(B − 1)2

R

1

(S − R)
≤

≤ (1 + oR(1))
(B − 1)2

λ(N, R)λ(N, S − R)
.22



Hen
e we have the se
ond statement of the lemma. 2Now we turn to the proof of the �rst statement of the theorem. Let
A(R) =

g(N,R)⋂

j=1

{ξ(R + j,∞) = 1}.Then by (3.28)
T∑

R=1

P(A(R)) = O(1) logN T (3.30)and
T∑

R=1

T∑

S=R+1

P(A(R)A(S)) =

=
T∑

R=1

R+g(N,R)∑

S=R+1

P(A(R)A(S)) +
T∑

R=1

T∑

S=R+g(N,R)+1

P(A(R)A(S)) =: I + II.By (3.29) we have
I ≤ O(1)

T∑

R=1

R+g(N,R)∑

S=R+1

2R

2S+g(N,S)

1

S + g(N, S)
≤ (3.31)

≤ O(1)
T∑

R=1

1

(R + g(N, R))2g(N,R)

g(N,R)∑

j=1

1

2j
≤

≤ O(1)
T∑

R=1

1

R2g(N,R)
= O(1)

T∑

R=1

1

λ(N, R)
≤ O(1)(logN T )and

II ≤ O(1)
T∑

R=1

T∑

S=R+g(N,R)+1

1

λ(N, R)

1

λ(N, S − R)
≤ (3.32)

≤ O(1)(logN T )2.By (3.28) and (3.29) 23



T∑

R=1

T∑

S=R+1

P(A(R)A(S)) ≤ O(1)(logN T )2. (3.33)(3.30), (3.33) and the Ko
hen-Stone Borel�Cantelli lemma (see e.g. Spitzer [18℄, page317) imply the �rst statement with positive probability. Now to �nish our proof we need toapply the zero-one law (again in a non-independent set up) as in the proof of Theorem 3.2,observing that for any n = 1, 2, . . .

P(A(R) i.o. | X1, X2, ...Xn) = P(A(R) i.o.).

2Proof of Theorem 3.5: The proof goes along the same line as the proof of Theorem3.4. The only point whi
h needs a little di�erent approa
h is the proof of the 
ounterpart ofLemma 3.5. Namely, in the proof of this lemma we need an upper bound for 1−p(R, R+1, S),whi
h is equivalent of getting a lower bound for D(R, S). Observe that in Lemma 2.4 wehave an asymptoti
 formula for D(R,∞). Now to get a lower bound for D(R, S) we needa less pre
ise 
al
ulation (the statement of Theorem 3.5 does not depend on B, whi
h wasimportant in Lemma 2.4). It is enough to observe that
Ui ≥ C exp

(
−B∗

iα

)with an appropriate 
hoi
e of C and B∗ > B. After this observation, with some tedious
al
ulation, somewhat similar to Lemma 2.4, we get that
D(R, S) ≥ CRα

(
1 −

(
S

R

)α

exp
(
C1(R

1−α − S1−α)
))

. (3.34)It is easy to see
D(R, S) ≥ C2R

αif S ≥ R +Rα/ log R. On the other hand, if R < S < R + Rα/ log R then it 
an be seen that
D(R, S) > C3(S − R)and this is enough to 
arry through the argument in Lemma 3.5. We omit the details. 2
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