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1. Introduction and results: natural norming sequences

Let X1, Xo,... be independent random variables with partial sums S,, = X7 +---+
Xn,neN={1,2,...}. Introduce the symbol Cg for the continuity points of a function
G. In the last decade, many authors investigated the connection between the weak limit

theorem
S, —0b
P{u < a:} — G(x), for any x € Cg, (A)
an
and, abbreviating ‘almost surely’ or ‘almost sure’ to ‘a.s.”, the corresponding pointwise
result
1 1 (S —b
E — I{ L a:} — G(x), a.s. for any = € Cg, (B)
logn —r ar

where a,, > 0 and b,, are some numerical sequences and I denotes the indicator function;
throughout, we use the convention that every asymptotic relation is meant as n — oo
unless otherwise specified.

Berkes and Dehling [6] proved the surprising result that under mild moment condi-
tions on the X, , relation (A) implies relation (B), despite the almost sure nature of the
latter. If the random variables X7, Xo,... are identically distributed, then the limiting
distribution in (A) is necessarily stable with some exponent « € (0,2], and the theorem
of Berkes and Dehling yields the well-known results of Brosamler [8], Schatte [19], Lacey
and Philipp [14] and Fisher [12] for (B) when E(X?) < co, and even the rest of the case
a = 2, and that of Peligrad and Révész [18] in the case 0 < a < 2. For a recent survey
of results in the area of “logarithmic” limit theorems of type (B), see Berkes [2].

In the converse direction, Berkes, Dehling and Méri [7] constructed examples for
which (B) holds while (A) does not (and Moéri [17] discovered interesting natural examples,
different from sums, with the same feature). Berkes, Csdki and Csorgé [5] recently
showed that this amusing phenomenon for sums of independent and identically distributed
random variables obtains not just for esoteric examples, but also in a well-known classical
situation: for the underlying distribution of the St. Petersburg game the almost sure
statement in (B) holds with a suitable G, despite the fact that convergence in (A) does
not take place along the whole {n} = N, and the same is true for the maximal gains in
a sequence of games. Our aim here is to extend these results and thus to show that the
phenomenon holds not just for isolated examples, but in fact remains true for a whole
class of distributions, namely, for those in the domain of geometric partial attraction of
semistable laws. To state the results we need some notation and preliminary facts.

The concept of a ‘semistable’ distribution first appeared in 1937 in Paul Lévy’s
fundamental work [15]. We shall use recent results of Megyesi [16], where the existing
theory of semistable laws is inserted into the framework of the ‘probabilistic’ approach of
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Csorgd, Haeusler and Mason [10] and Csorgd [9]. For more results and further references
see [16]. To start with standard notions and notation used in this approach, let ¥ be
the class of all non-positive, non-decreasing, right-continuous functions v(-) defined on
the positive half-line (0,00) such that the integrals feoo P?(s)ds < oo for all € > 0.
Let Efj ), Eéj ), ..., j=1,2, be two independent sequences of independent exponentially
distributed random variables with mean 1, and with respective partial sums Yn(j ) =
E%j I Eéj ) as jump points, and consider the standard left-continuous independent
Poisson processes N;(u) = > oo, I{YTEj) <u}, 0 <u<oo,j=12. Fora function
1 € U, define the random variables

W) = [ TING(s) — s]du(s) + | N duts) - v, =12,

where the first integral is almost surely well-defined, by the condition that ¢ € ¥, as
an improper Riemann integral. Let Z be a standard normal random variable such that
Ni(-), Z, and Ny(-) are independent, and for 9; € ¥ and 1, € ¥ and a finite constant
o > 0 finally introduce the random variables

V(41,%2,0) = W1 (1) + 0Z + Wa (). (1.1)

Considering then the constant, also for ¢ € U,

_ [T [T )
oW = [ Hoame ) e

and letting W (1, 92,0) = V(¥1,%2,0) + O(1h2) — ©(9)1), by Theorem 3 in [10] this
random variable has characteristic function given for all £ € R as

2 0 ;
| . t
E(eth('¢1,1!)2,0)> — exp{—o.?t2 +/; <elt$ —-1- 1 f}-xe)dL(x)

o0

it 1— 27
+/O <e 1+I2)dR(m)},

where L(z) = inf{s > 0: 91(s) > z}, z < 0, and R(z) = —inf{s > 0: ¢s(s) > -z},
x > 0. Here L(-) is left-continuous and non-decreasing on (—o00,0) with L(—o0) = 0

(1.2)

and R(-) is right-continuous and non-decreasing on (0,00) with R(co) = 0, and we have
ffe #*dL(z) + [; #?dR(z) < oo for every € > 0 since 91,2 € U. Thus V (1, 12,0) is
infinitely divisible by Lévy’s formula; see [13] for example. Conversely, given the right side
of (1.2) with L(-) and R(-) having the properties just listed, the variable W (11,9, 0)
has this characteristic function again if we choose 11(s) = inf{z < 0: L(z) > s} and
a(s) = inf{z<0: —R(—z)>s}, s > 0, for then 91,9 € V.
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Thus, modulo a location constant, the class Z of all non-degenerate infinitely divisible
distributions can be identified with the class {(¢1,%2,0) # (0,0,0): ¥1,92 € ¥,0 > 0}
of triplets. We say that F' is in the domain of partial attraction of a G = Gy, 4,0 € L if
there exists a subsequence {k,}5, C N and centering and norming constants By € R
and Ag, > 0 such that

k
1 u D
Ak ZXJ - Bkn V(fﬁlame), (13)
where X7, X5, ... are independent identically distributed random variables with common

distribution function F'(z) = P(X; < z), = € R, the symbol 2, denotes convergence in
distribution and Gy, 4, - is the distribution function of the random variable V (11, 42, o).
All subsequences of N appearing in this paper are assumed to be unbounded. If we
demand {k,} = {n} = N in (1.3) then the possible limiting distributions are the stable
laws and F' is said to be in the domain of attraction of the stable law in question, in which
case either (v1,19,0) = (0,0,0) for some o > 0, and F' is in the domain of attraction
of the normal distribution, written F' € D(2), or (¢1,%2,0) = (m19®, math®,0) for some
constants « € (0,2), my,my > 0, my +mg > 0, where *(s) = —s~/* s > 0,
in which case F' is in the domain of attraction of a stable distribution of exponent «,
written F' € D(a). (The superscript « in ¢ here, and in ¢ and ¥§ beginning with
(1.5) below, is meant as a label, not as a power exponent.) The normal being the stable
law of exponent 2, let S denote the class of all stable laws.

The class S, C T of semistable laws arises as the class of limiting distributions in
(1.3) if we place a geometric growth condition on the subsequence {k,}, i.e., that

kni1/kn — ¢ for some ¢ € [1,00). (1.4)

By Theorem 1 of [16], Gy, 4,,0 € S« if and only if either (¢1,2,0) = (0,0,0) for some
o > 0, giving the normal distribution as a semistable distribution of exponent 2, or

(1, %2,0) = (Y§,95,0), where
P (s) = Mj(s)yp*(s) = —M;(s)s™ %, s>0, j=1,2, (1.5)

for some « € (0,2), defining a semistable law of exponent « € (0,2), where M; and M;
are non-negative, right-continuous functions on (0, 00), either identically zero or bounded
away from both zero and infinity, such that M+ Ms is not identically zero, the functions
M;(-)*(-) are non-decreasing and, if ¢ > 1 in (1.4), then M;(cs) = M,(s) for all s > 0,
j = 1,2. This property will be referred to as multiplicative periodicity with period c.
If ¢ =1 in (1.4), then the functions M; and Mj are necessarily constant, giving the
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stable special case of semistable laws, therefore S C S,. For a € (0,2), Lévy’s original
description of property (1.5) in terms of L and R in (1.2) is that there exist non-negative
bounded functions My, (-) on (—o0,0) and Mg(-) on (0,00), one of which has a strictly
positive infimum and the other one either has a strictly positive infimum or is identically
zero, such that L(z) = Mp(x)/|z|*, x < 0, is left-continuous and non-decreasing on
(—00,0) and R(z) = —Mg(z)/x™, z > 0, is right-continuous and non-decreasing on
(0,00), while My (c/*z) = Mg(z) for all z < 0 and Mg(c/*z) = Mg(z) for all
x > 0, for the same period ¢ > 1. Because of the inversions given above, the two
descriptions are equivalent.

Now, for G = Gy, y,.0 € S«, we say that F is in the domain of geometric partial
attraction of G with rank ¢ > 1, in short F € Dz(%%) (G), if (1.3) holds along a subsequence
{kn} C N satisfying the growth condition (1.4) if ¢ > 1. Recalling that (¢, v9,0) #
(0,0,0) for G = Gy, 4,0 € S«, define ¢ = ¢(Gop,,) = 1 for any ¢ > 0 and ¢ =
c(Gya po o) = inf{c > 1: Mj(cs) = Mj(s), s > 0, j = 1,2}, the minimal common
period ¢ (among those greater than 1) of the factor functions M; and Mj in ¥§ and
Y5 in (1.5) for o € (0,2). It turns out for the whole domain Dy, (G) = U5 ]D)g,) (@) of
geometric partial attraction of G € S, that Dy (G) =, .en D )(G) =D (G). Also,
if ¢(G) =1 for G € S, then G € § and Dy, (G) = D(G), the domain of attraction of the
stable G. In other words, if D(S) = Uges D(G) = Ujcq<2 D(@) is the classical domain
of attraction and Dgp, (G) = Ugeg Dgp (G) is the domain of geometric partial attraction
of a class G C S, , then Dy, (S) = I(S).

A characterization of an F' € Dy, (S4) in terms of the quantile function
Q(s) =inf{z € R: F(z) > s}, 0<s<1,

is given by Theorem 3 in [16]. Consider a subsequence {k,}>2, C N satisfying (1.4).
If ¢c =1 in (1.4), then put v(s) =1, 0 < s < 1. If ¢ > 1, then the sequence {k,}
is eventually strictly increasing, thus for all s € (0,sp), with sg € (0,1] small enough,
;*1(5)_1. We define y(s) = sky«(s) for
s € (0,80) and v(s) =1 for s € [sp,1), so that 1 <~(s) < ¢+ ¢ for any fixed € > 0 and
all s € (0,1) for the limiting ¢ > 1 from (1.4). Let Q4+ (-) denote the right-continuous
version of the quantile function Q(-). Since Dy, (G) = D(G) for a normal G € S, we

only have to describe the domain of geometric partial attraction of non-normal semistable

there exists a unique k=) such that k;}(s) <s<k

laws, for which the characterization is the following: If Gya o0 € S« is semistable with
exponent a € (0,2), so that ¢ and g satisfy (1.5), and F' € Dy, (Gye 4o 0) so that
(1.3) hold for V(9¢,4¢,0) and a subsequence {ky,}52 , C N satisfying (1.4), then for all
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s€(0,1),

Q1 (s) = —s%(s) [M1(7(5)) + I (s)]

and (1.6)

Q(1 — ) = s7/4(s) [Ms(7(s)) + ha(s)]
for the same a € (0,2), where £(-) is a right-continuous function, slowly varying at
zero, the function ~y(-) is determined by the subsequence {k,} along which (1.3) holds
and the errors h; and hy are right-continuous functions such that if M; is continuous,
then lim, o h;(s) = 0 for the corresponding h;, while if M; has discontinuities, then the
corresponding h;(s) may not go to zero as s | 0 but lim, o h;(t/kn) = 0 for every
continuity point ¢ > 0 of M;, j = 1,2. Conversely, if for the quantile function pertaining
to F the equations in (1.6) hold with the properties of £ and of hy and hs just listed, for
some « € (0,2) and functions M; and M, satisfying the properties described at (1.5),
and for () determined by a given subsequence {k,}52, C N satisfying (1.4), then
F € Dy, (Gyea yo,0) for the ¢ and 9§ given by (1.5), and, in particular, the relation
(1.3) can be specified as

ZX —k/l Qu)duy =5V (2, ¥g,0). (1.7)

j=1 En

1/a ]_/k

To state the main results from [11], which will form the basis of our further investi-
gations, for A > 0 introduce the functions

¥ (s) = ATVOYR(s/X) = =M;(s/N)s7V®, s € (0,00),
7 = 1,2, and the distribution function
Gi(z) :==P{V( a, Q’a,O) <z}, zeR

Clearly, G¢a 2,0 = G1 = Gen for all n € N and Gy is semistable for all A > 0. Let
now F € Dgp, (Gye yg,0) along a subsequence {k,} satisfying (1.4), in which there is no
loss of generality to assume that ¢ > 1. Introduce now

1 n

ONES = — , N.
7 v(1/n)  min{ky, : ky, > n} ne

Again, it is easy to see that v, <1 and liminf, ,. v, = 1/c for the ¢ figuring in (1.4).
Now the Merge Theorem is as follows:

pl 2= i gy u)du< G 0 1.8
ek W 7aE(1/n) < wp = Gyfa) 0. (18)




In fact, Theorem 2 in [11] states more: introducing X7, < X3, <--- < X,, ,,, the order
statistics pertaining to X1, Xo,... X, , it states that the suitably centered and normalized
trimmed sums 57" X ., where | and m are some fixed integers, merge together with
‘trimmed variants’ of G, . The above statement corresponds to the untrimmed special
case, i.e., when [ = m = 0. Our first theorem is now the following:

Theorem 1. Assume that F € Dy, (Gye 4o 0) along a subsequence {k,} satisfying (1.4)
with some ¢ > 1. Then

"y (S X =) Qu) du 1
1 ZII j=1-%i 1 <2\ - / G (z) iy (1.9)
cJ1

logn < T rt/af(1/r) v

almost surely for all x € R.
Turning now to maxima, for two distribution functions G and H introduce
LG H)=inf{e>0:G(x —¢) —e < H(z) <G(x+e)+e forall zeR},
their Lévy distance. It is well-known that this distance metrizes the weak convergence of

distribution functions on the line (cf. p. 33 in [13]). Recalling our previous notation for
order statistics and the ingredients of the Lévy measure of non-normal semistable laws,

introduce
Xn n
=P 2 <
H,(x) ]P’{ nilad(1/n) = a:} ) z € R,
and for A > 0,
0, x <0,
K)\(.T) = {e—MR()\l/afli):l?a’ z>0. (]_]_O)

Here K, can be identified as the distribution function of |¢§"°‘(Y)|, where Y is an
exponentially distributed random variable with mean 1. When considering maxima, we
will assume that My # 0, and hence Mg # 0. Then, retaining the conditions of Theorem
1, the Merge Theorem for Mazima (Theorem 3 in [11]) states that

L(Hn, K., ) — 0. (1.11)

The merge of distribution functions, unlike in the case of sums, does not generally take
place uniformly, that is, it may not hold in the supremum distance. The main reason for
this is that the distribution functions K, are not continuous if Mg is not. The almost

sure limit theorem is nevertheless true:



Theorem 2. Assume that F' € Dy (Gyo po0) along the subsequence {ky} satisfying
(1.4) with some ¢ > 1, where ¥§ # 0. Then

oo 3 et <4 ) (112)

almost surely for all z € R.

We note that, even though K,(-) may not be continuous, the limiting distribution
function in (1.12) is continuous at every x € R, as will be shown in the proof.

The proofs of these results are in the next section, after which Section 3 is devoted to
the scaling problem: what happens if, instead of r/*£(1/r) in the two theorems above,

one uses a general norming sequence?
2. Proof of Theorems 1 and 2

Lemma 1. Let {X,,} be a sequence of independent identically distributed random vari-
ables with partial sums S, and assume that for some numerical sequences {a,} and

{Bn}, satisfying

Ci(1/k)* < o/, < Co(l/k)>  for any | > k, (2.1)

for some X\ € [1/2,00), where Cy and Cy are finite positive constants, the sequence

2 a

p
)<oo

is bounded in probability. Then

sup]E(‘isn — Fn

n an

for any 0 <p <1/A.

Proof. The proof of this lemma is implicit in the proof of Theorem 6.1 in de Acosta and
Giné [1]. u

_1
Proof of Theorem 1. Introduce A4, := n'/*¢(1/n) and B, := nfi "Q(u) du for the
normalizing and centering sequences in (1.8) and (1.9), respectively. First we prove that

1 < I
: Z ZX -5 <o o [ (2.3)
ogn logc 1y



for all x € R. By the Merge Theorem in (1.8) it suffices to show that

n

logn o logc ¥

for all x € R. First we infer that (2.4) holds along {k,}. Indeed,

En k
1 ZG%(%) _ 1 ZOG%( Z Z Gy.(7)
log k,, = log ky, = logk' a1 T
= 0(1) Zr/Em) T
= o)+ DS s
m=1r=kp_1+1

nlogc Gy k() 1
= 1 _romr 7
oM+ gk, logan:lT kZH Ik o

Here the second equality follows by the fact that v, = r/k,, for r € {kp—1+1,..., kn}-
Introduce

Gm(s,x):: Jj/k:m ) Se(mvkm sy J=kmo1+ 1, .k,
0, elsewhere.

If p1 A€ (0,00), then, by the right-continuity of ¢ (-) and ¥§(-),
V™, 9y, 0) = V (%, 937, 0),

even almost surely. Therefore, G, (z) = Gx(z) for all z € Cg, . Since G () is continu-
ous for all A > 0 (see e. g. Lemma 2 in [11]), this means all 2z € R. Hence, for all z € R,
Gn(s,) = G4(x)/s for s € (1/¢,1] and G, (s,x) — 0 for s € (0,00)\[1/¢,1]. Thus

k
" Ggl@) 1 (% LG, (@)
Z T/Tma—/(; Gm(S,.T)dS—)/%' ——=d

r=km_1+1

as m — oo, by Lebesgue’s theorem and, since (1.4) is equivalent to nloge/logk, — 1, all
this together yields (2.4) along {k,}. But logk,+1/logk, — 1 and the terms G, (z)/vn
are non-negative and bounded, thus (2.4) and (2.3) hold along {n} = N, as well. It also
follows that the limiting distribution function is continuous.

The equivalence of (2.3) and (1.9) will be shown by Theorem 1 of Berkes and Dehling
[6]. Therefore, we must check the conditions of that theorem.

For the normalizing constants A, = n'/®¢(1/n) in (1.9), by the slow variation of £,
there obviously exists a positive constant C' for every ¢ € (0,1/a) such that

Ai/Ax > C(U/K)°, 1>k,
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fulfilling the condition (2.2) in [6]. Condition (2.1) of [6] follows by Lemma 1, since (2.2)
above is obviously implied by Theorem 1(i) in [11], and (2.1) can be seen by the slow
variation of £ again. [ ]

The special case when the subsequence {ny} is the whole sequence N in the following
lemma is exactly the statement of Lemma 2 in [5]. While the proof of Theorem 2 requires
only this special case, the stronger subsequential variant here is needed to prove Theorem
5 in the next section.

Lemma 2. Let {X,} be a sequence of independent identically distributed random vari-
ables with X, , = maxi<i<n, X;. Then for any subsequence {ny} C N and (proper or
improper) distribution function A and any real sequences {ay,} and {b,} the relations

1 Xpp— by
! Z—P{’igw}:/&(x) for any x € Cy (2.5)

im
k—oo log ng ‘T a
r—

and

1 1 [X,r— b
lim Z — [{’7 < x} = A(x) a.s. for any € Cy (2.6)

k—oo logng, <=

are equivalent.

Proof. Introduce M} := (X, , — b;)/a,. It follows exactly the same way as in the proof
of Theorem B in [4] (cf. also Lemma 2 in [5]) that for any bounded Lipschitz(1) function

f on R we have
1

logn

ST ~BUOE)] 50 as (2.7)

as n — oo.

We assume first (2.5) and show (2.6). Fix some z € Cj and choose a sequence
€m — 0, &, > 0, such that x + ¢, € Cy for each m € N. Let the bounded Lipschitz(1)
functions fZ(¢) and g% (t), t € R, be defined by

1, if t<xz—ep,
fm(t) == { 0, if t> 2,
linear in between,

and

1, if t<u,
Im(t) :== 1 0, if t> 24 em,
linear in between.

Clearly, f=(t) < I(t <z) < gZ(t) for all t € R, and hence

1 S (M) E(gf% (M) Im (M) = (fw (M7))
log ng, Z < O( log N Z (2.8)
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for each k,m € N, where

< I(M* < z) — P{M* < z}

log ng, o T

Qk (37) ==

Denoting by &7*(x) the lower bound in (2.8), we have

zM*_ mM*
Zf (f( )

limsup &' (z) = lim SUp y

k—oo k— o0 Ognk
E(fy, (M) — E(gy, (M)
1 m r m r
+ in sup og 7e Z -
<z —en}—P{M} <
> 0+ limsup ZP{MT <z —éem} {M} <z+ep}
k—oo Og’flk r—1 r

=ANz—en)— Az +enm),

which goes to 0 as m — oo. Here the inequality holds almost surely for each m € N
by virtue of (2.7), and hence it holds on a set of probability 1 for all m € N. A similar
estimate for the right-hand side of (2.8) shows that 6x(z) — 0 a.s. as k — 0, that is,
(2.6) follows from (2.5) as claimed. Assuming (2.6), the converse implication follows by
taking expectation. [ |

Proof of Theorem 2. First we show that

n

In() = 1 ZHTT(

logn =

/ K@) 4 (2.9)

for all z € R. By the Merge Theorem in (1.11) and the definition of the Lévy distance,
for every z € R and € > 0 we have

log c

lim inf Z K., (r—¢)—e <liminfd,(x)

n—o0 Og’n, n—00

n

1
< limsup ¥, (z) < limsup E - K, (r+¢)+e¢,
r

n—00 n—oo 108T —1

whence (2.9) follows if we show that the limiting distribution function on the right-hand
side of (2.9) is continuous and that

n

1 z:Kw(ﬂﬂ)_> 1 /lKv(ﬂf)
logn e~ r loge J1 v
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for all € R. Although the distribution functions K. (-) are not continuous in general,
the latter can be done along the same lines as in the proof of Theorem 1 above. Intro-
duce K,,(s,x) similarly as G, (s,z) in the proof of Theorem 1 but with K standing
everywhere in place of G. Again, it is enough to infer that

k
m K 1 o __ 'K
> Krjen(®) 1 _ / K. (s,z)ds — / K, (@) dry (2.10)
r=k T/km km 0 1 vy
=km-1+1 ¢

as m — co. Using the definition of K,(:) in (1.10), it can be seen directly that K, (z) —
Ky (z) for each fixed x € R whenever g 1 A if A is a continuity point of Ke(z), or,
equivalently by (1.10), if A/®z is a continuity point of Mp. Since Mg(-) can have
only a countable number of discontinuities, K,(z) — Kx(z) holds for each z € R
as u T A for almost all A > 0, that is, with an exceptional set of Lebesgue measure
0. Lebesgue’s dominated convergence theorem yields the desired convergence in (2.10)
and the continuity of the limiting distribution function in (1.10) and (2.9) may be seen
similarly. Now (1.12) follows from (2.9) by an application of Lemma 2. u

3. General norming sequences: mixtures

In this section we are concerned with determining all possible limits if in (1.9) or
(1.12) of Theorem 1 or 2, respectively, the norming factor +'/®¢(1/r) is replaced by an
arbitrary one, a,, say. The motivation comes from [3], where it was shown that in the
case when the random variables X1, X5, ... have zero mean and finite variance then the
class of all possible almost sure limiting distribution functions of the random functions

n

1 1 X
logn ar

pe
r=1

consists of all scale mixtures of the standard normal distribution function. Similar re-
sults were proved in [3], more generally, for the case when the underlying distribution is
attracted to an arbitrary stable law.

Before stating the corresponding result for our semistable case here, we need to
introduce some notation. Given ¢ > 1, a non-negative function ¢(-) on the interval
[1/c,1] will be called a step-function if it is piecewise constant, i.e. there exist vy =
/e < 71 < -+ < Y1 < 7k = 1 and non-negative numbers ¢i,...,qx_1,qr such that
q(y) = Zle @i I{v € [vi—1,7)} for some k € N. Let A be the set of such step-functions.
For ¢ € A define

J(:r:):J(q;azr):lolgc/l GW(C{Y(’Y)x)d'y, zeR

12



Define the class of functions J :={J(¢;-) : ¢ € A} and let J, be the set of finite mixtures
of J € J, i.e. the set of functions of the form

N
p1J1(-) + - +pnJN(-), where p1,...,pN >0, Zpi =1, Ji(:),...,JIn() €T
=1
for some N € N. Finally, let J* be the weak closure of 7.
Now we state all of our scaling results, the proofs of which follow after the statement
of Theorem 5.

Theorem 3. Assume the condition of Theorem 1. Then there exists a positive numerical
sequence {ay,} such that

n X = [T Q(u) du
Lyl 2i= Jy "ot <zb = J@), (3.1)

r ar

lim
n—oo logn

r=1
almost surely for all z € Cy, if and only if J € J*.

Turning to maxima again, construct the class K* similarly to J*, starting from the
limiting distributions in Theorem 2. Let K be the set of functions

1 'K
K(z) = K(g;7) = / 2 (2()2) dy, ze€R,
loge J1 Y
where ¢ € A, let I, be the set of finite convex mixtures of K € K and, finally, let *

be the weak closure of the class IC,. The result for maxima is then the following.

Theorem 4. Assume the conditions of Theorem 2. Then there exists a positive numer-
ical sequence {a,} such that

n

1 1 X
li SRR <t =K .2
ni>H<>lo logn;T { a, _m} (x)’ (3 )

almost surely for all x € Ck, if and only if K € K*.

Theorem 3 in [3] says that the class of almost sure limiting distributions of logarith-
mic averages pertaining to sums of independent identically distributed random variables
from the domain of attraction of a stable law cannot be enlarged by taking subsequen-
tial limits. A special case of Theorem 1 in [11] shows that independent variables from
the domain of geometric partial attraction of a semistable distribution function G also
possess a certain closure or maximum property: the non-degenerate partial asymptotic
laws of their sums along arbitrary subsequences all belong to the ‘family’ around G, i.e.
they are of the form 0Gy + d, where 5, A > 0, d € R. Theorem 5 below, which is an
analogue of Theorem 3 in [3], shows that in a sense the maximum property is preserved

for almost sure distributional limits as well, and even for maxima.

13



Theorem 5. Assume the conditions of Theorem 1 (or Theorem 2, respectively). If the
logarithmic averages on the left-hand side of (3.1) (or of (3.2)) converge to some limit
J(x) (or K(z)) almost surely for each x € Cy (or x € Ck ) along some subsequence
{nk}32,, then necessarily J € J* (or K € K*). Furthermore, there exists a universal
positive norming sequence {an}5, for which the totality of subsequential almost sure
limits of the corresponding logarithmic averages is identical with the whole class J* (or
IC* | respectively).

It is natural to ask all sorts of questions concerning the limiting classes J* and IC*.
Are there more compact descriptions of them? Are all the proper distribution functions
in J* infinitely divisible? Does it contain normal distribution functions? Does it even
contain infinitely divisible distribution functions? All these questions are open. It is easy
to see that J* and K* contain improper distribution functions, and we conjecture that
J* contains proper distribution functions that are not infinitely divisible and it probably
does not contain normal distribution functions. However, we see that all distribution
functions of the form

_ 1 TGy a)r)
J(x)—logc/ - dy, ze€eR,

are in J* for any ¢ € L = L£[1/c,1], the class of non-negative integrable functions
on [1/c,1]. Hence, all distribution functions of the form

]%cﬁt/ www@ z €R, (3.3)

are also in J* for any probability measure p on £] . Analogous statements hold for K*.
But it is unclear whether the whole class J* is contained if in (3.3) we allow arbitrary
sub-probability measures g on £7, and attach the weight 1 — u (L) to the point x = 0,
or whether the class thus obtained is wider than J*.

Turning now to the proofs, we begin with a lemma that is needed for the proof of
Theorems 3 and 5.

Lemma 3. Let X1, Xs,... be independent random variables, S, = X1 +---+ X,,, and
let {A,} and {B,} be numerical sequences, {A,} being positive, such that

n

1 1 (S, —B,
og Tz::l . I{STT < x} — G(x) a.s. for all z € Cg, (3.4)

where G is a distribution function continuous at the origin. Assume that
Ai/Ak > CuU/R), Lk, (3-5)

14



and

Sn — B
1D N P ———
( An

for some positive constants (3,p,C7; and Cy. Then for any positive norming sequence

p
)g@, n=12,..., (3.6)

{an} and any subsequence {nr} C N and (proper or improper) distribution function H
the relations

1 nk 1 r B'r
Z—I{Si Sa:}—)H(a:) a.s. for all x € Cy, as k — oo, (3.7)
log ng = ar
and
1 S 1 T B'r
lognkZ;P{is a Sx} — H(x) for all x € Cy, as k — oo, (3.8)

are equivalent.

Note before the proof that I can of course be replaced by P in (3.4) by Theorem
1 of Berkes and Dehling [6] if {nx} = N, where the continuity assumption on G is not
needed. The lemma shows that if G is continuous at the origin, then we can replace
I by P even if the norming factor is changed arbitrarily, and this can be done even
along subsequences. Note also that the slight continuity condition is satisfied in our
applications since the limiting distribution function in (1.9), inheriting this property
from the distribution functions G,(-), 1/¢ <~ <1, is everywhere continuous.

Proof. First we prove that if {a,} satisfies the additional condition
a, > KA,, n=1,2,..., for some positive constant K (3.9)

then for any bounded Lipschitz(1) function f on R we have

n

1 1[,(S-— B, Sy — By
lognz_[f(T> —E<f<T>)} — 0 a.s. as m — 00. (3.10)

r
r=1

Set
gﬁf) = f({Sr — Br}/a,) — E(f({Sr — B:}/a,))-

By a standard argument in a.s. central limit theory, (3.10) will follow if we show that

k P
E(0¢") | < 0(7) k<L
for some constants C' > 0 and p > 0. Choosing the constant K; so that |f(z)| < K,
|f(z) — f(y)| < K1|z — y| hold for all z,y, we get for any k <[, using (3.5), (3.6) (note
that in (3.6) we can assume p < 1) and the independence of Sy and S; — Sk,

15



‘E( ’(cf)gl(f))‘ _

cor (1

S, — B S; — B
ar, )’f< ay ))‘

Cov(f(‘gka;kBk) f<Sla—lBl) _f((sl-sk)

- B
S — Br /\2K1) < SKfE(‘
ajp

SO
SL — ag

1
KA A)

P P Bp
< 8K2C,K™P AN <o)
A l

< 4K1E<K1

Sk — By

ngfE( o
[

Dropping now condition (3.9), we first deal with the case {n;} = N; instead of nj we
simply write n. Let {a,} be an arbitrary positive numerical sequence and assume that
(3.7) holds. Fix a continuity point « > 0 of H (negative z’s can be handled similarly).
Let € > 0 and assume that z ¢ and tex are also continuity points of H (this excludes
only countably many &’s). Set,

* 429}
ay =
" { eA,

and let f. ;(¢f) denote the bounded Lipschitz(1) function which is 1 for ¢ < z, 0 for
t >z + ¢ and linear in [z,z + €]. We consider the six expressions

1 —1_(8,— 1 1 - B,

-1 < -1
logn;T { ar _CE}’ logn;r { ak x},
1 1 S, — B, 1 1 S, — B,

—Je,x ’ ~ K £,T ’
logn;rf’ ( ak ) logn;r (f’ ( ak ))
1 —1_(8,—

-P < <
o <7 <}

1 1 {
> ;P
—r logn
and estimate the difference between the consecutive ones. Clearly, the difference

if
if

an, > €An,
an, < €An,

B’I‘ ST‘

IN

(3.11)

B, Sy — By

Qr

r
r=1

I{(Sr — By)/ar <z} — I{(S; — B,)/ay < z}|

equals I{a,z/A, < (S, — B;)/A, < ex} < I{|(S;, — By)/A,| < ex} for a, < €A, and
thus the difference of the first two expressions in (8) is at most

Sea:}.

By (3.4), and since +ex are continuity points of G, the expression in (3.12) converges
a.s. to ¥(e) := G(ex) — G(—ex). Since G is continuous at the origin, (e) — 0 if

n

1 1
logn Z_I{

r
r=1

S, — B,

r

(3.12)
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e — 0. Thus the limsup of the difference of the first two terms in (3.11) is at most ¢(¢).
Replacing I by P, the same estimate applies for the difference of the last two expressions
of (3.11). Next we observe that

I(—oo,:z:] < fe,w < I(—oo,a:+e] (313)

and thus the difference of the second and third expressions in (3.11) is bounded by

n

1 1 (S -5, 1 1 S, —B,
Z—I{iﬁx}— Z—I{*SJ&F&}
logn ak logn ak

r r
r=1 r=1

. (3.14)

Relation (3.7) and the estimate for the difference of the first two expressions in (3.11)
imply that for almost every outcome of the sample space and for all sufficiently large n
the first and second terms in (3.11) are within 2¢(e) of H(z) and H(x+¢), respectively,
and thus the difference in (3.14) is < |H(z+¢)—H (z)|+4¢(e) =: ¢1(g). Since a} > €A,
the statement proved at the beginning of the proof shows that the difference between the
third and fourth term in (3.11) tends to 0 a.s. as n — oo. Finally, the difference of the
fourth and fifth expression in (3.11) can be estimated similarly as the difference of the
second and the third, only instead of (3.13) we use the inequality fc s« < [(—ooq] < feyo-

Hence we proved that for sufficiently large n the difference of the first and last
expressions in (3.11) is < t9(e) where 13(¢) — 0 as € — 0. Thus (3.7) implies (3.8),
at least if {nx} = N. But if {ng} # N, then we only have to write nj in place of
n everywhere in (3.11) and apply the same estimates as above, and the implication
(3.10)=(3.11) follows once again. The converse statement can be proved similarly. ™

Proof of Theorem 3. By Lemma 3 it suffices to prove that, under the condition of
Theorem 1, there exists a positive numerical sequence {a,} such that

T 1-1
) 1 <1 Zj:l Xj—rfi "Q(u)du
Jim. log E ~-P <zp=J(z), (3.15)

T a
1 T

r=

for all z € Cy, if and only if J € J*.

First assume that (3.15) holds for some {a,} and J. We show that J € J*. Asin
the proof of Theorem 1, let S,, = X1+ -4+ X,,, 4, = nY/*4(1/n), B, = nfll_%Q(u) du
and put ¢, = an/A,. Let {kn} be a sequence satisfying (1.4). Then by the Merge
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Theorem in (1.8),

k k
. 1 S, — B, = 1 S, — B, _ zxa,
- < = -P
> HE ) ¥ et
r km 1+1 T=km71+1
k
s 1 Ta
= > re(Tr) e
r=km 1+1

= > +qr+0(1)

T:km_1+1 (3.16)

m 1+1 |~tJ

km G
:/ b lom LT t(qml’) dt + o(1)

m 1+1

:/% —( 7( )z) dy+o(1),

where ¢ (v) = q|,,~], With |t| standing for the integer part of ¢, and hence g, € A.

Jin(z) = 1 /: Gy (gm (7)) dr.

logc 0%

Now put

Then by (3.15), using also that logk,, ~ nlogc, we have

& 1 (S, -B,
S > R FP <)

m=1r=ky,_1+1

i.e. J is the limit of convex linear combinations of J,, € J, whence J € J*.

We prove the converse statement in several steps.

First assume that J = J(q;x) € J for some ¢ € A. Let {k,,} satisfy (1.4). We
can find a sequence {g.,(v)} of step-functions such that the break-points of ¢,,(y) are
of the form v/k,, with integer v, ¢n(y) > 0 and ¢, (v) — ¢(y) weakly (pointwise at
each continuity point of q). If (ky—1 + 1)/ky < ¢!, then we let g, (y) = ¢n(1/c) for
v € ((km-1+1)/km,1/c). Put

aT:Arqm<kL>, ko1 +1<r<k,, m=12....
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Then reading (3.16) backwards, we get
1 km
m 1 (S, —B,
% v r=Kkm_1+1 " Gr

hence (3.15) holds along the subsequence {k,,}. This implies, as in the proof of Theorem
1, that (3.15) holds along {n} = N as well.
Now let J(-) be of the form

J()=p1J1(-) + -+ pnIN()

with J;(-) € J and let p; >0, i =1,..., N, be rational numbers such that Zf\ilpi =1.
By the previous arguments, we can find a,(f) such that

k
1 ~ 1_(S —B, B
log ¢ kz+1;P{TSI}_JZ($)+O(1), reCy,.
T=Km -1 T

In particular, suppose that p; = 8;/ forsome ; e N, i =1,..., N, with ZZ 1B =
(3. Define a, = a? for all r and m satlsfylng Ep—1 + 1<r< km and m=j (mod ),
where 7 € N is such that lel G <j< lel By —1,1=1,...,N. Then, clearly,

li
oo Bn log c

Z Z 1IF’{ST_BT Sx} =p1hi(z) + -+ pnIn(z) = J(2)

T a
=1r=k,, r

for all z € Cy, and so (3.15) holds along the subsequence {kg,}. Thus it also holds
along the whole sequence {n} = N.

Finally, since the functions J € J, with rational coefficients are weakly dense in
J*, we can find a sequence {a,} such that (3.15) holds. For details on this point, see
[3]. This completes the proof of Theorem 3. u

Proof of Theorem 4. We proceed similarly as above. Referring to Lemma 2, it is
sufficient to show that under the stated conditions there exists a numerical sequence
{an} such that

n

lim — > L P{& < x} = K(z) (3.17)

n—oo logn 4 ar
r=

for all z € Ck, if and only if K € K*. We first assume that (3.17) holds for some
K and show that K € K*. Using the Merge Theorem for Maxima at (1.11) we obtain
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similarly as in (3.16) that for any € > 0 there exists a threshold number M = M (g) and
step-functions ¢, such that for m > M,

1 K
K - 3 lpf e
/1 W(Qm(’Y)(x €)) dy— ¢ < ;]p{a_7 < x}
1 Y r=Km—1+1 " (3.18)

S/; K’Y(Qm(?(x'i's)) dy+e.

Introduce

1 [ Ky (gm()2)
K = ol d R.
m(T) Togc / > v, x€

By definition, K,, € K. Using (3.18),

N N
. 1 1
llJ{fnj;lomeE_ (x—¢€) —e < K(z) <1}£1£me§_ m(x +¢€)

N
m=1

which is to say that E(% > Km,K> — 0 as N — o0o. Thus K € K*, as stated.
The converse statement follows by a straightforward modification of the construction
in the proof of the preceding theorem. [ |

Proof of Theorem 5. The statements concerning the subsequential maximum property
of the classes J* and K* are implicit in the proofs of Theorems 3 and 4, respectively:
use the literally subsequential original forms of Lemmas 3 and 2, and then see (3.16) or
(3.18), respectively. Now, let J; consist of distribution functions of the form

J(z) =p1J(q1;2) +---+pnvJ(anv;x), z€ER,

where NeN, p;, >0, p; €Q, 1=1,...,N, Zf\;lpizl,and

1 / Gy(ai(1)2)
77

J(Qi ;a:) - logc 0

where ¢; € A is a non-negative rational-valued step-function with rational jump-points,
t=1,...,N. Thus J; is a “rational restriction” of J,. Clearly, J; is countable and its
weak closure is J*. Hence it suffices to construct a norming sequence {a,} for which
the set of subsequential limits of the averages

S X —rfi T Qu)du
P r <z
(072

S|

1 n
logn Z

r=1
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contains J;. The construction of such a sequence {a,} can be done by a straightforward

modification of the corresponding part in the proof of Theorem 3 in [3]. This completes

the proof for sample sums. The case of sample maxima is entirely similar. [ |

1]

2]

3]

4]

[5]

[10]

[11]

[12]
[13]

References

A. DE AcosTA and E. GINE: Convergence of moments and related functionals in

the general central limit theorem in Banach spaces, Z. Wahrscheinlichkeitstheorie
verw. Geb. 48 (1979), 213-231.

I. BERKES: Results and problems related to the pointwise central limit theorem, In:
Asymptotic Methods in Probability and Statistics (B. Szyszkowicz, ed.), pp. 59-96,
Elsevier, Amsterdam, 1998.

I. BERKES and E. CsAKI: On the pointwise central limit theorem and mixtures of
stable distributions, Statist. Probab. Letters 29 (1996), 361-368.

I. BERKES and E. CsAKI: A universal result in almost sure central limit theory,
Stochastic Process. Appl., to appear.

I. BERKES, E. CsAKI and S. CSORGO: Almost sure limit theorems for the St. Pe-
tersburg game, Statist. Probab. Letters 45 (1999), 23-30.

I. BERKES and H. DEHLING: Some limit theorems in log deunsity, Ann. Probab. 21
(1993), 1640-1670.

I. BERKES, H. DEHLING and T. F. MORI: Counterexamples related to the a.s. cen-
tral limit theorem, Studia Sci. Math. Hungar. 26 (1991), 153-164.

G. BROSAMLER, An almost everywhere central limit theorem, Math. Proc. Cam-
bridge Phil. Soc. 104 (1988), 561-574.

S. CsORGO: A probabilistic approach to domains of partial attraction, Adv. in Appl.
Math. 11 (1990), 282-327.

S. CsORGO, E. HAEUSLER and D. M. MASON: A probabilistic approach to the

asymptotic distribution of sums of independent, identically distributed random vari-
ables, Adv. in Appl. Math. 9 (1988), 259-333.

S. CsORGO and Z. MEGYESI: Merging to semistable laws, Theory of Probability and
its Applications 46 (2001), to appear.

A. FisHER: A pathwise central limit theorem for random walks, Preprint, 1989.
B. V. GNEDENKO and A. N. KOLMOGOROV: Limit Distributions for Sums of In-

dependent Random Variables, Addison—Wesley, Reading, Massachusetts, 1954.

21



[14] M. LACEY and W. PHILIPP: A note on the almost everywhere central limit theorem,
Statist. Probab. Letters 9 (1990), 201-205.

[15] P. LEvY: Théorie de l’addition des variables aléatoires, Gauthier—Villars, Paris,
1937.

[16] Z. MEGYES: A probabilistic approach to semistable laws and their domains of
partial attraction, Acta Sci. Math. (Szeged) 66 (2000), 403—-434.

[17] T. F. MORI: The a.s. limit distribution of the longest head run, Canadian J. Math.
45 (1993), 1245-1262.

[18] M. PELIGRAD and P. REVESZ: On the almost sure central limit theorem, In: Almost

Everywhere Convergence II (A. Bellow and R. Jones, eds.), pp. 209-225, Academic
Press, New York, 1991.

[19] P. SCHATTE: On strong versions of the central limit theorem, Math. Nachr. 137
(1988), 249-256.

22



