Long excursions of a random walk
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Summary. In [1] and [9] it was proved that the length of the longest excursion
among the first n excursions of a plane random walk is nearly equal to the total
sum of the lengths of these excursions. In this paper several results are proved in
the same spirit, for plane random walks and for random walks in higher dimensions.
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1. Introduction

Consider a simple symmetric random walk on the lattice Z?2. This means that if the moving
particle is in z € Z? at the moment n then at the moment n + 1 the particle moves with
equal probabilities to any of the 4 neighbours of x independently of how the particle achieved
x. Let S, be the location of the particle after n steps and assume that S, = 0. Introduce

the following notations:
(i) &(z,n):=#{k: 0<k<n, Sy ==z}, (xe€ Z* n=1,2,..))
(ii) &(z,t) (x € Z?, t > 0) is the continuous process obtained by linear interpolation from

§(z,n) with £(z,0) =0,

(iii) po :=0,
pr :=min{n: n > pr_1, S, = 0}, k>1,

(iv) (k) = px — pr-1,
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(v) M,(1) > M,(2) > ... > M,(£(0,n) + 1) are the order statistics of the sequence
r(1),7(2),...,7(£(0,n)), 7 — peon);
(vi) H is the set of functions

my if 0<z<rm,

h(ml’mQ’T’x):{mg if Tr<zx<l1

where 0 < m; <my <1, 0<7<1.

In words, £(z,n) counts the number of visits to the site z during the first n steps and
is called the local time of the random walk; p,, which denotes the time of the n-th return
to zero, is the “inverse” of £(0,%) in some sense. The sections between two consecutive
returns are called excursions and so {r(k), k = 1,2,...} denotes the sequence of the lengths
of the excursions. Clearly, the sequence {M,(1),...} denotes the ordered lengths of the
excursions. In this paper we study some properties of the “long” excursions, which in spite
of the recurrence of the random walk behaves quite differently from the case of dimension 1.

In [1] we proved the following Strassen type

THEOREM A. With probability one, the set of limit points of the sequence
M, 0<t<1
(logn)logs n

s H.

Here and in what follows, logn := logmax(n, e), and log, n is the p-th iteration of log.
The proof of Theorem A is based on the following

LEMMA A.

o Ma(D) + M, (2)

n—oo n

=1 a.s.

We note that by the proof of Theorem A (cf. [1]) we easily get the following

THEOREM 1. With probability one, the set of limit points of the sequence

{S(O, nt)
£(0,n)

,ogtgl}

s H.
Lemma A easily implies

PROPOSITION A. p,i1 — pn is either much smaller or much bigger than p,.
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In order to give a more accurate form of Proposition A, let {a,} and {3,} be sequences
of positive numbers with

o0
1.1 < 0, > log, n,
(1.1) nglnan 00 a, > logyn
o© q )
(1.2) nglnﬁn = 00, %gflﬂn > 0.

Further let

19 m=en (), bn:exp(%), :p<m) > 0).

Finally let

" Pn

Then we have
THEOREM 2.
(i) T, ¢ (a,', a,) a.s.
for all but finitely many n,
(ii) T, € (b,',c,') io.as.
(iii) T, € (cn,b,) i.0.as.
EXAMPLE 1.

a, = (logn)'** (6>0), B, =logn
i.e.,

e - b, =e " e n
an=exp|——|, bpy=exp|— |, cn=exp|—-—
P (logn)t+? P logn P (1+¢)logn

satisfy the above conditions.

Theorem 2 clearly implies:

COROLLARY 1. Let
Tr=Prtl =P (2 0,1,2,..).
Pn+1
Then
T: ¢ (a,",1~a,")  as,
for all but finitely many n,
T,
T,

€ (0,¢,1), i.0. a.s.
€ (1-¢h1) i.0. a.s.



Lemma A also implies that p,x — p, for any £ =1,2,..., is either much bigger or much
smaller than p,. A refined form of this statement is given in the next corollary.

COROLLARY 2. Let {a,} be defined as above and assume that {a,} is a non-decreasing
sequence. Further let

a;, = exp(Zaj_l> -1,
j=n
k) = Ptk T Pn g —q9 )
P
(T®) € (af, an)}-

n

™

3

I
(G

k=1

Then among the events B, only finitely many might occur with probability 1.

Note that if
n

a, = exp (W) (5 > 0)
then

« n
a, S exp <—W> .

The above results also imply that the waiting time
v(n) =min{k : k>n, pry1 — Pk > pPn}t
is finite with probability 1 for any finite n. In fact we prove

THEOREM 3. Let {f,} be a positive sequence such that n — f,/n is non-decreasing, then

. v(n) [0 1 [ <0
hnm%scgp 3 _{oo ,a.s.<:>;—{zoo .

Corollary 1 claims that 77’ is either nearly 0 or nearly 1. At the same time Theorem 3
suggests that between n and 2n there exists about 1 integer £ for which 77 is nearly 1. This
idea is formulated in our following

THEOREM 4.

. . 1
(i) Jim Tog ;;)Tk =1 as,

. . Yp—o I —logn 1 T 2

il lim P = <zp = —/ e "2 du,
( ) n—oo { A /10gn - A /271' —0o0

noow ]
(iii) lim sup Lizo Ly —logn

1 a.s.
n—00 \/2 (logn)(logs n)




Now consider a simple symmetric random walk on the lattice Z¢, which means that
at each step, the moving particle visits each of its (2d) neighbours (on Z¢) with equal
probability 1/(2d). Let S,, be the location of the particle after n steps and assume that
So = 0. Since the random walk in Z¢, d > 3, is transient, the above results cannot be true.
However if we consider the longest excursion away from some € Z% completed by the time
n, then it can be long. For ¢ > 0, define the random variable k(i) by

S’H—j 75 Si, j = 1, 2, ey K,(’L) — 1, Si—He(i) == Sz
(If such k(i) does not exist, we set k(i) := 00). Let
R(n) := max{k(i) : i+ k(i) <n},

which in words denotes the length of the longest completed excursion (away from any point)
at time n.

THEOREM 5. Let d > 3. With probability one,

lim
n—oQ log n

logR(n) { 1 if d=3,4,

25 if d>5.

2. Preliminary results
THEOREM B. ([2]) For any § > 0 we have

™

) < pn < exp(n(logn)™*?) as.,

exp ((1 —4)

log, n
for all but finitely many n. When n goes to infinity,
P{p1 > n} =P{£(0,n) = 0} = m(logn) ™ + O((logn)~?),

and
P{£(0,n) > zlogn} = e ™ (1 + O((logn)_1/4))

uniformly for z € (0, (logn)3/*).
Since {p, < k} = {£(0, k) > n}, Theorem B implies
PROPOSITION B. For any 2 < m < n we have

7rlog(n/m)‘<c(( 1 N 1 )

P —
tm <pr<n (logn)logm| — logm)? ~ (logn)?




where C > 0 is an absolute constant. Furthermore,
P{p, < e} =e (14 0(n 7))
uniformly for z € (0,n%/7) and
P{p, >e"*} <C(1—e ™)< Crz, z€[n Y 1]

Similarly for any 0 < 2z, < 2o < 037 and 2z, — 21 < 1 we have

‘P {exp (ﬁ) < pn < €xXp <E>} —7me " zg — 21)| < %

<2 21 n

In the proof of Theorem 4 we use results of Rényi [6], [7] concerning extreme elements.

Let {&}%2, be a sequence of i.i.d. random variables having continuous distribution. & is

called an extreme element if > max;<;<;_1 §;. By convention, &; is counted as an extreme
element. Let u, be the number of extreme elements among &;, ..., &,.

THEOREM C. ([6], [7])

. . Mn

| =1 .S.
) 2 fog
.. ) n — logn 1 T2
ii lim P{——=2-<z; = — e ““du,
(i) n—00 { Viegn } V2T J—co

n—1

(iii) lim sup ——rn — 8" a.s.

vy \/2(log n)(logs n)

In the proof of Theorem 5, we need the following two results concerning the simple
symmetric random walk on Z? (d > 3).

THEOREM D. ([4]) Let d > 3. Then as n — o0
P{p1 = 2n} ~ (1 — 4(d))*P{S2. = 0},
where y(d) = P{p; < oo}.

THEOREM E. ([3]) Let f(n) 1 oo be a positive integer valued function and let E,, be the
event that the paths

{S(), Sl, ceey Sn} and {Sn+f(n)+1, Sn+f(n)+2, .. }

have points in common. Then

(i) for d =3, if f(n) = n(e(n))? and p(n) is non-decreasing, then

(2.1) P{E,i0.}=0 or 1
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depending on whether 332 (¢(2F))™ converges or diverges,

(ii) for d =4, if f(n) = n(n) and ¥(n) is non-decreasing, then we have (2.1) depending on
whether Y52 | (kv (2%))™1 converges or diverges,
(iii) for d > 5, if
o 100 4 I
m>n 1 n
(for some C > 0) then we have (2.1) depending on whether 352 (f(k))@~9/¢ converges or
diverges.

3. Proof of Theorem 2

Let {a,} and {3,} satisfy (1.1) and (1.2), respectively, and let {a,}, {b,} and {c,} be as in
(1.3). Fix a constant § € (0,1/3). Introduce the following notations:

dy = exp<(1—5) a )

logy, n
en = exp(n(logn)'*’),
AY = (T, € (¢, an)},
AP = {Tue (b e}
A = {T, € (cn,bn)}.

Clearly we have
AP ={AP nB} u{A N B},

where B, := {p, € (d,,e,)} and B¢ denotes its complementary. By Theorem B among the

events
AD B

only finitely many might occur with probability 1.
Another application of Theorem B yields that

P{AVNB,} = E[15P{A) |p,}]| =

2mlog a, 1
= E|1 Olir—r—=—]]|
l o (10g(aﬁlpn) -log(anpn) i <log2(a;1pn)>>]

On B, we have (recalling that «,, > log, n)

™ n n

n
3.1 log(a, tp,) =logp, — — > (1—6 — ,
(3.1) og(ay'pn) =logpn = -2 (1= 0); = o> o



so that . | )
El|lz -O(———||=0 M '
log”(az ' pn) n
On the other hand, since (3.1) also tells that log(a,,'p,) > (log p,)/2 on B,, we have

log a,,
log(a;'pn) - log(anpn)

1
< 2(log an) E [L] ,

E |1z -
l b (logpn)2

which, by writing N := [(log, n)/((1 — §)7)]| and using Proposition B, is

N [ L exp(n/(i41))<pn <exp(n/i)}
< 2(logan) S E l p pn <exp ] _
0

2 (n/(i+ 1))/
) N 1 exp(—mi) + O(n~'/7) -
= 2(loga,) ; (n/(i +1))2 -

Therefore,

| 2 1
P{Agl)ﬁBn}:O<M>+O( >,
n noy,

which is summable for n. We obtain (i) of Theorem 2 by an application of the Borel-Cantelli
lemma.
Now, we turn to the proof of (ii) and (iii). We first assume that for some ny,

B, < (logn)?, n > ng.
We fix a constant § > 1/(inf,>1 3,). Introduce the following notations:
En = {pn€ (" M)},
@) = P {”l 06}

We have, for i = 2 or 3,

P{,NAD} =E[15, P {AD | p.}] =E [1z, - p{(pn)] -

By Proposition B, there exist two positive constants C'; and C5 such that for all n,

C C,
(3.2) nﬁln < pd(em?) < R

8
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uniformly for z € (6, 26). Therefore,

Cl i CZ
P{&,)} <P{E,NAD} < —=P{E,}.
P} <PENAD) < TUPLE)
Since C3 < P{&,} < C, for some positive constants C3 and Cj, we obtain:
(3.3) - <P(ENAY} < b

As a consequence, ¥, P{£, N AW} = oo, for i = 2 or 3.
In order to complete the proof of (ii) and (iii) of Theorem 2 (in case 3, < (logn)?), we
prove that the events Ag) are nearly pairwise independent. Let 0 < n < N. Then we have

P{AVE,AVEN} =B L0, . - p¥(on)],

which, according to (3.2), is

1.4 C )
< C,E | 4n ‘WN] < -2 p{AWg 1.
<cir| oo < Fopiape)

This, jointly considered with (3.3) and the fact that 3, P{&, N AW} = oo, yields

S Y P{AY¢, AV ey}

f n=1N=1
m 2
(ZP{A%})
n=1

According to the Kochen and Stone’s version ([5]) of the Borel-Cantelli lemma, we have, for
i=2or 3, P{ADE, i.0.} > 0. Consequently,

P{AY io0.} > 0.

lim in
m—oQ

< 0.

Since the event {A(® i.0.} is invariant under any finite permutation between the i.i.d.r.v.’s
{Pn+1 — P}, an immediate application of the Hewitt-Savage zero-one law yields that
P{A® i.0.} =1 for i = 2 or 3. This completes the proof of Theorem 2 (ii) and (iii) in case
b < (1og ).

For general {£,}, we define

B3, = min (ﬂn, (log n)Q) ,

which satisfies (1.2), such that 3, < (logn)?. According to what we have just proved, with
probability one,

e e) o (2)
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along a (random) subsequence {n(i)};>1. If there existed a sub-subsequence of {n(i)}:>1, say
{n(i(k))}x>1, such that B,y > log”(n(i(k))) for k > 1, then B,ux)) = log”(n(i(k))), and
according to (i) of Theorem 2,

fuen ¢ (22 () ()

for all large k. This would contradict (3.4). As a consequence, 3, < log®(n(i)) for all large

i, say i > ig. Thus Bn(i) = ) for i > ig, which in view of (3.4) implies

This proves Theorem 2 (iii). A similar argument yields Theorem 2 (ii) for general {3,}. O

Corollary 2 follows easily from Theorem 2 and the next lemma.

LEMMA 1. Let {g,} be a positive non-decreasing sequence such that ¥, (1/g,) < oo. If
{pn}S2, is an increasing sequence with py := 0, satisfying

Pl = P ¢ (gn_,la gn): n 2 no,
Pn
then
LHZ) Pnog (g5 02),  m>me, k1,
n

where g; = exp ( ol gj_l) — 1.

4. Proof of Theorem 3

At first we prove two lemmas.

LEMMA 2. For all integers n > 1 and a > 2n,

Cn C
P{y(n) > CL} < 7 + W,
where C' is an absolute, positive constant.
Proof. Clearly we have
P{v(n) > a} =P{r(n+1) <pu, ..., r(a) < pa}.
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Since r(n +1),...,7(a), p, are independent, we get
P{v(n) > a} =E(F* "(pa)),

where F(z) = P{p1 < z} is the distribution function of p;. By Theorem B, F(z) <
1 —C7/logz for all z > 2 if C7 > 0 is small enough. Hence

P{v(n)>a} < E(l— < )anﬁEeXp<—

C7(a —n) <
log pn -

log pn
C-(a —
< exp <—M) + P{log p, > n®"} +
n
C:(a—n)
+ E (eXp <_7log on l{nslogpnsn8/7} .
Proposition B with z = n~'/7 gives

Cs
P{logp, > n®"} < ViE

Integration by parts yields

Crla—n
E (exp <_¥> 1{n<logpn<n8/7}> =

08 Pn
_ C7(a —n) _
= - /[n’nw] exp <—T> d,P{logp, >z} =

= exp <—@> P{logp, > n} —

Cila—n
— exp (—%) P{logp, > n®T} +

C?(a/ - TL) 07(a — n)
+ /[n,n8/7] 2 XP <_T P{log Pn > m} dx.

x2

Hence we obtain

C7(a—n)> n Cs n

P{v(n) >a} < 2exp (‘ /7

_ 1 —
N Cr(a n)/ exp <_C7(an n)z> P{p, > "} dz,

n —-1/7

which, by Proposition B, yields

+

P{v(n) >a} < 2exp (— C7(an_ n)> T 7577
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_%Eégz:zﬁléwexp<_£E91:195> (1— ™) d =

n n

o C7(Cl - n) Cg (09/07) ™
2€Xp< n ) n1/7+07(a—n)+7m'

Since a > 2n and sup,.(ze™") < 0o, this yields the lemma. O

LEMMA 3. Ifn > ng is even, and if a is an integer with n < a < n®/7, then

C
P{e® < pp — pnjz < €%, ppp<e™, r(i) <e*forn+1<i<a}> 10717
/ / o

for some absolute constant Cg > 0.

Proof. By the strong Markov property,

P{e" < pn — pnj2 < e pns2 <€, r(i) <e*forn+1<i<a}=
= P{e" < ppj2 < € YP{pn)2 < "} (P{p1 < e*})* "

By Proposition B and Theorem B,

C
P{e®" < pnjp <€} > 1;”,
P{pn2 <e"} > Ch,
O a
Pl <e ™ 2 (Pln<eprz (1-22) 2cu

The last inequality holds in the case a > Ci3 but is trivially true if a < Ci3 (possibly with a
smaller value of C14) since minj<q<c,, (P{p1 < e*})* > 0. Assembling these pieces completes
the proof of Lemma 3. O

Now, we turn to the proof of Theorem 3.

Let {f.} be a positive sequence such that n — f,/n is non-decreasing.

First, assume 3, (1/f,) < oc. Thus (f,/n) — oo. Let ny = 2% for all k¥ > 1, which
implies >, (nk/ fn,) < 00. By Lemma 2, for all large £,

Cis k41 Cis
7
Therefore >, P{v(ng41) > fn,} < co. By the Borel-Cantelli lemma and the monotonicity

of n — v(n), we have
lim sup v(n)

n—oo fn

P{v(ngi1) > fo,} <

<1 a.s.
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Since replacing f,, by a constant multiple of f, does not change the nature of the test, we
conclude that the “lim sup” expression vanishes almost surely. This yields the first part of
Theorem 3.

To prove the other part, we assume Y,,(1/f,) = co. Let again n, = 2*, which implies
Yk(ng/ fn,) = 00. It is well-known for the proof of this kind of integral test that we can
assume without loss of generality that

8/7
n< fo<n®l,

when n is sufficiently large. (For a rigorous justification, we may use a similar argument as
the one at the end of Section 3). Define for large k (say k > ko) the events

Ak = {efnk < Pny, — pnk/2 < lenk’ pnk/Z < enk’
r(i) < e for all ng +1 <i < fo, }.

By Lemma 3, for all £ > kg,

P{A,} > 0}0 o

Nk

which implies ;55 P{Ax} = o0.
We now estimate P{A; N Ay} for £ > k + 2 (and k > kg). Observe that on Ay, we have

Pla, < e g™ (far — nk)ef”k < ef”l,

using the fact that 4f,, < f,, (which is a consequence of the monotonicity of n — f,/n).
On the other hand, p,, > efr on A,. This means that Jop <mgif Ay N Ay # 0. Write

by = Lo(k) :=inf{l >k : ng> f,.},

and we have just proved that A, N A, = 0 for £ < 4.
When ¢ > £y +1, we have n,/2 > f,,, so that the event Ay is independent of the variable
Pny — Pn,/2- Accordingly, for £ > £, + 1,

P{A;NA} < P{A}P{py, — pn,2 > e} <
< P{pnk = Pryj2 > efnk}P{pne — Pnyj2 > efnl} =

P{pn, /> > ef”k}P{pn[/g > ef"Z},

which yields that for £ > £y + 1,

P{A; N A} < Cig }Lk }1—@ < Ci P{AP{A,).
ng Jng
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Therefore,

n

ko<k<t<n k=ko
+ > > P{ANA}<
k=ko £=£p+1
< 33 P{A}+Cn Y S P{A)P{4,).
k=ko k=ko {=k

Since Y g>i, P{Ax} = o0, this yields

n

> iP{Ak N Ae}

lim inf *=*=" — < 00,
( > P{Ak}>
k=ko

According to Kochen and Stone’s version of the Borel-Cantelli lemma ([5]), P{A i.0.} > 0.
Since Ay C {v(ng) > fn,}, we obtain:

P {limsup vn) 1} > 0.
n—00 n
Clearly, {limsup,,_,.(v(n)/f,) > 1} is invariant under any finite permutation between the
1.1.d.r.v.s {pnt1 — pn}oc,, the Hewitt—Savage zero-one law yields that
v(n)

limsup — >1 a.s.
n—00 fn

Replacing f, by an arbitrary multiple of f,, implies that the “lim sup” expression is infinity
almost surely. This completes the proof of Theorem 3. O

5. Proof of Theorem 4

First we define continuous random variables which are close to the discrete variables r, =
e — pe—1. Let {(x}52, be an i.i.d. sequence of random variables, uniformly distributed on
(0,1) and also independent of the sequence {ry}° . Define

k ~

~ ~ ~ a k+1

Tk::’rk+<ka szzria Tk:/\ ) k:1>27
i=1 Pk+1

Then {74}, is a sequence of i.i.d. random variables with continuous distribution. Now let
Zy =1 and for £ > 1 put Z; =1 if 754, is an extreme element, i.e. 741 > maxi<;<j 7; and
let Z;, = 0 otherwise .

14



LEMMA 4. As k — oo, we have

. . k
|Z, —Ti| = 0O (exp (_10g2 k)) a.s.

| Zy — T | < | Z), — Ti| + [T}, — T7).

Proof. We have

Simple algebra shows, using 0 < (; < 1, that

kE+1 k
< =0|e — a.s.,
© Pr4t < P ( 10g2k>>

the last identity following from Theorem B. This combined with Corollary 1 yields

~ k k
Tk ¢ (exp <_10g—2k> ,1 — exXp <—10g—2k)) a.s.,

for all but finitely many k. This means that for & larége enouih, Z, = 1 implies T}, €

T+l Tkt

T, — Ty | =
Pk+1  Pr+1

(1 — exp <_logL2k) , 1), while Zk = 0 implies fk € (0, exp _logL2k) , S0 we have also
1 Z =Tl = O [exp [ — h
k k|l = p long )
proving Lemma 4. O

As a consequence, we have

=0(1) a.s.,

> 4= YT}
k=1 k=1

as k — oo. Since >p_; Zk is the number of extreme elements up to n from a continuous
distribution, Theorem 4 follows from Theorem C. O

6. Proof of Theorem 5

In this section, {S,}%°, denotes a simple symmeric random walk on Z¢ (d > 3), starting
from 0. Let E, be the event as in Theorem E. Then P{E, i.0.} =0 if

n(logn)i*e if d=3
(6.1) f(n) > f*(n) :={ n(logyn)tte if d=14
n2/(2) (log )24/ if 4> 5,

Observe that if there exists an excursion of length g(n) away from S, i.e. if

Sn+j 7é Sna .7 = 11 25 .- -ag(n): Sn+g(n)+1 - Sna
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then F, does not hold with f(n) = g(n), i.e. g(n) must be less than f*(n) of (6.1). Let
N :=n+ f*(n) = h(n), i.e. n=h"'(N). Hence
R(N) < f*(n) = f*(h '(N)),
which, in turn, easily implies that
log R(n) < { 1 if d=3,4,

2 if d>5,

lim sup
n—oo  logn
almost surely.
Now we turn to the proof of the lower bound in Theorem 5. Fix 0 < a < min(25, 1).
Note that a < 1. It suffices to show that

(6.2) lim inf M

>a a.s.
n—oo logn

To this end, recall (see for example [8] p. 183) that P{Sy, = 0} ~ 2(d/4m)%?n—4/?
(n — 00). Therefore, an application of Theorem D reveals that for all n > 1,

Cis

n(d-2)/2

<P{n<p <o} < Cho

(63 prT

where (g and (g are two positive constants depending only on d. Define for n > j > 0,
;= inf{k > j: S, = S;},
A;(n) = {j+n* <7 <j+0n},

where the constant © = ©(d) > 1 is chosen to satisfy © > (Cy9/Ci5)?/ (42,
For all j < n — ©n®, we have

P{4;(n)} = P{n*<p <6} =
= P{n’ < p <0} —P{On" < p; < o0},
which, in view of (6.3), yields

Cig Cig _ Oy
P{d;(n)} > na(@-2/2  (Qne)d-2)/2 ~ pa(d-2)/2’

with Cyg := Cig — C19/042/2 € (0,00). On the other hand, for all j < n — On?,

a Chg
P{AJ(TL)} < P{TL <pr < OO} < W’
the last inequality following from (6.3). As a consequence,
n—On?
(6.4) Cyn!4=2/2 < E Z La;(n) ¢ < Cron! @272,
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Note that 1 — a(d — 2)/2 > 0.
Assume for the moment that we can show that

n—On®
(6.5) Var ( > lAj(n)> =0 (nQ_“(d_2)_‘5) ,
Jj=1

for some § > 0. Then by Chebyshev’s inequality and (6.4),

n—On® n—On® 1 n—On®
Pyl 2 Lyw—E Z Lyw || > 5B 2 Laym | ¢ <
Jj=1 j=1

4Var(zn 9" 14;(n ) < Cao
which, by the Borel-Cantelli lemma, implies that almost surely for all large £,

< - < ,
T B 14,m)? T ot
ng— @na 1 ng— @'ﬂa
Z 1a;0n) 2 E( Z 1Ank)7

where ny := |k*°|. By (6.4), E (E?Z@nz lAj(nk)) > 2, so that for large k, there exists
j € [1,ny, — Ong] such that 14,(,,) = 1. This yields R(n;) > nf, and will complete the proof
of (6.2), using the monotonicity of n — R(n).

It remains to check (6.5). We have

n—On? 2 n—On?%
> lam = E| Y lywm|+2 Y  PlAm4;n)}=
j=1 j=1 1<i<j<n—Ona
n—On%
= E| ) lym|+
j=1

+2 S P{A(n), Aj(n), 1 <ji+

1<i<j<n—On?
+2 Z P{Az(n), Aj(n), T > j}
1<i<j<n—0On?
By the Markov property,
P{Ai(n), 4j(n), n < j} <P{Ai(n)} P{A;(n)}.

On the other hand, if A;(n)N{r; > j} # 0, then j < 7; < i+©On®, which implies j —i < On®.
The proof of (6.5) is thus reduced to showing the following: for some § > 0,

n?—a(d—Q)
(6.6) > P{Ain), A;(n), >4} =0 <7> ,

)
(i,)€Q(n) n
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where Q(n) ;== {(i,j): 1<i<j<n-—0n% j—i<On'}
The proof of (6.6) will be carried out in a few steps, namely, we will show that

(6.7) Y P {A,-(n), Aj(n), 73> >+ "—} = O (nte-Dr,),
(i) €9 (n) 2
a 2—a(d—2)/2
(6.8) > P {Ai(n)a Aj(n), j<mi<j+ %} = 0 (nT> ;
(i,4)€9n) n
(6.9) > P{Ain), 4;(n), ; <} = O(n' 722y,
(i,))€0(n)

where b, = Y P k~(@2/2_ Since b, = O(n'~%42/2-9) for some § > 0 (recalling that
a < min(;%;, 1)), the estimates (6.7)-(6.9) together suffice to yield (6.6), hence the lower
bound in Theorem 5.
To check (6.7), observe that
. nt
Il = P {A,(n), Aj(’l’L), Tj >T; > + ?}

< P{r e (j+n*/2,i+0On, 1; > 1}.
Applying the strong Markov property at 7; gives that
L <E (l{Tie(j+na/2,i+®na]}pl(Sia Sj)) ,

where p;(y,z) := P¥{p1(z) < oo} for z € Z¢ and y € Z%, and PY is the probability under
which the random walk starts from y. According to Erd6s and Taylor [2], there exists a
constant Cy3 = Coz(d) such that for all (z,y) € Z¢ x Z¢,

Cos
(llz =yl + 1)4=>

(6.10) P {p(x) < 00} <

Therefore

p2(SjaSi)
(I1S; = Sill +1)4-2 "

17, c(jtna/2,i+0n9])
I < Cy E ¢ ’ =CxnE
FETEELIS - Sill+ 1) *

where po(y, z) := P¥{n*/2 < pi(z) <i+0On*—j} (and we have applied the Markov property
at 7).

We now estimate py(y, 7). According to [8] p. 184, sup,. z« P{S, = 2} < Cay/n??, so
that for m < n,

n-l n-l 024 n—m
k=m k=m m

18



Therefore, for all m < n,

(6.11) sup sup PY{m < pi(z) <n} < Cy %.
z€Z yeZd m /

In particular, pa(y, ) < C40On®/(n®/2)¥? for all z and v, so that

025 1

I; < E .
S | s

Recall Lemma, 16.5 of [8] p. 184: P{S, = z} < Cos n~¥2 exp(—||z|?/2n) for all € Z¢ and
n > 1, from which it follows that

(6.12) E ((||5n|| + 1)—(d—2)) < Cyyn~@2/2, n>1.
Accordingly,

Cos Cor
I < na(d=2)/2 (j — §)(d-2)/2°

This implies (6.7).
Now let us check (6.8). Clearly,

a

I =P {Ai(n)a Aj(n), j <7 <j+ %} <
< P{ne(@+n"j+n"/2], j<m 7€ (j+n"j+0On}.

Applying the strong Markov property at 7; gives
I, <E (1{ne(i+na,j+na/2],j<n}p3(5i, Sj, Tz)) ,

where p3(y,z,£) = P¥{pi(z) € (j + n* — £,j + On® — {]}. By (6.11), on the event {r; €
(i 4+ n?, j +n®/2]}, we have p3(S;, S;, 7i) < C24On®/(n®/2)%2, so that

Cos o4 o a
I, < WP{E € (1+n"j+n'/2]} =
028 a - a 3
= na(d—Q)/QP{n <p<j+nt/2-d} <
Cog Cag

S ald-2)2 pad-2)72’
the last inequality following from (6.11) (recalling that j — ¢ < ©On?). Therefore,

028029 n2—a(d—2)
nald—2) — 6028029W’

Z I, <nOGn*

(4,7)€92(n)

proving (6.8).
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Finally, to verify (6.9), we observe that

P {4;(n), Aj(n), 7; <7} <
P{Tj € (j+n“,j+@n“], T; 2 Tj} =

E (1{ye(negrone)y 1S5, 51))

Is

IA

where pi(y,z) = P¥{p1(z) < oo} as before, and we have applied in the last equality the
strong Markov property at ;. By (6.10), p1(S;, Si) < Cas/(||S; — Sill +1)472, so that

1ire(j+na,j+0na]}
I, < ConE J i
e l(nsj—sz-nﬂw—?

Using the Markov property at j, we get

pa(S;.5,)
<
fs = Cos B l(nsj “S+

where pi(y,) == P'{pi(y) € (n®,0n%]} = P{n® < p; < On®} < CpyOn /2 by means

of (6.11). Combined with (6.12), it follows that

I. < 0230246027
3 = (j — i) D/2pald-2)/2"

This yields (6.9), and completes the proof of the lower bound in Theorem 5.
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