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Abstract

Consider a simple symmetric random walk on the plane. Its portion between two
consecutive returns to zero are called excursions. We study the sum of the excursions
when the two largest ones are eliminated from the sum. Similar investigations are
carried out for two-dimensional Wiener process.
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1. Introduction and main results

Let X1, X5,... be a sequence of independent identically distributed random vectors
with

P{X, = (0,1)} = P{X, = (0,~1)} = P{X, = (1,0)} = P{X, = (-1,0)} = |

and let So =0, S, = X1+ Xo + ...+ X,, (n = 1,2,...) be a random walk on Z?
(0 =(0,0)). Its local time is defined by
E(a,n) =#{k; 0 < k <mn, S, = a},

where a = (a1, ap) is a lattice point on the plane. Put {(n) = £(0,7n). Let log; denote
the j-th iterated logarithm.
Erdés and Taylor (1960) proved the following results:

Theorem A1l (Erdds and Taylor (1960)):

(1.1) lim P{{(n) <zlogn} = 1-¢e™, z>0.
(1.2) lim supL(n) =1 a.s.
n—oo  lognlogsn
1 1+e€
(1.3) lim §(n)(log, n) = o a.s.,, €>0.
n—00 logn
1
(1.4) liminf 1080 g
n—00 logn
Introduce
Po = 01
(1.5) pe =inf{n; n>pr_1, S, =0}, k=1,2,...

the consecutive return times of the planar random walk to the origin. Put 7, =
Pr—pPr—1, k =1,2,.... The portion of the random walk between p, | and py is called
the k-th excursion.

Theorem Al can be rewritten as



Theorem A2 (Erdds and Taylor (1960)):

(1.6) ]\}i_r)réoP{logpN <zN} = e z>0.

(1.7) “ﬂ&f log, N logpy = ™ as.

(1.8) 1&2&% =0 a.s., €>0
|

(1.9) h]?fo‘ip % = oo a.s.

We need also the following result.

Theorem B (Dvoretzky and Erdés (1951), Erdds and Taylor (1960)):
m
(1.10) P{p1 >n} =P{{(n) =0} = Togn +O((logn)™),

asn — oQ.

Now let x(n) be the last return to the origin before time n, i.e.
(1.11) k(n) = max{j; j < n, S; = 0} = pe(n)-
Denote by
MO > M@ > > e

the order statistics of the sequence 71,73, ..., T¢m), n — K(n). It was shown in Csdki
et al. (1998) that

MO L pf2)
(1.12) lim —n My a.s.

n—oo n

Our aim here is to investigate the upper and lower functions of

&(n)+1
(1.13) Rin)=n—-M" -MP = S MP».

Recall the following definitions (Révész (1990)):

Definition 1. The function a;(¢) belongs to the upper-upper class of {Z(¢)} (a1 €
UUC(Z(t))) if for almost all w € Q there exists a ¢y such that Z(t) < a1 (¢) if t > 1.
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Definition 2. The function ay(t) belongs to the upper-lower class of {Z(t)} (as €
ULC(Z(t))) if for almost all w € € there exists a sequence t; < t3 < ... such that
limy o0 t, = 00 and Z(tg) > as(te), k=1,2,...

Definition 3. The function a3(t) belongs to the lower-upper class of {Z(t)} (a3 €
LUC(Z(t))) if for almost all w € Q there exists a sequence t; < to < ... such that
limy o0 t, = 00 and Z(t;) < az(te), k=1,2,...

Definition 4. The function a4(t) belongs to the lower-lower class of {Z(t)} (a4 €
LLC(Z(t))) if for almost all w € Q there exists a to such that Z(t) > a4(t) if t > .

Concerning «(n), the following result is proved in Erdés and Taylor (1960).

Theorem C (Erdds and Taylor (1960)): Let f(n) be a non-increasing function. Then

(1.14) fj 7(2%) < 0o = nf™ € LLC(k(n))
and -
(1.15) 3 F(2%) = 0o = n/™ € LUC(k(n)).

We prove the following results:

Theorem 1.1. For anye > 0,c> 0

(1.16) € UUC(R(n)),

logn
€xp ( 10g2n Yite

(1.17) € ULC(R(n)),

clogn
exp ( logy

)
2
(L18) o (51252) € Luc(r(n)

log, n

(1.19) exp <(lﬂ> € LLC(R(n)).

log, n)'*e

Similar investigations can be carried out also for two-dimensional Wiener process
with slight modifications. This is necessary, since every point is polar for the Wiener
process, and, on the other hand, local time (as occupation density) does not exist.



So there is no meaning to speak about excursions away from the point 0. Instead, we
consider excursions away from the unit circle.

Let W(t) = (Wi(t), Wa(t)), t > 0 be a two-dimensional Wiener process, where
Wi(t) and Wy(t) are two independent one-dimensional standard Wiener processes
with W (0) = W»(0) = 0. Put [[W(t)|| = /W2(t) + W(t). It is well known that
{|[W(t)||,t > 0} is a two-dimensional Bessel process, admitting countably many
excursions away from the point 1. Let

(1.20) v > v > .
be the ordered lengths of these excursions up to time ¢, including the interval from

the origin to the first hitting of the point 1 and the possibly incomplete last excursion
(the interval from the last hitting of the point 1 to t). Then

i=1
and we may consider
(1.21) Q) =t-vH —y® = ZV;&(O-
i=3
The upper and lower classes for () are in complete analogue to those for R(-).

Theorem 1.2. For anye > 0,c> 0

(1.22) tlogt e UUC(Q(®)),
eXp ( (logy t)1+= )

(1.23) - (tclogt) e ULC(Q(1)),

(1.24) exp (E;gf) e LUC(Q(?)),

(1.25) exp (ﬁ) € LLC(Q(t).

In Section 2 we prove Theorem 1.1, while Section 3 contains the proof of Theorem
1.2. Since the proof of Theorem 1.2 is similar to that of Theorem 1.1, except that the
results of Erdés and Taylor (Theorems A,B,C) are not available for Wiener case, we
give first the analogues of these results and then sketch the proof of Theorem 1.2.
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2. Proof of Theorem 1.1.

First we prove (1.16). Let

1) fi(n) = exp (li)

(logy n)tte

with some ¢ > 0. It follows from Theorem A that we have almost surely &(n) <
log n logg n for large enough n. Put

> il
1<i<log nlogs n fi (TL)

where I{} denotes the indicator of the event in the brackets. Let o = 1/(2 + ¢),
e = [exp ()], Ni = flog i logy ma] = [a(log k)e**] + O(1) and

(2.2) Up =

STiSn}a

Nig41 N
2 = X g <<}

Obviously, 7x has binomial distribution with parameters (Ng,1, px), where

n
pr =P {fl(:’/k) <7 < nk+1}-

We obtain from Theorem B that as &k — oo

™ ™ o
+O0((logny)™*) = - = +0(™)
et (1 - k:(—Hl—E)a) el+)

™ ™

N log 77  log s

_ T T (T Y e
'_LWO ) eW)+QW ) +OE™)

T k+e)a

Pk

™ o (1+a)r
= <k(1+6)aek0¢ + kl_aeka) (1 + 0(1)) = W(l -+ 0(1))

An easy calculation shows that

log® k
2 2
(2.4) Ny = O (W)



For large k we have
Ni41

(2.5) P{7, > 2} = Z (N‘I;,—H)pi(l —pk)N’“rl_j <

Jj=2

Niy1 (N J ’
+1pk) 2 = log_k
<y #S(Nkﬂpk) _O<W ’

i=2

hence by Borel-Cantelli lemma,
(2.6) P{7, > 2i0.} =0,

i.e. with probability 1 for large enough k£ we have 7, < 1 and a fortiori for large
enough n, v, < 1. Hence

n
<lognloggn——

(2.7) R(n) < &(n)—— fi(n)

eventually. Since € > 0 is arbitrary, this shows (1.16).
Now we turn to the proof of (1.17). Define the events

(28) BN = U BN;i,j

1<i#j<N
with
c
By.i; = 1— Tog N logm; < logT; < logTy,
<r<Nir#i,j

(2.9) 3N/2 <logT; < 2N, |, max log 7, < N}.

We show that P{By i.0.} = 1. Clearly, for N large enough,

P{By} = N(N —1)qy (P{logry < NH)V 2,

where

c
gy =P { (1 — logN> logm <logm <logm, 3N/2 <logm < QN} )



To estimate ¢y, one can condition on logm = x € (3N/2,2N) and use Theorem

B to see
cT

c
P<(1- 1 ~
{( logN>x< 0g7'2<:r} zlog N’

which implies for large N

cT 2cm
—— o SN <
4N?log N NZ?log N

Using Theorem B again, it can be seen that

lim (P{logr; < NH)V™

N—oo

is finite and positive, so we arrive at

4
<P{B <
logN — {Bn} <

&
log N

(2.10)

with some positive constants C; and Cj.

Put Ny = [€¥], then P{By,} > C)/k, therefore ¥, P{By,} = co. Now we
estimate P{By, By, }.

For large enough £ + 1 <[ we have

3Nl Cc
2N, — 1 -
FS T ( logNl) ’

and it is easy to see that

(2'11) P{BNkBNz} < P{BNk}P{BNk,Nl}a

where 5

(2.12) By.vv= U Buywii
Np<i#j<N;

with

By, Ny = { <1 — logLNl> log7; < logT; < logT;,

. ; < .
(2.13) 3N,/2 < logT; < 2Ny, qungl%frﬁ’j log7, < Nl}



We obtain similarly to (2.10) that with some positive constants Cs, Cy, Cs

Cs Cy

P{B < (N, = N,)P?—2 <
{Briow} < (N = N) NZlogN, = 1

< C5P{BN1 }7
1.e.

P{BNkBNl} < C5P{BNk }P{BNl}a

hence by Borel-Cantelli lemma, P{By i.0.} > 0, consequently P{Byi.o.} =1by0-1
law.

Now let n = 2py. Then By implies n = 2py < €3V for large N and since there
must be a large excursion between py and 2py by (1.12), also

log R(n) = log R(2pn) > log o n > <1 — ) log 71w,

c
log N

where 71 y > 7o n are the two largest excursions among 71, ..., 7y. Thus By implies

c 2c 3¢
log R >(1——+ |1 >(1————]log(2 >(1———]1
og R(n) 2 ( logN> O8TLN = ( logN> og(2pn) 2 ( loglogn) 8™,

consequently we have this inequality infinitely often with probability 1, proving (1.17).

For the proof of (1.18) we note that R(n) < k(n) and hence it follows from
Theorem C.

It remains to prove (1.19).

Lemma 2.1. For N > 1, let iy > ... > Ty n be the order statistics of {T;}1<i<n-
Then for each fixed k > 1,

log, N
lim inf 082
N—o0

logmpyn = a.s.

Proof. According to Theorem A2

1
lim inf 282V
N—oo

logpy =7 a.s.

So we only have to prove the lower bound.
Fix € > 0, and consider

TN
py =P {logﬁ > (1 _5)10g N}'
2
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By Theorem B, for 0 < ¢; < € and large N,

logy N 2logy, N
1_e)N -PV="TN
Therefore N
T
P!l 1-—
{OngN<( E)]OgQN}
k—1 N '
= ( -)Pﬁv(l —pn)V
=0 t
k-1 .
<23 (Npn)'(1—pw)"
i=0

< 2k(2logy, N)5(1 — py)™
< 2k(2logy N)* exp(—(1 — &;) *log, N).

Taking a geometric subsequence, using Borel-Cantelli lemma and monotonicity con-
cludes the lemma. O
Now let py < n < pyy1. Since R(n) is non-decreasing, we have

log R(n) > log R(py) > logmn > (1 —¢) logiVN'
By (1.7), |
) 0
Z&%ﬁ = a.s.
Hhos log pn+1 logn

log R(n) >

(logy prv1)'1% — (logy m)'H2e
This proves (1.19) completing the proof of Theorem 1.1. O

3. Proof of Theorem 1.2.

Define two increasing sequences of stopping times (o,,) and (6,,) by:

(3.1) oo = inf{t>0;[W(t)|| =1},
(3.2) 0, = inf{t>o,_1;|[[W(t)||=2}, n>1,
(3.3) o, = inf{t>0,;||W(t)| =1}, n>1.

Then {0, —0,}5, is a sequence of i.i.d. random variables and so is {0, —0,—1}22 ;.
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Lemma 3.1.

2log?2 9
A P — = 1
(3.4 (01— 01> o} = 82+ O((log) )
and 9102
og -2
. P — = 1
(3.5) {1 — 09 >z} Tog + O((logz)™)
as T — 0.

Proof. According to Kent (1978), for any A > 0

(3.6) E {exp (—A(o1 — 0,))} = %
and
(37) B {exp (<A(: — 00)} = jﬁ“gi

where I, and K, are the modified Bessel functions. We have (cf. Gradshteyn and
Ryzhik, p. 961, Formula 8.447)

Koy(z) =log(1/z) +1log2 — C + O(2), z— 0",
where C is Euler’s constant and

Iy(2) = 1+ O(z%), z— 0",

Henee Ko(V8X) _ log(1/X) —log2 —2C + O(VA)
Ko(v2X)  log(1/X) +1og2 — 2C + O(V/A)
(3.8) — % + O((log(1/X))7?)

as A — 0". From this we would obtain the main term in (3.4) by applying a Tauberian
theorem (cf. Doetsch (1950), p. 511). Following its proof, we can also obtain the
remainder as follows.

Start from the elementary inequalities

ev: — v

: <1< (14ew—ev? for 1/e <wv <1,
6_
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<0< (1+e)v—ev for 0<wv<1/e.

Putting v = e **, denoting by H (u) the distribution function of o1 —#;, with z = 1/
we get

? °° X _ . ~2u _ Ko(V8))  Ko(V16))
/OdH(u)g/O (1+ e = et (W) = (L+ 7o = 2 s

and similarly,

z %0 g AU _ gmAU e Ky(V16)) 1 Ky(v8))
/0 dH(“)z/o o1 W= TR V) e 1RV

Both the upper and the lower bounds are of the form

Ko(V8X) Ko(V16))
vy TP R (v

with A+ B = 1. We obtain from (3.8)

K(VBY)  Ko(VIEY)  2log? s
1 _AKo(\/ﬂ) - B Ko(VDY)  1og(L/Y) + O((log(1/A))™).

Since P{oy — 6, > 2} =1 — [y dH(u), this proves (3.4).
The proof of (3.5) is similar, since independence of o1 — 6, and 6, — o, gives

Lo(V2)) Ko(V8A)
Li(VBA) Ko(V2))

Now put 7; = 0; — 0;_1, n(n) = max{N; oy — oy < n}. (Here n can be considered
as a continuous variable, taking real numbers.) Then one can define the ordered ”ex-
cursions” M) > M > ... > MW+ in terms of 7 exactly in the same way as M,
were defined in terms of 7. Accordingly, we define R(n) = n— M{) — M. Following
Erdés and Taylor (1960) one can easily see from Lemma 3.1 that all the results in
Theorem A1l and Theorem A2 remain true if 7&(n) is replaced by (2log2)n(n) and
(log px)/m is replaced by (log(on — 00))/(21og?2). For R we have

E{exp (—=A(o1 —09))} =

Proposition 3.1. Theorem 1.1 remains true if R(n) is replaced by R(n).
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Proof. In fact, (1.16), (1.17) and (1.19) with R replaced by R can be proved exactly
the same way as in Section 2. We have only to show (1.18) for R.
Fix any constant ¢ > 0, and let

2N
_ -1 ~ -1 ~
By = j:LNJH{ 3¢t NlogN <log# < 4c ' NlogN, _max  logi < N},

Since (7;) are iid,
P{By} = N (P{log7y < N)* " 'P{3¢ ! Nlog N < log7 < 4c™* Nlog N},

which, in view of Lemma 3.1, gives

C1
log N’

P{By} ~

Put N, = 2% to see that >, P{By,} = oo. Let k < [, then 2N, < N, + 1.
Accordingly, with some positive constants ¢ and c3

P{By,By,} = Ni (P{log7 < N;})*™ ' x
xP{3c™! Nilog N}, < log7 < 4c™! Njlog Ni} x
x N, (P{log7 < N;})*N— M=t
xP{3c! N;log N; < log 7 < 4c™* N;log N;}

C2
< c3P{By, } P{By,}.
log Ni) (log ;) — ¢s P{Br,} P{Bn}
It follows from the Borel-Cantelli lemma that P{By i.0.} > 0. Since the event
{By i.0.} is invariant under finite permutations of (7;), the Hewitt—Savage 0-1 law
confirms that its probability equals 1.
Almost surely, there are infinitely many /N such that, simultaneously,

=1

OaN — 0 — lgrilggiN(ai —0i_1) < (2N —1)eV < e

b

log(oan — 09) > 3¢t Nlog N.

Therefore, infinitely often,

} oN c log ooy
Rlow) < ow =0 = max (= 0i1) < < emp (T ),
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which yields (1.18) for R. O
For the proof of Theorem 1.2 note the following inequalities valid for large enough
n:

VDV <D+ P <V VO bt Y (- o).
i<n(n)
from which
R(TL) < Q(n) < R(TL) + 0p + Z (0, - 0'1'_1).
i<n(n)

It follows from (3.7) that E{6; — 0p} < oo, hence by the law of large numbers,

> (6; — 0i—1) = O(n(n)) = O(lognlogs n) a.s.
i<n(n)
as n — oo.
This completes the proof of Theorem 1.2.
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