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Summary. The basic coalescing random walk is a system of interacting
particles. These particles start from every site of Z¢, and each moves in-
dependently as a continuous-time random walk. When two particles visit
the same site, they coalesce into a single particle. We are interested in: (a)
the radius R4(T") of the largest ball centered at the origin which does not
contain any particle at time 7'; and (b) the amount of time A4(7") when the
origin is occupied during [0,7"]. We describe the almost sure asymptotic
behaviours of Ry(T) and A4(T) (when T' — o0), in three different regimes
depending on whether d =1, d=2 or d > 3.

Keywords. Coalescing random walk, void zone, occupation time.

2000 Mathematics Subject Classification. 60G50 60K35.

LCorresponding author



1 Introduction

We consider an elementary example of interacting particle systems: the basic model of
coalescing random walk. Particles start at time ¢ = 0 from every site of Z¢, and execute
independent continuous-time simple random walks. Each particle jumps at the times of a
rate one Poisson process, and when it jumps from position z € Z<, it jumps to any one of
the (2d) neighbour sites of z with equal probability 1/(2d). The only interaction between
the particles is when a particle jumps to a site which is already occupied by another particle:
in this case, the two particles coalesce into one, which goes on to move as a continuous-time
simple random walk.

It is known that there is a duality between the coalescing random walk and the linear
voter model (Griffeath [13]).

For each x € Z%, let (£3(t), t > 0) denote the movement of the particle starting from
position z. Let &;(t) := {€%(t), x € Z%}; it is the set of sites in Z? which are occupied by a
particle at time t.

In the present paper, we are interested in Ry(t), the radius of the largest ball centered at
the origin which does not contain any site occupied by &4(¢), i.e.,

Ro(t) == inf a,

z€€q(t)

where ||z|| denotes the Euclidean modulus of z € Z¢.

The distributional behaviour of R4(T') for large T" is known. Indeed, Arratia [1] showed
that £4(T), suitably normalized, converges in distribution to a non-Poissonian point process
for d = 1, and to a Poisson point process when d > 2. Our aim is to study the almost
sure asymptotic properties of Ry(T"). Of course, since the origin is occupied infinitely often
(this is clear for d = 1 or 2, and is a consequence of Theorem 1.3 below for d > 3), it is

meaningless to study the lim inf behaviour of R4(T).

Theorem 1.1 We have

: R(T)
1.1 | =1 .S.
(11) Ty (TloglogT)i2 — 70 &%
: Ry(T)

1.2 < 1 < .S.
(1:2) @ = NP T(log ) P loglog Ty M
Ry(T

(1.3) c3 < limsup a(T) a.s., d> 3,

— <
To? [Tlog Ty =

where c1, ¢z, c3 = c3(d) and cqy = c4(d) are finite positive constants.
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In order to state our second theorem, we consider the occupation time defined by

T
(14) Ad(T) = / 1{0€§d(t)} dt,
0

(14 denoting the indicator of A). In words, A4(7") stands for the total amount of time before
T during which the origin is occupied by the coalescing random walk. Sometimes A4(7) is
also referred to as the local time at 0 of the random walk.

We recall what the “typical values” of Ay(T) are. Let

(1.5) pa(t) :==P{0 € &(t)},

which denotes the probability that 0 (or any given site) is occupied by the coalescing walk at
time ¢. By means of the duality with the voter model, Bramson and Griffeath [8] determined
accurately the asymptotic behaviour of py(t).

Throughout the paper, we write a(t) ~ b(t) (¢ — oo) to denote lim; ,, a(t)/b(t) = 1.

Fact 1.2 (Bramson and Griffeath [8]) Let py(t) be as in (1.5). Ast — oo,

1
1.6 ) ~ —,

logt

1
1.8 ) ~ —,  d>3,
(1.9 palt) ~

where 4, d > 3, denotes the probability that a d-dimensional simple symmetric random walk

never returns to its starting point.

By Fubini’s theorem, E[A4(T)] = fOT pa(t) dt, from which it follows that, when 7" — oo,

2T

(1.9) E[A(T)] ~ 7 2
(1.10) B, (1)) ~ (TS
(1.11) E[Ay(T)] ~ lojT, d> 3.

It is easy to determine the asymptotic behaviour of A;(7). We have, almost surely

A(T) = TW/2+o0) for T — oo. Indeed, the lower bounds follows immediately by considering
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only a single particle (say the one starting from the origin), whereas the upper bound is a
simple consequence of (1.9), Chebyshev’s inequality on taking a subsequence and applying
the Borel-Cantelli lemma.

Our next result concerns the almost sure asymptotic behaviour of A4(7T") (for d > 2), in

the form of a law of large numbers.
Theorem 1.3 For d > 2 we have

. MN(T)
(1.12) Jim gt =1

For an account of general properties of coalescing random walk, we refer to the books of
Liggett [16] and [17], formulated in terms of the voter model. Other asymptotic properties
of the occupation times of the voter model can be found in Cox and Griffeath [10], Bramson
et al. [6]. Let us also mention a few recent papers. In van den Berg and Kesten [3]-[4],
the exact asymptotic density of general coalescing random walks in high dimensions was
determined. There is also an interesting relationship between the voter model and super-
Brownian motion, recently discovered by Cox et al. [9] and Bramson et al. [7].

The rest of the paper is organized as follows. In Section 2, we prove probability estimates
for coalescing random walks in any dimensions. These probability estimates will be used in
the proof of the higher-dimensional parts — (1.2) and (1.3) — of Theorem 1.1 and in the
proof of Theorem 1.3. More precisely, we prove in Section 3 the upper bounds in (1.2)-(1.3),
and in Section 4 the corresponding lower bounds. In Section 5, we exploit some special one-
dimensional features to prove (1.1), and thus complete the proof of Theorem 1.1. Finally,
Theorem 1.3 is proved in Section 6.

For any set A of Z% #(A) denotes the cardinality of A. The letter ¢ with subscript

denotes unimportant constants which are finite and positive.

2 Probability estimates for coalescing random walks

The main aim of the present section is to prove probability estimates (Propositions 2.1 and
2.2 below) for coalescing random walks in any dimensions. These estimates will be used in
the next sections in the proof of (1.2), (1.3) and (1.12).

As before, &;(t) denotes the set of all the sites which are occupied by the coalescing

random walk at time ¢.



Here are the main probability estimates of the section.

Proposition 2.1 Let d > 1, and let (a(z), z € Z%) be a collection of non-negative numbers
such that Y, yaa(x) < co. For T >0, let

Then for any integer k > 1,

(21)  E{{vr — E(vr)]*} < (20)%* ) a® (2)pa(T) + (05 > a2(x)pd(:r)> ,

z€Z4 rcZd

where ¢; = c5(d) € (0,00) is a numerical constant, and py(T) is defined in (1.5).

Proposition 2.2 We have,

(2.2) Var[A(T)] < T, (T >1)
(2.3) Var[Ay(T)] < ¢7(logT)?, (T > 2)
(2.4) Var[Aq(T)] < cglogT, d>3, (T >2)

where cg, c7 and cg = cg(d) are (finite) constants.

The estimate (2.2) for Var[A;(7)] is not of any use. It is stated in Proposition 2.2 only
for the sake of completeness.

The rest of the section is devoted to the proofs of Propositions 2.1 and 2.2, which rely
on the van den Berg-Kesten—Reimer (BKR) correlation inequality. We however do not need
in this paper the full strength of the BKR inequality, and state it here only for the special
binary case.

Let V be a finite set and let Q = {0,1}V. For w € Q and K C V, let [w]x denote the set
of all w" which agree with w on K: w, = w;, i € K. For A, B C 2, AOB is defined as the
set of all w € Q for which there exist disjoint K, L C V with [w]x C A, and [w], C B. The
BKR inequality is recalled as follows.



Fact 2.3 (van den Berg and Kesten [4], Reimer [19]) Let u be a product measure on
Q. For any A, B C (,
#(AOB) < p(A)u(B).

The BKR correlation inequality allows us to overcome some dependence difficulty in the
study of coalescing random walks. Here is an application. We say that two R-valued random
variables X and Y are negatively dependent, if P{X > a, Y > b} < P{X > a}P{Y > b}
for all real numbers a and 6. In the literature, this negative dependence bears the more

technical name of “negative upper orthant dependence” (Joag-Dev and Proschan [14]).

Lemma 2.4 Letd > 1, and n > 1. Let xq, ---, =, and y be distinct sites in Z%, and let
ai,---,an be non-negative numbers. Then for any T > 0, Y7 | a;ligce, )y and Liyee, )

are negatively dependent.

Proof of Lemma 2.4. When n = 1, this was proved by Arratia [1] and is also a special
case of Lemma 2.4 of van den Berg and Kesten [4], p. 8. In [4] the model of coalescing
random walk is more general, than in the present paper. We outline the proof of our Lemma
2.4, following the same discretisation schema and proof of Lemma 2.4 of van den Berg and
Kesten [4]. For each z € Z% and v € Z% with ||z — v|| = 1 consider a Poisson point process
(in time) with intensity 1/(2d) and for each Poisson point draw an arrow from z to v. These
Poisson processes are assumed to be independent of each other. Now the coalescing random
walk can be described as follows: a particle starting from site x € Z¢ at time t = 0 stays
in that position until there is an outgoing arrow from that position and jumps to the other
endpoint of that arrow. It stays in this new position until there is an outgoing arrow from
this new position and again jumps to the other endpoint of this arrow, etc. If two particles
are in the same position at the same time, they stay together forever (they coalesce). Now for
fixed T consider a partition [¢d, (£ + 1)) ¢ =1,2,...,k of [0, T] such that k6 = T'. Consider
the slight modification of the coalescing random walk in discrete time setting as follows. The
particles postpone their jumps until the end of the time interval in which the corresponding
arrow is located. Moreover, if the time interval has more than one outgoing arrow from a
site in which a particle is located, the particle will stay in that location forever. For a fixed
positive integer N such that ||z;|| < N,i = 1,---,n, let Xy := {z € Z¢: ||z|| < 2N}.
We define V := Xy x K x Q, where K := {1,2,...,k} and Q := {v € Z% ||v|| = 1}. For
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(z,4,v) € V let W(z,ew) = 1 if there is an outgoing arrow from z to z + v in the time interval
(65, (¢ + 1)6) and w, ¢, = 0 otherwise. We clearly have

P{w,e, =1} =1 —exp (—;d) ,

and w, ¢y, 2 € Xy, £ € K, v € Q are i.i.d. random variables. Let &(T) be the set of
occupied sites in this modified model. Fix a > 0 and let

A o= {me&(D)}, i=1,--,n,

B = {ye&()},

A = {Z“il{zie&m}?“}’
=1

and let D be the event that for all x € Xy and ¢ € K there is at most one outgoing
arrow from z in the interval [£6, (¢ + 1)d). Since ay, - -, a, are non-negative, there exists

J=J(a,a,---,a,), aset of subsets of {1,2,---,n} (depending on a and on a;) such that

A= U (Ajlﬂ"'ﬂAjk)'

{jl:"'ajk}e‘]

According to [4], pp. 9-10, there are sets g,-, 1=1,---,n, E, which are union of cylinders,
such that 4,ND = A;ND and (4, NBN D) C (A;0B),i=1,---,n. Therefore,

AnBnD = |J [(A4,nBnD)N---N(4; NnBND)]
{.7175.7.’9}6‘]
c U |[@oBn-n,0B).
{.7175.7.’9}6‘]
The sites z1, - -+, z,, and y being distinct, we can choose a common L C V in the definition

of ;0B such that [w]x, C A, and [w], ¢ B. Thus [(4;,0B)n---n(4,0B)| c
(Zjl N---N Avjk) d E] Accordingly, by Lemma 3.1(iv) of van den Berg and Fiebig [2],

AnBnD ¢ | [(Zjlm---mﬁjk)mé]
{.]175.7.’9}6‘]

C U @An--n4,)| OB
{]lva]k}e‘]

= AOB,



where
i= U @yn-ndy).
{]lya]k}e‘]

By the BKR inequality (Fact 2.3), this implies

P(ANB) < P(AOB)+P(D°) < P(A)P(B) + P(DF)
< (P(A) + P(D%))(P(B) + P(D°)) + P(D").

Now one can go back to infinitely many particles and continuous time case by letting § — 0
and N — oo as in van den Berg and Kesten [4], p. 10. O

Lemma 2.5 Letd > 1, n> 1 and k > 1. For any distinct sites 1, - --, =, in Z%, and any

non-negative numbers ay, - -+, a,, we have

2k

(2.5) E (Zaz’ [1{wie§d(T)} - pd(ﬂ}) <E (Zaz‘ [Yi(T) - pd(T)]> )

where py(T) is defined in (1.5), and Y1(T), - - -, Yo(T) are independent random variables such
that for any i, Y;(T) is distributed as 1iz,ce 1)}

Proof of Lemma 2.5. According to Theorem 2 of Shao [20], if X; and X, are negatively
dependent such that E(| X, |** + | X,|?*) < oo, then

(2.6) E{(X1 + X2)*} <E{(V1 + Y2)™},

where Y] and Y5 are independent random variables such that Y; is distributed as X; (fori =1
and 2). We mention that Shao [20] proved (2.6) for negatively associated random variables,
and that for a pair of random variables (which is the case here), the properties of negative
association and negative dependence are equivalent (Joag-Dev and Proschan [14]).

If n =1, (2.5) is trivial. For n > 2, we note that according to Lemma 2.4, the random
variables 7" ai 1ig.ce,myy — pa(T)] and an[ 144, ce ()} — pa(T)] are negatively dependent.
Therefore, Lemma 2.5 follows from (2.6) by induction. O

We now recall the well-known Rosenthal’s inequality (see for example Petrov [18], p. 59).



Fact 2.6 (Rosenthal’s inequality) Let k > 1 be an integer, and let Zy, ---, Zy be inde-
pendent mean-zero random variables such that B[ Z2* | < oo for all i < N. Then

k

N 2k N N

(2.7) E (ZZZ) < CQZE[ZZ?JC]"{‘CIO (Z]E[Z’LQ]> ,
i=1 i=1 i=1

where cg = co(k) and c19 = c19(k) are finite constants whose values depend only on k.

In order to prove Proposition 2.1, we will need to know in (2.7) the dependence on k of
the constants cg and c19. So let us recall a refined version of (2.7) in Petrov [18], p. 62, which
states that (2.7) holds with cg := r?* and ¢y := 2kr*e" B(k, r — k), for any r > k, where B
is the beta function. Taking r = 2k, and (2.7) becomes:

(2.8) E (iz) (2k) ZkZIE[Z%]-i— iy ke (Z]E[Z2 > :

=1

where ¢1; € (0,00) is an absolute constant.

We have now all the ingredients to prove Proposition 2.1.

Proof of Proposition 2.1. Let A be a finite subset of Z¢, and consider the random variable
v =3 4 0(2)Ligee,r)}. By Lemma 2.5 and (2.8), we have

(v ~Ew) ) < @)%Y @) B [Lpegm) — pa(T)]™)

T€EA

+(eu k) (Za { 1{wesd(T)}—Pd(T)]2}) :

T€EA

Since E{ [ 1izee, (myy — pa(T) [* } <E{ 1izee, 1)y } = pa(T), this implies

E{[v7 - E) ]} < (20)* ) o™ ()pa(T) + (Cu kY az(x)pd(T)> :

x€Zd x€Z4

Take A = A, := {z € Z¢: ||z|]| < n} and let n — oo. The monotone convergence theorem
ensures that E(vs*) — E(vr). Therefore, we obtain the proposition by an application of

Fatou’s lemma, with c5 := c¢q3. O

We now turn to the proof of Proposition 2.2. We first need a simple correlation result.

Recall that £5(¢) denotes the position at time ¢ of the particle starting from x.



Lemma 2.7 Letd > 1. Fort > s> 0,

(2.9) P ( U &) =0 & #0,0¢ fd(t)}) < pa(s) pa(t),

z€Z4

where pq(+) is defined in (1.5).

Proof of Lemma 2.7. Recall that in case n = 1 our Lemma 2.4 is equivalent to the

inequality

P ( U i€t =y 0e gd(w}) <P ( U te50) = y}) P{0 € &(1)

T€Z4 z€Z4

for y # 0, the proof of which was given in Lemma 2.4 of van den Berg and Kesten [4], p. 8.
The very same proof shows also that for s < ¢ and y # 0,

P ( U €9 =0, &)=y, 0 ¢ fd(w})

T€Z4

< P ( U t&is) =0, &0 = y}> P{0 € &a(t)} -

TEZ4

Now (2.9) follows by summing over y € Z%\{0}. O
The section ends with the proof of Proposition 2.2.

Proof of Proposition 2.2. Observe that

E{[Aq(T)]*} = 2// P{0 € &(t1), 0 € &(t2)} dty dts.
0<ty <ta<T
Moreover, for t; < to,

P{O € fd(tl), 0e gd(tg)} = P {f;(tl) = §g(t2) =0 for some z € Zd}
+P {&5(t1) = 0 # &5(ty) for some z € Z%, 0 € &4(t2) } -

Let ¢(0,0) := P{S%(¢t) = 0}, where S denotes a continuous-time rate one random walk
starting from 0 € Z¢. (We have ignored the dependence of ¢;(0,0) in d.) Then

P {g(g(tl) = é‘csic(tQ) =0 for some z € Zd} = pd(tl) iyt (0,0)5
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whereas by Lemma 2.7,

P {&5(t1) = 0 # &5 (t2) for some z € Z% 0 € &q(t2) } < pa(ty) pa(ta).

Therefore,

E{[A4(T)]2} < 2 / /0 P (0.0) a0 ( /0 () dt>2,

or, equivalently,

Var[Ay(T)] < 2 / / pa(t2) g1, (0,0) dt dto.
0<t1<t2<T

Now the proposition follows from Fact 1.2 and the well-known estimate g;(0,0) < (Hi%
(for any d > 1 and some c15 = ¢15(d)). O

3 Proof of (1.2) and (1.3): upper bounds

This section is devoted to the proof of the upper bounds in the higher-dimensional parts
(d =2 and d > 3) of Theorem 1.1. We start with a preliminary estimate which holds in any

dimension.

Lemma 3.1 Let d > 1, and let A € Z% be a finite non-empty set. For any T > 0 and any
integer k > 1,

_ (26)* (cs k)"
PLANG(T) =0} < o o T ™ TpalT) AV

where cs is the numerical constant in (2.1), and pa(T) is defined in (1.5).

Proof of Lemma 3.1. Write vr := #{AN&(T)} = > ,ce 1) Lizeay- Then {ANE(T) =
0} = {vr =0}. Note that

E(vr) =E (Z Lizea) 1{zesd<T>}) = pa(T) #(A)-

ez
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By Chebyshev’s inequality,

P{vr =0} < P{|vr —E(vr)| > E(vr)}
E{ [vr — E(vr) 1}
[E(vr) |2
E{[vr —E(vr) *}
[pa(T) #(A) |+

It suffices now to apply Proposition 2.1 to a(z) := 1izcay- d

IN

Proof of (1.3): upper bound. Assume d > 3. Let A > 1 be a constant whose value will

be determined later on, and let
Cy(T) :={z €2 || < (\TlogT)"*},

where |z| := max;<;<q|2?| denotes the L®-norm of z := (z(V,--. z(9) € Z¢ In words,
C(T) denotes the set of lattice points in the cube centered at the origin with side length
2| (AT log T)'/¢|.

Note that #(Cy(T)) ~ 2\T logT (for T — 0o). On the other hand, according to (1.8),
pa(T) ~ 1/(7T), T — oo. Thus, for all sufficiently large 7' (how large depending on d and

A),
d—1

pa(T)#(Cy(T)) > - logT := ci3 A\logT,

where c13 = c13(d) := 24! /v4. Applying Lemma 3.1 to A := Cy(T) and k := [logT|, we
obtain that for large 7,

(2k)% (cs k)"
[cis Alog T]P*=1  [e13 Alog T']*

2k \* sk O\
= AMlogT) | ————— _
13 AllogT) <013/\10gT> i <013)\10gT)

92 2k c k
S C13 A(log T) (613 )\> + <C]_35A>

We now choose the constant A so large that —25 < e™! and -%; < e2. Then for large T,
13 C13

P{Ca(T)N&(T) =0}

cizsAlogT +1 _ (cizAlogT + 1)e?
PLOM)N&(T) =0} < == — <

the last inequality following from the fact that £ > log7" — 1.

12



By the Borel-Cantelli lemma, almost surely for all large integer n, Cy(n) N &y(n) # 0.
There exists thus at least a particle, say &"(n), such that £ (n) € Cy(n). Since (£5"(n +

t) — & (n), t > 0) is a continuous-time random walk, we have

JP’{ sup [[£5"(n+1) — &5 (n)]| = (310gn)1/2}

t€[0,1]

= { sup [[€9(t)[| > (310gn)1/2}

t€[0,1]

< 1
_Wa

for all large n. Therefore, sup,co y |65 (n +t) — £7"(n)|| < (3logn)'/? almost surely. This
implies that almost surely for all large T', there is at least a particle which lies in the cube
centered at the origin with side length 2| (AT logT)Y/¢| + (3logT)'/2. As a consequence,

lim Sup Rd(T) d1/2)\1/d

Tooo  (T'logT)Ye — "

yielding the upper bound in (1.3). O

Proof of (1.2): upper bound. The proof of the upper bound in (1.2) is along similar lines
as in the case d > 3, so let us outline the argument, and emphasize on the modifications.
First, the size of the cube Cy(T) is changed: we should replace Cy(T) by Co(T) := {x € Z? :
lz| < (AT)Y2(log T)~*/?(loglog T')'/?}. The reason for this change in the choice of Cy(T) is
that the estimate py(7) ~ 1/(v4T) for d > 3 is now replaced by po(T) ~ (logT)/(27T), as
stated in (1.7). For the new choice of Cy(T'), we apply Proposition 2.1 to k£ := |loglogT|
(instead of |log T'| in dimension d > 3) to see that, if the constant A > 0 is chosen sufficiently
large, then for all large T,

ciy AloglogT

P{Cy(T) N &(T) =0} < (logT)*

where ¢y € (0,00) is a constant. Taking the subsequence T}, := exp(n'/?) and applying the
Borel-Cantelli lemma, this yields that almost surely for all large n, Cy(T,) N &(T,) # 0.
On the other hand, a Borel-Cantelli argument says that for large n, the increment size of a
given particle during [T}, T,,;1] cannot exceed (T,,11 — T;,)"/?(3logn)'/? (thus cannot exceed
c15 Th'* (log T,,) "' (log log T},)'/2 a fortiori, for some constant ¢15). Consequently, almost surely
for all large T, there is at least a particle lying in the cube centered at the origin with side
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length 2| (AT)Y2(log T)~'/2(loglog T)/?| + c15 T"/*(log T)~'(loglog T)*/2. This yields the
upper bound in (1.2). O

Remark. The argument in this section of course applies also in dimension d = 1, and gives

that Ry(T)
. 1 <
l;n_ilip T 2loglogT — “16;

for some constant c;g > 0. However, this is a poor estimate, since by considering only the

a.s.,

particle starting from the origin and using the usual iterated logarithm law, we know that

lim supy_, o, WQTW < 21/2 almost surely. O

4 Proof of (1.2) and (1.3): lower bounds

To prove the lower bounds in (1.2) and (1.3), we first study a single particle (S5(¢), ¢t > 0)
which is a continuous-time rate one random walk starting from z € Z?. We write g;(z,y) for
the probability density of the random walk: ¢(z,y) := P{S5(t) = y}.

For any non-empty subset A of Z% let diam(A) = sup{|lz —y|| : z € A, y € A}
denote the diameter of A, and let g.(z, A) := P{S3(¢t) € A}. We start with two preliminary

estimates.

Lemma 4.1 Let d > 1, and let A be a non-empty subset of Z¢. Let 0 < s < T be such that
(T — 5)'/? > diam(A). Then

(4.1) P{&(T)NA=0|F} >expS —cir > ars(z,A)p,  as,

T€EH(s)

where c¢17 = c17(d) € (0,00) is a constant depending only on d, and Fs := o{&3(t) t €
[0, s], x € Z4}.

Proof of Lemma 4.1. Consider the following modified model of particle system: until time
s, it is our coalescing random walk (£5(t); ¢ € [0, s]), and for ¢ € [s,T], the particles keep
moving independently without coalescence. We denote by &,(T) (which of course depends

on s) the set of all the sites which are occupied at time 7" by the new system of particles.

14



Without loss of generality, we make a coupling for the two models into a same probability
space, so that £;(T) D &4(T). Thus

(4.2) P{&(T) N A=0| F} > P{E(T)NA=0|%}.

Given F,, £,(T) is by definition the set of all the sites in Z? occupied by independent
random walks (without coalescence) at time (7 — s) starting from every site of £;(s). Ac-
cordingly,

(43) PEM)NA=0]7}= ] [1-arila.A)]

z€€4(s)
Since (T — s)*/? > diam(A), we have sup,.gz4qr_s(z, A) < 153 < 1 for some constant
c1s = c15(d). As a consequence, there exists c19 = c19(d) € (0,00) such that 1 —gp_s(z, A) >
exp{—cig qr_s(x, A)} for all x € Z¢. Plugging this into (4.3) and (4.2) yields the lemma. OJ

Lemma 4.2 Letd > 1, and let A be a subset of Z® containing at least two points. Let u > 0
andv >0, and let Z:= 37 . ) qu(z, A). Then

(4.4) E(Z) = pa(v) #(A).
Furthermore, for any integer k > 1,

]E{ [E-E(E) ]2k } < kapd(U) #(A) <c20 (1111]107/(;1)>2k1

s,

ul/2

(45) -+ (620 kpd(v) #(A)

where ¢y = co0(d) € (0,00) is a constant depending only on d.

Proof of Lemma 4.2. Since Z = ) _,.q.(z, A) 1{zegy(0)}, it follows from Fubini’s theorem
that

(4.6) E(E) = ) qu(w, A)P{z € &(v)} = ) qu(@, A) pa(v).

z€Z4 x€Z4

By symmetry, ¢,(7,y) = ¢u(y, ), so that

(47) ZQu(xaA) = ZZQu(xay) :ZZQu(yax) :Zl :#(A),

€74 z€ZIdyeA YEA €74 yeA

which, in view of (4.6), implies (4.4).
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To check (4.5), we apply Proposition 2.1 to T := v and a(z) := g,(x, A) to see that, for
any integer k£ > 1,

IE{ EREERE } (2k) QquQk z,A)p <c5k2q3(x,A)pd(v)> .

T€A €A

For any b > 1, in view of (4.7), we have

Zqﬁ(m,A) < (sup q, ) Z qu(z, A) < #(A) sup ¢¢ 7' (z, A).

zEA z€Z4 ezl zcZd
Since Sup,czq qu (T, A) < o1 u~l/2diam(A) for some ¢y = cy1(d) € (0,00), this yields (4.5),
and completes the proof of Lemma 4.2. O

Proof of (1.3): lower bound. Assume d > 3. Consider the subsequence T, := n®, where
a>(d+2)/(d—2). Let Cy(T) :={x € Z%: |z| < (A\TlogT)?}. Here,

Yd
4.8 A= A(d, T T E—
(43) (d.0) = g,

where c¢;7 is the constant in (4.1). Let

ni={&(T)NCu(T,) =0}

For each n, A,, is measurable with respect to Fr,. If we could show that
(4.9) Y P{Au|Fr,} =00, as,

then according to Lévy’s version of the Borel-Cantelli lemma (see for example Shiryaev [21],
p. 486), we would have P{A, i.0. } = 1, which, in turn, would imply that for d > 3,

. Rd(T) 1
1 ) > \ld
T (Tlog D)2 ="

This would yield the lower bound in (1.3).
It remains to verify (4.9). Applying Lemma 4.1 to s :=T),, T := Ty, 11 and A := Cy(T}41)

a.S.

implies that, when n is sufficiently large (so that the condition (T' — s)/? > diam(A) is
fulfilled; recalling that « > (d + 2)/(d — 2))

P{Ai1|Fr,} > ep{—cir D (@ Ca(Thi))

€Ly (Tn)

= exp{—c17En},
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with obvious notation. Applying Lemma 4.2 to u := T, 1 — Ty, v :=T,, A := Cy(T41) and
k =1, and in light of Chebyshev’s inequality, we obtain:

Var(En) < 2020 dlam(C’d(Tn+1))
2T (Tn+1 - Tn)1/2pd(Tn) #(Cd(Tn—l—l))

P{IE: ~EE) > EE) ) < e

In view of (1.8), this yields

_ _ _ C22
IP{ |~n - E(Hn)‘ > E(Hn) } < nla—1)/2—(a/d) (log n)(d—l)/d'

Since (o —1)/2 — (a/d) > 1 (recalling that o > (d+2)/(d — 2)), the expression on the right
hand side is summable in n. By the Borel-Cantelli lemma (and (4.4) for the expression of

E(=,)), almost surely for all large n,

28+ )

Yd

Therefore, almost surely for all large n, =, < (292a)/v;)logn. Since P{ A, .1 | Fr, } >

exp{—ci17 Z, }, and in view of (4.8), we obtain:
ZP{An-H‘an}:OO: a.8.

This yields (4.9), and completes the proof of the lower bound in (1.3). O

Proof of (1.2): lower bound. The proof of the lower bound in (1.2) follows similar
lines as in the case of d > 3. We feel free to write only an outline of the argument. Take
T, == e, and let Cy(T) := {x € Z% : |z| < (A\T)Y?(logT) */?(loglogT)'/?}. Consider
Ay = {&(T,) NCy(T,) = 0 }. Again, as in the case of d > 3, we get via Lemma 4.1 that
P{Apt1|Fr, } > exp(—ci7 Ep), where Z, := 37 o 7 ) 01,417, (T, Ca(Tn+1)). This time, we
apply Lemma 4.2 to £k = 3 to see that

E{[En — E(En)[°} _ cas(logn)®’?

P{‘En_E(En” >]E(En)} < []E(En)]ﬁ — n3/2 )

which is summable for n. The Borel-Cantelli lemma yields that almost surely for all large
n, E, < 2E(E,) = 2p4(T,)#(Ca(Thi1)) ~ (4Xe/m)logn. It is therefore possible to choose
the constant A > 0 to be so small that ) exp(—ci7=,) = oo almost surely. This yields
> P{Ani1 | Fr, } = 00 a.s., and implies the lower bound in (1.2). O
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Remark. Applying Lemmas 4.1 and 4.2 in dimension d = 1 gives that

lim sup
T—00

1
Tz > Coa, a.s.,

for some constant ¢4 > 0. Again, this does not yield the optimal rate function for R;(T),
which should be (T loglogT)'/2. Therefore, the argument using Proposition 2.1 leads to the
correct rate function for Ry(7T) for all dimensions except for d = 1. Fortunately, in the next
Section, we will use some special features in dimension d = 1 to obtain not only the correct

rate function for R;(7'), but also the correct constant. O

5 Proof of Theorem 1.1: the one-dimensional case

In this section, we assume d = 1, and prove the one-dimensional part (i.e., identity (1.1)) in
Theorem 1.1. In dimension d = 1, if £F and &} (particles starting from z and y, respectively)
coalesce together before time 7', then any particle whose starting position is between x and
y also coalesces with them before time 7". This special property will considerably simplify
the study, and will allow us to obtain even the correct constant in the iterated logarithm law
for Ry (T).

The proof of (1.1) is divided into two parts.

Proof of (1.1): upper bound. Fix § € (0,1/2) and let

o(t) = ps(t) = +/(1+46)tloglogt,
ar = ax(T) = k|op(T)], k=0,1,2,---

We first estimate P{E(T)}, where

E(T) = ({I&™(D)] > (1)} 0 () {IEH(T)] > o(T)}
with N := |$|. Clearly, {R:(T) > ¢(T)} C E(T).
By symmetry,

P{E(T)} = 2P{&(T) > ¢(T), E(T)}
= 2P{&(T) > @(T), & ““(T)| > ¢(T), V1 <k < N}.

It turns out to be more convenient to estimate P{F(7)} in terms of independent random

walks (without coalescence), instead of the original coalescing random walks (& (t), t > 0).

18



Let (ST(t)+x, t > 0),¢z be a family of independent (continuous-time) simple random walks
with S¥(0) = 0. We will be working on the independent random walks (S¥ + x),czq¢ (Without
coalescence) instead of the original coalescing random walks (&;(t), ¢ > 0).

Let [ = I(T) :== max{s > 1: S;7%(t) — a; > SY(t) for some ¢t € [0,T]} + 1. In words,
S;“ —ay is the random walk starting from the largest point (among S;“ — a;, @ > 1) which

does not meet S? during time interval [0, T]. We have
N
PE(T)} <2 r(T) + 2B {SYUT) > o(T), I > N},
k=1

where

ri(T) =P{S)(T) > o(T), I =k, |S7*(T) — ax| > ¢(T)}.

It is easy to estimate P{SY(T) > ¢(T), I > N}. Indeed, if I > N, then the random walks
ST —ay and SY meet during [0, 7], so that

P{SY(T)>¢(T), I>N} < P{S7"(T)—an > ¢(T)}
= P{S)UT) > an +¢(T)}

< exp (—(1 + 00»%) :

Therefore,

P{E(T)} < QZrk(T) + 2exp (—(1 + 0(1))%) i

We now estimate ri(7) for 1 < k < N. The term r,(7T) is special. Indeed, if I = 1, then

r(T) < P{SI(T) > o(T), Sy (T) = ar| > o(T)}
= P{SI(T) > (D)} P{[S/"(T) — as| > o(T)}

< exp (—(1 + de) .

Accordingly,
P{E(T)} < 23 r(T)+2exp (-(1 + 0(1))M)
(5.1) +2exp (—(1 + 0“”%) )
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To estimate 7 (7)) for 2 < k < N, we note that if 2 < I < oo, then sup,cp[S; “ () —
S9(t)] > a; for all j < I —1. In particular,

re(T) <P {5?(T) > @(T), sup [S; ™7 (t) = SY(O)] > ag-i, [Sy *(T) — ax| > SD(T)} :

t€[0,T]

Recall that S, S;**! and S; % are three independent random walks on Z all starting from
0. So the probability of |S;* (1) — ax| > ¢(T) can be splitted from the right hand side. It

is easily seen that
P{IS,%(T) - arl > (1)} < 2P{S;(T) > o(T) - a,}

< 2exp (_(1 + m»W) .

Therefore, if we write X and Y for two independent random walks on Z both starting from
0, then

m(T) < 2exp <—(1+0(1))M> X

2T

xP {X(T) > ¢(T), sup [Y(t) - X(t)] > a/H}

t€[0,T]

(5.2) = 2exp <—(1 + 0(1))@) me(T),

with obvious notation.

Let us estimate 7,x(7"). According to a result of Csorgd et al. [11] (cf. also Csorgd
and Horvéth [12]), which is the continuous time version of the well-known Komlés—Major—
Tusnddy [15] approximation theorem, there exists a coupling for X and a standard Wiener

process W such that
IP’{ sup |X(t) — W(t)| > AlogT + m} < Bexp(—Cz),
t€[0,T]
for all T"> 1, £ > 0 and some constants A, B, C. From this we can conclude that

P{ sup |X (1) —W ()| > TV p < 2
t€[0,T1] T

for all T > 1 and some constant cgs. Similar result is true for Y (¢) with another Wiener

process, independent of W. Therefore, if W; and W, denote a pair of independent standard
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Wiener processes, then

t€[0,T]

() < P {Wl(T) > (14 0(1))(T), sup [Wa(t) — Wi(t)] > (1+ 0(1))ak1} T

- - c
= P {Wl(T) > @(T), sup [Wa(t) — Wi(t)] > akl} + %,
te[0,T)
where we have written @(7T") := (1 4+ 0o(1))¢(T) and a1 := (1 + o(1))ag_; for brevity. Let
B, == Wy — W1)/V/2 and B, := (W, + W1)/v/2, so that B, and B, are also independent

Wiener processes. Accordingly,

?k(T) < P{BQ(T) — Bl(T) > \/ia(T)’ t:gg]Bl(t) > \Ic/§1}+ %

]P{B2(T) + (2 sup By(t) — Bl(T)) > V23(T) + \/Egk_l} + C25

t€[0,T] T

IN

S V2(@(T) +ak_1>} o

= IP’{BQ(l) + (2 sup Bi(t) — 31(1)) = JT

t€[0,1]
The joint density of B (1) and supep 1) Bi(t) is known (cf., e.g., Borodin and Salminen (5],

p. 147): P{Bi(1) € dz, supyyBi(t) € dy} = (2)V2(2y — ) exp(—Z52) Lyso 0y,
from which we deduce that for A — oo,

)\2

IP’{Q sup Bi(t) — Bi(1) >/\} < exp (—(1-}—0(1))?) ) A — o0.
t€[0,1]

(Alternatively, this can be proved by means of the fact that s — 2sup,c( 1) Bi(s) — Bi(s), for

s > 0, is a three-dimensional Bessel process; that is, the Euclidean modulus of an R*-valued

Wiener process.) On the other hand, we trivially have

2

P{By(1) > \} < exp (-%) WA,
Since By (1) is independent of 2 sup.ep 1) B1(t) — Bi(1), it follows that
(B(T) + ax-1)” L5
2T

T
(¢(T) + Gk—1)2> _
2T

A1) < exp (14 o(1)

< exp (—(1 To(1))
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In view of (5.2), we get that

(1) < 2exp (— o) S — 1y o D L))

< 2exp(—(1—040(1))(1+46)loglogT).

Plugging this into (5.1), and we obtain that for all large T,

1

(5.3) P{E(T)} < (log T)17%"

This is the main probability estimate we need in the proof of the upper bound for (1.1).

To complete the proof of the upper bound in question, we consider the subsequence
T, := exp(n'®). According to (5.3), > P{E(T,)} < oo, so that by the Borel-Cantelli
lemma, almost surely for all large n,

(5.4) min {6 (Tn)| A &7 (Tn) [} < o(Tn),

k: 0<k<N

with the usual notation a A b := min{a,b}. On the other hand, by the usual estimate for

Gaussian tails,

lP’{ max  sup  {|&™(T) — & *(Tn)| Vv IE4(T) — f’“(Tn)l}>5<P(Tn)}

k: OSkSN TE[Tn7Tn+1}
< 2N+ 1)11”{ sup  [€7(s)| > 5<p(Tn)}
SE[O,TTH_l—Tn]
52902(Tn)
< 2(N+1 —— |,
N ( )eXP ( Q(TTH—I - Tn))

which is summable for n, so that by the Borel-Cantelli lemma, almost surely for all large n, all
k < NandallT € [T,,T,:1], we have |£; “*(T) =& (T,,)| < 0p(T},) and |7 (T)—£7%(T)| <

o (Tr)-
In view of (5.4), we deduce that almost surely for all large T,

min {& (D) A& “(T)]} < (1+0) o(T),

k: 0<k<N

so that a fortiori,
inf €2(7)] < (1+ ) o(T),

TEZL
By definition, this implies
. R(T)
lim su <146, a.s.
oo (1) =
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Since  can be arbitrarily close to 0, we obtain the upper bound in (1.1). O

Proof of (1.1): lower bound. Fix § € (0,1) and let ¢ () = ¢5(t) := (1 — §)y/tloglogt.
According to Arratia [1], T-/2&,(T) converges weakly (as T — oo) to a (non-Poisson) limit
point process. In particular, if we write RT(T) := inf{z > 0: z € &(T)} and R (T) :=
sup{z < 0 : z € &(T)}, then P{R*(6T) € [VOT,2VoT], R~ (0T) € [-2V6T,—/6T]}

converges to a (strictly) positive constant, so that
¢ := inf P{R*(6T) € [VOT,2V0T], R~ (3T) € [~2V/3T, ~V/oT]} > 0.

Consider the situation at time 67. Two particles (referred to as & (-) and & (-), respec-
tively) occupy the sites RT(07) € Z, and R~ (6T) € Z_ respectively whereas no site in
(R*(6T), R~(6T)) is occupied. Let us consider the events

EA(T) = {&(T)zwm, in gr<t)>o},

te[6T, T

te[6T, T

E(T) = {ﬁf(T) < —¢(T), sup & (t) < 0}-

Clearly, (EL(T)NE_(T)) C {R:i(T) > ¢(T)}. Therefore
P{R,(T)> ¢(T)} > P {E+(T), E_(T), R*(5T) € [V/3T, 2V/5T),
R™(6T) € [-2V/4T, —\/ST]}

(5.5) > ¢y inf (P{ff((l—é)T)zq/}(T), inf gf(t)>0})2.

z€[VOT,2V/6T) t€[0,(1-0)T)

For any = > 0, ¢ > 0 and a > 0, we have, by the reflection principle,

Ple0za = Plewza it gw>of+P{g0 20 i gw<of

u€e[0,t] u€[0,t]

= p{e) >0 inf €0 >0} +P{E70 > o).

uw€e[0,t]

Taking ¢t := (1 — 0)T and a := ¢(7T) yields that

ﬁfmp{ > u(D), | int, 610> 0}
(1)~ VoTy
2T
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Plugging this into (5.5), and we get that

P{R\(T) 2 (T)} > exp (—(1 + 0(1))7&27(?))

> exp(—(1—26)loglogT)

(56) =
: - (log T)1—26'
Let T,, := n™, and consider a sequence of independent random variables (Rg”) (T, —

Tn-1), n > 2), such that for any n, R§") (T, — T,—1) is distributed as Ry (7}, — T,,—1). We can
make a coupling for (Rg") (T, — T,,—1), n > 2) and the coalescing random walk (& (t), ¢ > 0)
such that Ry(T,) > R™ (T, = T,,_1) for all n > 2.

By (5.6) and the Borel-Cantelli lemma, almost surely there exists infinitely many n such
that R™ (T, — Tp_1) > (T, — Tp_1). Therefore,

lim sup _ (T
n—o0 '(/J(Tn - Tn—l) -

Since Y(T;, — Th-1) ~ ¥(T,) = (1 — 6)v/T,, loglog T, and since § > 0 can be as close to 0 as
possible, this yields the lower bound in (1.1). O

1, a.s.

Remark. Let as before RT(T) :=inf{z > 0: z € &(T)} and R™(T) :=sup{z < 0: z €
&(T)}. In words, R*(T) (resp. R~(T)) is the smallest positive (resp. largest negative) site
occupied by the coalescing random walk at time 7". By definition, Ry (7)) = RT(T)A|R~(T)|.
Our proof of (1.1) also shows that
lim sup ﬂ =1
T—oo /T loglogT
where X (T') can be either R*(T), or |[R~(T)|, or R*(T)V|R™(T)|, or (R*(T)+ |R~(T)])/2.

a.s.

6 Proof of Theorem 1.3

Let d > 2. By (1.10)—(1.11), Proposition 2.2 and Chebyshev’s inequality, we have, for £ > 0
and T' > 3,

P{IAu(T) ~ EIA(T)] > ElA(T)]} < 27

for some constant cy7 depending on (d, ). Taking the subsequence T = T}, := exp{k(log k)?},

and by means of the Borel-Cantelli lemma, we have, almost surely for all large £,
(1 = e)E[Aq(Tk)] < Aa(Tk) < (1 + €)E[Aa(Th)]-
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By the monotonicity of T +— A4(T) and again in view of (1.10)—(1.11), this implies that

almost surely for all large 7,
(1 = 26)E[Aq(T)] < Ag(T) < (1 + 2¢)E[Aq(T)].

Since € > 0 can be arbitrarily close to 0, this yields Theorem 1.3. (Il
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