299 メロメ メ都 メメ きょうぼきしつ 目

Claim

For every group of 6 people either there are three mutually knowing each other, or there are three mutually not knowing each other.

 \leftarrow \Box

つくい

Claim

For every group of 6 people either there are three mutually knowing each other, or there are three mutually not knowing each other.

 \leftarrow \Box

つくい

Question

Is the same statement true for 5 people?

Claim

For every group of 6 people either there are three mutually knowing each other, or there are three mutually not knowing each other.

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

 Ω

Question

Is the same statement true for 5 people?

Claim

For every group of 6 people either there are three mutually knowing each other, or there are three mutually not knowing each other.

 \leftarrow \Box

つくい

Question

Is the same statement true for 5 people?

È 299 **SIL** ミト

For 6 people it is equivalent to the (more math style) claim:

For 6 people it is equivalent to the (more math style) claim:

For every graph *G* on 6 vertices either $K_3 \subset G$ or $K_3 \subset \overline{G}$

 $2Q$

For 6 people it is equivalent to the (more math style) claim:

For every graph *G* on 6 vertices either $K_3 \subset G$ or $K_3 \subset \overline{G}$ or

 $2Q$

For 6 people it is equivalent to the (more math style) claim:

For every graph *G* on 6 vertices either $K_3 \subset G$ or $K_3 \subset \overline{G}$ or

For every coloring of the edges of K_6 with blue and yellow there will be a monochromatic triangle (K_3)

つくい

For 6 people it is equivalent to the (more math style) claim:

For every graph *G* on 6 vertices either $K_3 \subset G$ or $K_3 \subset \overline{G}$ or

For every coloring of the edges of K_6 with blue and yellow there will be a monochromatic triangle (K_3)

KORK (FRAGER CELL DRO)

•

• •

• •

For 6 people it is equivalent to the (more math style) claim:

For every graph *G* on 6 vertices either $K_3 \subset G$ or $K_3 \subset \overline{G}$ or

For every coloring of the edges of K_6 with blue and yellow there will be a monochromatic triangle (K_3)

•

KORK (FRAGER CELL DRO)

For 6 people it is equivalent to the (more math style) claim:

For every graph *G* on 6 vertices either $K_3 \subset G$ or $K_3 \subset \overline{G}$ or

For every coloring of the edges of K_6 with blue and yellow there will be a monochromatic triangle (K_3)

•

For 6 people it is equivalent to the (more math style) claim:

For every graph *G* on 6 vertices either $K_3 \subset G$ or $K_3 \subset \overline{G}$ or

For every coloring of the edges of K_6 with blue and yellow there will be a monochromatic triangle (K_3)

•

For 6 people it is equivalent to the (more math style) claim:

For every graph *G* on 6 vertices either $K_3 \subset G$ or $K_3 \subset \overline{G}$ or

For every coloring of the edges of K_6 with blue and yellow there will be a monochromatic triangle (K_3)

•

For 6 people it is equivalent to the (more math style) claim:

For every graph *G* on 6 vertices either $K_3 \subset G$ or $K_3 \subset \overline{G}$ or

For every coloring of the edges of K_6 with blue and yellow there will be a monochromatic triangle (K_3)

•

È 299 **SIL** ミト

Claim

*For every coloring of the edges of K*10 *with blue and yellow there will be a either a yellow triangle (K*3*) or a blue K*4

 \leftarrow \Box

 $2Q$

Claim

*For every coloring of the edges of K*10 *with blue and yellow there will be a either a yellow triangle (K*3*) or a blue K*4

KORK (DRA BRASH E DAG)

• •

• •

Claim

•

•

•

*For every coloring of the edges of K*10 *with blue and yellow there will be a either a yellow triangle (K*3*) or a blue K*4

•

•

•

 (0) (0) (0) (1) (1) (1) (1) (1)

 Ω

Claim

*For every coloring of the edges of K*10 *with blue and yellow there will be a either a yellow triangle (K*3*) or a blue K*4

 \leftarrow \Box \rightarrow

- ∢ 母 ▶ - ∢ ヨ ▶ - ∢ ヨ ▶

Claim

*For every coloring of the edges of K*10 *with blue and yellow there will be a either a yellow triangle (K*3*) or a blue K*4

つへへ

 \leftarrow \Box 活 299 격대

KID KAR KERKER E 1990

メロメ メ団 メメ きょくきょう 差 -990

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ $2Q$ 扂

 \leftarrow 290

 \leftarrow \Box 活 299 격대

KID KAR KERKER E 1990

メロメ メ団 メメ きょくきょう 差 -990

メロメ メ団 メメ きょくきょう 差 -990

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ $2Q$ 扂

 $\mathcal{A} \subseteq \mathcal{A} \Rightarrow \mathcal{A} \subseteq \mathcal{B} \Rightarrow \mathcal{A} \subseteq \mathcal{B} \Rightarrow \mathcal{A} \subseteq \mathcal{B}$ $2Q$ 扂

メロメ メ団 メ メ 君 メ メ 君 メ $2Q$ 目

 \leftarrow \Box 299

 \leftarrow \Box 活 299 격대

Is the same statement true for the coloring of the edges of *K*9?

Is the same statement true for the coloring of the edges of *K*9?

Is the same statement true for the coloring of the edges of K_9 ?

Is the same statement true for the coloring of the edges of K_9 ?

Is the same statement true for the coloring of the edges of K_9 ?

Ramsey number, in general

 \leftarrow \Box 目 299 э \rightarrow ð

Ramsey number, in general

Definition

The graph Ramsey number R(*k*, *l*) *is the smallest n such that for every graph G of n vertices, either G contains* K_k *or G contains* K_l *.*

へのへ

Ramsey number, in general

Definition

The graph Ramsey number R(*k*, *l*) *is the smallest n such that for every graph G of n vertices, either G contains* K_k *or G contains* K_l *.*

へのへ

Claim *Note that* $R(k, 2) = R(2, k) = 2$ *.*

Definition

The graph Ramsey number R(*k*, *l*) *is the smallest n such that for every graph G of n vertices, either G contains* K_k *or G contains* K_l *.*

へのへ

Claim *Note that* $R(k, 2) = R(2, k) = 2$ *.*

Theorem

For every k, *l* ≥ 3 *the following inequality holds:* $R(k, l) \leq R(k-1, l) + R(k, l-1).$

 \leftarrow \Box 目 299 э ۰

Proof Take a graph *G* on $n = R(k-1, l) + R(k, l-1)$ vertices and fix any point *x* of it.

 $2Q$

Proof Take a graph *G* on $n = R(k - 1, l) + R(k, l - 1)$ vertices and fix any point *x* of it. By the pigeonhole principle there must be either at least R(k-1,l) vertices connected *x* or at least $R(k, l-1)$ vertices not connected to *x*

Proof Take a graph *G* on $n = R(k-1, l) + R(k, l-1)$ vertices and fix any point *x* of it. By the pigeonhole principle there must be either at least R(k-1,l) vertices connected *x* or at least $R(k, l - 1)$ vertices not connected to *x* (otherwise the total number of vertices via x — which is naturally $n - 1$ — would be less then or equal to $[R(k-1, l) - 1] + [R(k, l) - 1] = n - 2$. In the first case consider the other endvertices of the edges through *x* and the graph spanned by them.

Proof Take a graph *G* on $n = R(k - 1, l) + R(k, l - 1)$ vertices and fix any point *x* of it. By the pigeonhole principle there must be either at least R(k-1,l) vertices connected *x* or at least $R(k, l-1)$ vertices not connected to *x* (otherwise the total number of vertices via x — which is naturally $n - 1$ — would be less then or equal to $[R(k-1, l) - 1] + [R(k, l) - 1] = n - 2$. In the first case consider the other endvertices of the edges through *x* and the graph spanned by them. In that graph either there will be a *K*k−1 which together with *x* and the edges from *x* to these vertices would form a K_k in the bigger graph, or there would be K_l in the complement of it, giving a \mathcal{K}_l in the complement of the original, bigger graph *G*. The second case can be handled similarly.

 299 メロメ メ都 メメ きょくきょう 目

With this theorem and the easy observation: $R(2, k) = R(k, 2) = k$ we get that $R(k, l) \leq {k+l-2 \choose k-1}$ $\binom{+1-2}{k-1} = \binom{k+1-2}{k-1}$ $\binom{+1-2}{-1}$, (Ramsey's theorem) where the proof is by induction, the induction step being the theorem above and the base cases are $R(2, k) = R(k, 2) = k$.

With this theorem and the easy observation: $R(2, k) = R(k, 2) = k$ we get that $R(k, l) \leq {k+l-2 \choose k-1}$ $\binom{+1-2}{k-1} = \binom{k+1-2}{k-1}$ $\binom{+1-2}{-1}$, (Ramsey's theorem) where the proof is by induction, the induction step being the theorem above and the base cases are $R(2, k) = R(k, 2) = k$. Therefore a few upper bounds for the Ramsey numbers are given by the table below

With this theorem and the easy observation: $R(2, k) = R(k, 2) = k$ we get that $R(k, l) \leq {k+l-2 \choose k-1}$ $\binom{+1-2}{k-1} = \binom{k+1-2}{k-1}$ $\binom{+1-2}{-1}$, (Ramsey's theorem) where the proof is by induction, the induction step being the theorem above and the base cases are $R(2, k) = R(k, 2) = k$. Therefore a few upper bounds for the Ramsey numbers are given by the table below

In this table the values denoted by a $*$ are exact values.

A few Ramsey numbers

However, a better, exact estimate on $R(3, 4) = R(4, 3)$ is 9, as seen earlier. This value itself will give better estimates for the other members of the previous table:

A few Ramsey numbers

However, a better, exact estimate on $R(3, 4) = R(4, 3)$ is 9, as seen earlier. This value itself will give better estimates for the other members of the previous table:

へのへ

In this table the values for $R(3, 4) = 9$, $R(3, 5) = 14$ and $R(4, 4) = 18$ are exact too.

 \leftarrow \Box 299 격대 目

Definition

The graph Ramsey number R(*G*1,*G*2) *is the smallest n such that for every graph G of n vertices, either G contains a subgraph (isomorphic to)* G_1 *or* \overline{G} *contains* G_2 *.*

へのへ

Definition

The graph Ramsey number R(*G*1,*G*2) *is the smallest n such that for every graph G of n vertices, either G contains a subgraph (isomorphic to)* G_1 *or* \overline{G} *contains* G_2 *.*

Claim

The generalized Ramsey number is monotone, i.e. for $G \subset G'$ and $H \subset H'$ *we have* $R(G, H) \leq R(G', H')$

Definition

The graph Ramsey number R(*G*1,*G*2) *is the smallest n such that for every graph G of n vertices, either G contains a subgraph (isomorphic to)* G_1 *or* \overline{G} *contains* G_2 *.*

Claim

The generalized Ramsey number is monotone, i.e. for $G \subset G'$ and $H \subset H'$ *we have* $R(G, H) \leq R(G', H')$

へのへ

Claim $R(P_3, K_n) =$

Definition

The graph Ramsey number R(*G*1,*G*2) *is the smallest n such that for every graph G of n vertices, either G contains a subgraph (isomorphic to)* G_1 *or* \overline{G} *contains* G_2 *.*

Claim

The generalized Ramsey number is monotone, i.e. for $G \subset G'$ and $H \subset H'$ *we have* $R(G, H) \leq R(G', H')$

∽≏ດ

Claim $R(P_3, K_n) = 2n - 1$

 $2Q$ \leftarrow \Box

 \leftarrow \Box

 $2Q$

Claim $R(P_4, P_4) =$

Claim $R(P_4, P_4) = 5$

Claim $R(P_4, P_4) = 5$

Definition

The Turan number ex(*n*, *H*) *is the maximum number of edges of a graph on n vertices without contaning H as a subgraph.*

へのへ

Claim $R(P_4, P_4) = 5$

Definition

The Turan number ex(*n*, *H*) *is the maximum number of edges of a graph on n vertices without contaning H as a subgraph.*

つくい

Claim

 $ex(n, P_4) =$

Claim $R(P_4, P_4) = 5$

Definition

The Turan number ex(*n*, *H*) *is the maximum number of edges of a graph on n vertices without contaning H as a subgraph.*

へのへ

Claim

$$
ex(n, P_4) = \begin{cases} n & \text{for } 3|n \\ n-1 & \text{for } 3 \nmid n \end{cases}
$$