- * ロ * * 個 * * 注 * * 注 * の < 0

Claim

For every group of 6 people either there are three mutually knowing each other, or there are three mutually not knowing each other.

Claim

For every group of 6 people either there are three mutually knowing each other, or there are three mutually not knowing each other.

Question

Is the same statement true for 5 people?

Claim

For every group of 6 people either there are three mutually knowing each other, or there are three mutually not knowing each other.

イロト イポト イヨト イヨト 三国

Question

Is the same statement true for 5 people?

Claim

For every group of 6 people either there are three mutually knowing each other, or there are three mutually not knowing each other.

Question

Is the same statement true for 5 people?

- イロト イヨト イヨト ・ヨー わえの

For 6 people it is equivalent to the (more math style) claim:

For 6 people it is equivalent to the (more math style) claim:

For every graph G on 6 vertices either $K_3 \subset G$ or $K_3 \subset \overline{G}$

For 6 people it is equivalent to the (more math style) claim:

For every graph G on 6 vertices either $K_3 \subset G$ or $K_3 \subset \overline{G}$ or

For 6 people it is equivalent to the (more math style) claim:

For every graph G on 6 vertices either $K_3 \subset G$ or $K_3 \subset \overline{G}$ or

For every coloring of the edges of K_6 with blue and yellow there will be a monochromatic triangle (K_3)

For 6 people it is equivalent to the (more math style) claim:

For every graph G on 6 vertices either $K_3 \subset G$ or $K_3 \subset \overline{G}$ or

For every coloring of the edges of K_6 with blue and yellow there will be a monochromatic triangle (K_3)

・ロト ・ 日 ・ モ ト ・ モ ・ うへの

For 6 people it is equivalent to the (more math style) claim:

For every graph G on 6 vertices either $K_3 \subset G$ or $K_3 \subset \overline{G}$ or

For every coloring of the edges of K_6 with blue and yellow there will be a monochromatic triangle (K_3)

For 6 people it is equivalent to the (more math style) claim:

For every graph G on 6 vertices either $K_3 \subset G$ or $K_3 \subset \overline{G}$ or

For every coloring of the edges of K_6 with blue and yellow there will be a monochromatic triangle (K_3)

イロン イロン イヨン イヨン 三日

For 6 people it is equivalent to the (more math style) claim:

For every graph G on 6 vertices either $K_3 \subset G$ or $K_3 \subset \overline{G}$ or

For every coloring of the edges of K_6 with blue and yellow there will be a monochromatic triangle (K_3)

イロン イロン イヨン イヨン 三日

For 6 people it is equivalent to the (more math style) claim:

For every graph G on 6 vertices either $K_3 \subset G$ or $K_3 \subset \overline{G}$ or

For every coloring of the edges of K_6 with blue and yellow there will be a monochromatic triangle (K_3)

イロン イロン イヨン イヨン 三日

For 6 people it is equivalent to the (more math style) claim:

For every graph G on 6 vertices either $K_3 \subset G$ or $K_3 \subset \overline{G}$ or

For every coloring of the edges of K_6 with blue and yellow there will be a monochromatic triangle (K_3)

- イロト イヨト イヨト ・ヨー わえの

Claim

For every coloring of the edges of K_{10} with blue and yellow there will be a either a yellow triangle (K_3) or a blue K_4

Claim

For every coloring of the edges of K_{10} with blue and yellow there will be a either a yellow triangle (K_3) or a blue K_4

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ●

Claim

For every coloring of the edges of K_{10} with blue and yellow there will be a either a yellow triangle (K_3) or a blue K_4

(ロ) (同) (E) (E) (E)

Claim

For every coloring of the edges of K_{10} with blue and yellow there will be a either a yellow triangle (K_3) or a blue K_4

- - E - K

Claim

For every coloring of the edges of K_{10} with blue and yellow there will be a either a yellow triangle (K_3) or a blue K_4

- < ロ > < 回 > < 臣 > < 臣 > 三 三 の Q ()

<ロ> <四> <回> <三> <三> <三> <三> <三> <三> <三</p>

▲□▶ ▲圖▶ ▲ 필▶ ▲ 필▶ ■ ● ● ● ●

- < ロ > < 回 > < 臣 > < 臣 > 三 三 の Q ()

<ロ> <四> <回> <三> <三> <三> <三> <三> <三> <三</p>

▲□▶ ▲圖▶ ▲ 필▶ ▲ 필▶ ■ ● ● ● ●

▲□▶ ▲圖▶ ▲ 필▶ ▲ 필▶ ■ ● ● ● ●

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへの

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへの

◆□> ◆□> ◆三> ◆三> ・三 ・ のへの

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ─ 臣 ─ のへで

- < ロ > < 回 > < 臣 > < 臣 > 三 三 の Q ()

Ramsey number, in general

- * ロ * * 個 * * 目 * * 目 * ・ 目 * うへの

Ramsey number, in general

Definition

The graph Ramsey number R(k, I) is the smallest n such that for every graph G of n vertices, either G contains K_k or \overline{G} contains K_I .

Ramsey number, in general

Definition

The graph Ramsey number R(k, I) is the smallest n such that for every graph G of n vertices, either G contains K_k or \overline{G} contains K_I .

Claim Note that R(k, 2) = R(2, k) = 2.

Definition

The graph Ramsey number R(k, I) is the smallest n such that for every graph G of n vertices, either G contains K_k or \overline{G} contains K_I .

Claim Note that R(k, 2) = R(2, k) = 2.

Theorem

For every $k, l \ge 3$ the following inequality holds: $R(k, l) \le R(k - 1, l) + R(k, l - 1).$

- * ロ * * @ * * 注 * * 注 * の & @

Proof Take a graph G on n = R(k - 1, l) + R(k, l - 1) vertices and fix any point x of it.

Proof Take a graph G on n = R(k - 1, l) + R(k, l - 1) vertices and fix any point x of it. By the pigeonhole principle there must be either at least R(k-1,l) vertices connected x or at least R(k, l - 1) vertices not connected to x

Proof Take a graph G on n = R(k - 1, l) + R(k, l - 1) vertices and fix any point x of it. By the pigeonhole principle there must be either at least R(k-1,l) vertices connected x or at least R(k, l - 1) vertices not connected to x (otherwise the total number of vertices via x — which is naturally n - 1 — would be less then or equal to [R(k - 1, l) - 1] + [R(k, l) - 1 = n - 2). In the first case consider the other endvertices of the edges through x and the graph spanned by them.

Proof Take a graph G on n = R(k - 1, l) + R(k, l - 1) vertices and fix any point x of it. By the pigeonhole principle there must be either at least R(k-1,l) vertices connected x or at least R(k, l-1) vertices not connected to x (otherwise the total number of vertices via x — which is naturally n - 1 — would be less then or equal to [R(k-1, l) - 1] + [R(k, l) - 1 = n - 2). In the first case consider the other endvertices of the edges through xand the graph spanned by them. In that graph either there will be a K_{k-1} which together with x and the edges from x to these vertices would form a K_k in the bigger graph, or there would be K_l in the complement of it, giving a K_l in the complement of the original, bigger graph G. The second case can be handled similarly.

- ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆

With this theorem and the easy observation: R(2, k) = R(k, 2) = kwe get that $R(k, l) \leq \binom{k+l-2}{k-1} = \binom{k+l-2}{l-1}$, **(Ramsey's theorem)** where the proof is by induction, the induction step being the theorem above and the base cases are R(2, k) = R(k, 2) = k.

With this theorem and the easy observation: R(2, k) = R(k, 2) = kwe get that $R(k, I) \leq \binom{k+I-2}{k-1} = \binom{k+I-2}{I-1}$, **(Ramsey's theorem)** where the proof is by induction, the induction step being the theorem above and the base cases are R(2, k) = R(k, 2) = k. Therefore a few upper bounds for the Ramsey numbers are given by the table below

With this theorem and the easy observation: R(2, k) = R(k, 2) = kwe get that $R(k, I) \leq \binom{k+I-2}{k-1} = \binom{k+I-2}{I-1}$, **(Ramsey's theorem)** where the proof is by induction, the induction step being the theorem above and the base cases are R(2, k) = R(k, 2) = k. Therefore a few upper bounds for the Ramsey numbers are given by the table below

k,l	2	3	4	5	6
2	2*	3*	4*	5*	6*
3	3*	6*	10	15	21
4	4*	10	20		
5	5*	15			
6	6*	21			

In this table the values denoted by a * are exact values.

A few Ramsey numbers

However, a better, exact estimate on R(3,4) = R(4,3) is 9, as seen earlier. This value itself will give better estimates for the other members of the previous table:

A few Ramsey numbers

However, a better, exact estimate on R(3,4) = R(4,3) is 9, as seen earlier. This value itself will give better estimates for the other members of the previous table:

k,l	2	3	4	5	6	
2	2*	3*	4*	5*	6*	
3	3*	6*	9 ^a	14^{b}	20	
4	4*	9 ^a	18 ^c			
5	5*	14 ^b				
6	6*	20				

In this table the values for R(3,4) = 9, R(3,5) = 14 and R(4,4) = 18 are exact too.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - 釣Aの

Definition

The graph Ramsey number $R(G_1, G_2)$ is the smallest n such that for every graph G of n vertices, either G contains a subgraph (isomorphic to) G_1 or \overline{G} contains G_2 .

Definition

The graph Ramsey number $R(G_1, G_2)$ is the smallest n such that for every graph G of n vertices, either G contains a subgraph (isomorphic to) G_1 or \overline{G} contains G_2 .

Claim

The generalized Ramsey number is monotone, i.e. for $G \subset G'$ and $H \subset H'$ we have $R(G, H) \leq R(G', H')$

Definition

The graph Ramsey number $R(G_1, G_2)$ is the smallest n such that for every graph G of n vertices, either G contains a subgraph (isomorphic to) G_1 or \overline{G} contains G_2 .

Claim

The generalized Ramsey number is monotone, i.e. for $G \subset G'$ and $H \subset H'$ we have $R(G, H) \leq R(G', H')$

 $\frac{\text{Claim}}{R(P_3, K_n)} =$

Definition

The graph Ramsey number $R(G_1, G_2)$ is the smallest n such that for every graph G of n vertices, either G contains a subgraph (isomorphic to) G_1 or \overline{G} contains G_2 .

Claim

The generalized Ramsey number is monotone, i.e. for $G \subset G'$ and $H \subset H'$ we have $R(G, H) \leq R(G', H')$

Claim $R(P_3, K_n) = 2n - 1$

- * ロ * * 個 * * 目 * * 目 * * の < つ

 $\frac{\text{Claim}}{R(P_4, P_4)} =$

 $\frac{\text{Claim}}{R(P_4, P_4)} = 5$

 $\frac{\text{Claim}}{R(P_4, P_4)} = 5$

Definition

The Turan number ex(n, H) is the maximum number of edges of a graph on n vertices without containing H as a subgraph.

 $\frac{\text{Claim}}{R(P_4, P_4)} = 5$

Definition

The Turan number ex(n, H) is the maximum number of edges of a graph on n vertices without containing H as a subgraph.

Claim

 $ex(n, P_4) =$

 $\frac{\text{Claim}}{R(P_4, P_4)} = 5$

Definition

The Turan number ex(n, H) is the maximum number of edges of a graph on n vertices without containing H as a subgraph.

Claim

$$ex(n, P_4) = \begin{cases} n & \text{for } 3|n\\ n-1 & \text{for } 3 \nmid n \end{cases}$$