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Definition
The graph Ramsey number R(k , l) is the smallest n such that for
every graph G of n vertices, either G contains Kk or G contains Kl .

Claim
Note that R(k , 2) = R(2, k) = 2.

Theorem
For every k , l ≥ 3 the following inequality holds:
R(k , l) ≤ R(k − 1, l) + R(k , l − 1).
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Proof Take a graph G on n = R(k − 1, l) + R(k , l − 1) vertices
and fix any point x of it. By the pigeonhole principle there must
be either at least R(k-1,l) vertices connected x or at least
R(k , l − 1) vertices not connected to x (otherwise the total
number of vertices via x — which is naturally n− 1 — would be
less then or equal to [R(k − 1, l)− 1] + [R(k , l)− 1 = n − 2). In
the first case consider the other endvertices of the edges through x
and the graph spanned by them. In that graph either there will be
a Kk−1 which together with x and the edges from x to these
vertices would form a Kk in the bigger graph, or there would be Kl

in the complement of it, giving a Kl in the complement of the
original, bigger graph G . The second case can be handled similarly.
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With this theorem and the easy observation: R(2, k) = R(k , 2) = k
we get that R(k , l) ≤

(

k+l−2
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=
(

k+l−2
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, (Ramsey’s theorem)
where the proof is by induction, the induction step being the
theorem above and the base cases are R(2, k) = R(k , 2) = k .
Therefore a few upper bounds for the Ramsey numbers are given
by the table below

k,l 2 3 4 5 6
2 2* 3* 4* 5* 6*
3 3* 6* 10 15 21
4 4* 10 20
5 5* 15
6 6* 21

In this table the values denoted by a ∗ are exact values.



A few Ramsey numbers

However,a better, exact estimate on R(3, 4) = R(4, 3) is 9, as seen
earlier. This value itself will give better estimates for the other
members of the previous table:



A few Ramsey numbers

However,a better, exact estimate on R(3, 4) = R(4, 3) is 9, as seen
earlier. This value itself will give better estimates for the other
members of the previous table:

k,l 2 3 4 5 6
2 2* 3* 4* 5* 6*
3 3* 6* 9a 14b 20
4 4* 9a 18c

5 5* 14b

6 6* 20

In this table the values for R(3, 4) = 9, R(3, 5) = 14 and
R(4, 4) = 18 are exact too.
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Definition
The graph Ramsey number R(G1,G2) is the smallest n such that
for every graph G of n vertices, either G contains a subgraph
(isomorphic to) G1 or G contains G2.

Claim
The generalized Ramsey number is monotone, i.e. for G ⊂ G ′ and
H ⊂ H ′ we have R(G ,H) ≤R(G’,H’)

Claim
R(P3,Kn) = 2n − 1
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Claim
R(P4,P4) = 5

Definition
The Turan number ex(n,H) is the maximum number of edges of a
graph on n vertices without contaning H as a subgraph.

Claim

ex(n,P4) =

{

n for 3|n

n− 1 for 3 ∤ n


