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Definition

A (good) coloring of the vertices of a graph G is an assignment of
colors to the vertices in such a way that adjacent vertices get
distinct colors. The (vertex) coloring number or chromatic number
X(G) is the minimal number of colors in a (vertex) coloring of G.

Proposition
Clearly, x(K,) = n and x(G) = |V(G)| iff G = K.

The chromatic number is monotone, that is from G C H we have

X(G) < x(H).
If a graph G contains K, as a subgraph then x(G) > m.
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X(G) > 2 unless G is empty (has no edges)
Definition
A graph G is a bipartite graph with vertex classes V1 and V; if

V(G) = ViU V,, Vi N Vo =10 and each edge joins a vertex of V4
to a vertex of V5.

Notice that a graph G is bipartite if and only if x(G) < 2.
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Chromatic number of cycles

a b X(C5) = 3 but G 2 K3l
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Greedy algorithm

Definition

The greedy (coloring) algorithm of a graph G w.r.t. the order of
the vertices x1, X2, . ..x, using colors 1,2,...: color x; to 1 and for
i > 2 color x; the smallest color itr allows to have x1,x2,...,X;
good colored.

a xi X4 a

b X2 X5 b

C X3 X6 C
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Greedy algorithm, cont'd

a X1 X4 b
a x X5 b
a x3 X6 b
Proposition

For every graph G there exists an ordering of the vertices w.r.t.
the greedy algorithm requires only (as low as possible) x(G) colors.
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Bipartite graphs

Theorem

A graph G is bipartite (i.e., x(G) =2) iff G contains no odd
cycles, i.e., Cokr1 € G

Proof If x(G) = 2, clearly Cok1 € G as

Gri1 €6 = 3= x(Cuq1) < x(G).

On the other hand, if Cyx+1 € G we can good color G by two
colors in the following way:
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If a graph G contains K, as a subgraph then x(G) > m.However,
a large complete subgraph is not the only reason for large
chromatic number.

Theorem
For any (large) positive integers k and g there exists a graph G
with x(G) > k and shorthest cycle (girth) > k.

E.g., for k =2 any (nonempty) graph will do (with or without
cycle)

For k = 3 the graph with x(G) = 3 and with no cycle of length
<k-1is C2g+1 with 20 +1 > k.

For any k and g = 3 K is a good choice.

For k=4and g=4, G is



