- ・ロト ・ 御 ト ・ ヨト ・ ヨー ・ のへの

Definition

A (good) coloring of the vertices of a graph G is an assignment of colors to the vertices in such a way that adjacent vertices get distinct colors.

Definition

A (good) coloring of the vertices of a graph G is an assignment of colors to the vertices in such a way that adjacent vertices get distinct colors. The (vertex) coloring number or chromatic number $\chi(G)$ is the minimal number of colors in a (vertex) coloring of G.

Definition

A (good) coloring of the vertices of a graph G is an assignment of colors to the vertices in such a way that adjacent vertices get distinct colors. The (vertex) coloring number or chromatic number $\chi(G)$ is the minimal number of colors in a (vertex) coloring of G.

Proposition

Clearly,
$$\chi(K_n) = n$$
 and $\chi(G) = |V(G)|$ iff $G = K_n$.

Definition

A (good) coloring of the vertices of a graph G is an assignment of colors to the vertices in such a way that adjacent vertices get distinct colors. The (vertex) coloring number or chromatic number $\chi(G)$ is the minimal number of colors in a (vertex) coloring of G.

Proposition

Clearly,
$$\chi(K_n) = n$$
 and $\chi(G) = |V(G)|$ iff $G = K_n$.

The chromatic number is monotone, that is from $G \subset H$ we have $\chi(G) \leq \chi(H)$.

Definition

A (good) coloring of the vertices of a graph G is an assignment of colors to the vertices in such a way that adjacent vertices get distinct colors. The (vertex) coloring number or chromatic number $\chi(G)$ is the minimal number of colors in a (vertex) coloring of G.

Proposition

Clearly,
$$\chi(K_n) = n$$
 and $\chi(G) = |V(G)|$ iff $G = K_n$.

The chromatic number is monotone, that is from $G \subset H$ we have $\chi(G) \leq \chi(H)$. If a graph G contains K_m as a subgraph then $\chi(G) \geq m$.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二副 - のへの

 $\chi(G) \ge 2$ unless G is empty (has no edges)

 $\chi(G) \ge 2$ unless G is empty (has no edges)

Definition

A graph G is a bipartite graph with vertex classes V_1 and V_2 if $V(G) = V_1 \cup V_2$, $V_1 \cap V_2 = \emptyset$ and each edge joins a vertex of V_1 to a vertex of V_2 .

 $\chi(G) \ge 2$ unless G is empty (has no edges)

Definition

A graph G is a bipartite graph with vertex classes V_1 and V_2 if $V(G) = V_1 \cup V_2$, $V_1 \cap V_2 = \emptyset$ and each edge joins a vertex of V_1 to a vertex of V_2 .

Notice that a graph G is bipartite if and only if $\chi(G) \leq 2$.

- * ロ * * 御 * * 注 * * 注 * * うへの

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ④ < ⊙

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣 ─ のへで

- * ロ * * 個 * * 目 * * 目 * ・ 目 * の < の

(日) 《聞) 《田) 《田) 田 うらぐ

$$\chi(C_n) = \begin{cases} 2 & \text{for } 2|n\\ 3 & \text{for } 2 \nmid n \end{cases}$$

(▲□) (圖) (注) (注) (注) (○)

Definition

The greedy (coloring) algorithm of a graph G w.r.t. the order of the vertices $x_1, x_2, \ldots x_n$ using colors $1, 2, \ldots$: color x_1 to 1 and for $i \ge 2$ color x_i the smallest color itr allows to have x_1, x_2, \ldots, x_i good colored.

Definition

The greedy (coloring) algorithm of a graph G w.r.t. the order of the vertices $x_1, x_2, \ldots x_n$ using colors $1, 2, \ldots$: color x_1 to 1 and for $i \ge 2$ color x_i the smallest color itr allows to have x_1, x_2, \ldots, x_i good colored.

イロン イロン イヨン イヨン 三日

Definition

The greedy (coloring) algorithm of a graph G w.r.t. the order of the vertices $x_1, x_2, \ldots x_n$ using colors $1, 2, \ldots$: color x_1 to 1 and for $i \ge 2$ color x_i the smallest color itr allows to have x_1, x_2, \ldots, x_i good colored.

イロン イロン イヨン イヨン 三日

Definition

The greedy (coloring) algorithm of a graph G w.r.t. the order of the vertices $x_1, x_2, \ldots x_n$ using colors $1, 2, \ldots$: color x_1 to 1 and for $i \ge 2$ color x_i the smallest color itr allows to have x_1, x_2, \ldots, x_i good colored.

Definition

The greedy (coloring) algorithm of a graph G w.r.t. the order of the vertices $x_1, x_2, \ldots x_n$ using colors $1, 2, \ldots$: color x_1 to 1 and for $i \ge 2$ color x_i the smallest color itr allows to have x_1, x_2, \ldots, x_i good colored.

Definition

The greedy (coloring) algorithm of a graph G w.r.t. the order of the vertices $x_1, x_2, \ldots x_n$ using colors $1, 2, \ldots$: color x_1 to 1 and for $i \ge 2$ color x_i the smallest color itr allows to have x_1, x_2, \ldots, x_i good colored.

Definition

The greedy (coloring) algorithm of a graph G w.r.t. the order of the vertices $x_1, x_2, \ldots x_n$ using colors $1, 2, \ldots$: color x_1 to 1 and for $i \ge 2$ color x_i the smallest color itr allows to have x_1, x_2, \ldots, x_i good colored.

Definition

The greedy (coloring) algorithm of a graph G w.r.t. the order of the vertices $x_1, x_2, \ldots x_n$ using colors $1, 2, \ldots$: color x_1 to 1 and for $i \ge 2$ color x_i the smallest color itr allows to have x_1, x_2, \ldots, x_i good colored.

Definition

The greedy (coloring) algorithm of a graph G w.r.t. the order of the vertices $x_1, x_2, \ldots x_n$ using colors $1, 2, \ldots$: color x_1 to 1 and for $i \ge 2$ color x_i the smallest color itr allows to have x_1, x_2, \ldots, x_i good colored.

◆□> ◆□> ◆目> ◆目> ●目 ● のへで

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

Proposition

For every graph G there exists an ordering of the vertices w.r.t. the greedy algorithm requires only (as low as possible) $\chi(G)$ colors.

Theorem

A graph G is bipartite (i.e., $\chi(G) = 2$) iff G contains no odd cycles, i.e., $C_{2k+1} \nsubseteq G$

/⊒ ▶ < ≣ ▶

< ≣ ▶

Theorem

A graph G is bipartite (i.e., $\chi(G) = 2$) iff G contains no odd cycles, i.e., $C_{2k+1} \nsubseteq G$ **Proof** If $\chi(G) = 2$, clearly $C_{2k+1} \nsubseteq G$ as

$$C_{2k+1} \subseteq G \Rightarrow 3 = \chi(C_{2k+1}) \leq \chi(G).$$

Theorem

A graph G is bipartite (i.e., $\chi(G) = 2$) iff G contains no odd cycles, i.e., $C_{2k+1} \nsubseteq G$

Proof If $\chi(G) = 2$, clearly $C_{2k+1} \nsubseteq G$ as $C_{2k+1} \subseteq G \implies 3 = \chi(C_{2k+1}) \le \chi(G)$.

On the other hand, if $C_{2k+1} \nsubseteq G$ we can good color G by two colors in the following way:

▲□▶▲圖▶▲圖▶▲圖▶ ■ のQの

If a graph G contains K_m as a subgraph then $\chi(G) \ge m$.

If a graph G contains K_m as a subgraph then $\chi(G) \ge m$. However, a large complete subgraph is not the only reason for large chromatic number.

If a graph G contains K_m as a subgraph then $\chi(G) \ge m$. However, a large complete subgraph is not the only reason for large chromatic number.

Theorem

For any (large) positive integers k and g there exists a graph G with $\chi(G) \ge k$ and shorthest cycle (girth) $\ge k$.

If a graph G contains K_m as a subgraph then $\chi(G) \ge m$. However, a large complete subgraph is not the only reason for large chromatic number.

Theorem

For any (large) positive integers k and g there exists a graph G with $\chi(G) \ge k$ and shorthest cycle (girth) $\ge k$.

E.g., for k = 2 any (nonempty) graph will do (with or without cycle)

If a graph G contains K_m as a subgraph then $\chi(G) \ge m$. However, a large complete subgraph is not the only reason for large chromatic number.

Theorem

For any (large) positive integers k and g there exists a graph G with $\chi(G) \ge k$ and shorthest cycle (girth) $\ge k$.

E.g., for k = 2 any (nonempty) graph will do (with or without cycle)

For k=3 the graph with $\chi(G)=3$ and with no cycle of length $\leq k-1$ is

If a graph G contains K_m as a subgraph then $\chi(G) \ge m$. However, a large complete subgraph is not the only reason for large chromatic number.

Theorem

For any (large) positive integers k and g there exists a graph G with $\chi(G) \ge k$ and shorthest cycle (girth) $\ge k$.

E.g., for k = 2 any (nonempty) graph will do (with or without cycle)

For k = 3 the graph with $\chi(G) = 3$ and with no cycle of length $\leq k - 1$ is $C_{2\ell+1}$ with $2\ell + 1 \geq k$.

If a graph G contains K_m as a subgraph then $\chi(G) \ge m$. However, a large complete subgraph is not the only reason for large chromatic number.

Theorem

For any (large) positive integers k and g there exists a graph G with $\chi(G) \ge k$ and shorthest cycle (girth) $\ge k$.

E.g., for k = 2 any (nonempty) graph will do (with or without cycle)

For k = 3 the graph with $\chi(G) = 3$ and with no cycle of length $\leq k - 1$ is $C_{2\ell+1}$ with $2\ell + 1 \geq k$.

For any k and $g = 3 K_k$ is a good choice.

If a graph G contains K_m as a subgraph then $\chi(G) \ge m$. However, a large complete subgraph is not the only reason for large chromatic number.

Theorem

For any (large) positive integers k and g there exists a graph G with $\chi(G) \ge k$ and shorthest cycle (girth) $\ge k$.

E.g., for k = 2 any (nonempty) graph will do (with or without cycle)

For k = 3 the graph with $\chi(G) = 3$ and with no cycle of length $\leq k - 1$ is $C_{2\ell+1}$ with $2\ell + 1 \geq k$.

For any k and $g = 3 K_k$ is a good choice.

For k = 4 and g = 4, G is