(ロ) (回) (目) (目) (目) (0)

Definition

A graph is an ordered pair (V, E) of disjoint sets such that E is a subset of the set of unordered pairs of the elements of V.

Definition

A graph is an ordered pair (V, E) of disjoint sets such that E is a subset of the set of unordered pairs of the elements of V.

The elements of V and E are called *vertices* and *edges* of the graph, resp.

Definition

A graph is an ordered pair (V, E) of disjoint sets such that E is a subset of the set of unordered pairs of the elements of V.

The elements of V and E are called *vertices* and *edges* of the graph, resp.

If G = (V, E) is a graph then V = V(G) and E = E(G) are the vertex set and the edge set of G, resp. An edge $\{x, y\}$ is said to join the vertices x and y and denoted by xy.

Definition

A graph is an ordered pair (V, E) of disjoint sets such that E is a subset of the set of unordered pairs of the elements of V.

The elements of V and E are called *vertices* and *edges* of the graph, resp.

If G = (V, E) is a graph then V = V(G) and E = E(G) are the vertex set and the edge set of G, resp. An edge $\{x, y\}$ is said to join the vertices x and y and denoted by xy.

If $xy \in E(G)$ then x and y are said to be *adjacent* (in G) and the vertices x and y are *incident* with the edge xy.

- * ロ * * 個 * * 目 * * 目 * うえの

Definition

Two graphs G and H are isomorphic if there is a one-to-one correspondence between their vertex-sets that preserves adjacency $(G \approx H)$.

Definition

Two graphs G and H are isomorphic if there is a one-to-one correspondence between their vertex-sets that preserves adjacency $(G \approx H)$.

Proposition

If two graphs G and H are isomorphic, they

have the same number vertices

Definition

Two graphs G and H are isomorphic if there is a one-to-one correspondence between their vertex-sets that preserves adjacency $(G \approx H)$.

Proposition

- have the same number vertices
- have the same number of edges

Definition

Two graphs G and H are isomorphic if there is a one-to-one correspondence between their vertex-sets that preserves adjacency $(G \approx H)$.

Proposition

- have the same number vertices
- have the same number of edges
- share the degree sequence

Definition

The set of vertices adjacent to a vertex $V \in V(G)$ is denoted by $\Gamma_G(v)$ or $N_G(v)$. The degree of a vertex v is given by $D_G(v) = |\Gamma_G(v)|$.

Definition

The set of vertices adjacent to a vertex $V \in V(G)$ is denoted by $\Gamma_G(v)$ or $N_G(v)$. The degree of a vertex v is given by $D_G(v) = |\Gamma_G(v)|$.

Definition

If every vertex of G has degree k then G is said to be k-regular. A vertex of degree zero is said to be an isolated vertex.

Definition

The set of vertices adjacent to a vertex $V \in V(G)$ is denoted by $\Gamma_G(v)$ or $N_G(v)$. The degree of a vertex v is given by $D_G(v) = |\Gamma_G(v)|$.

Definition

If every vertex of G has degree k then G is said to be k-regular. A vertex of degree zero is said to be an isolated vertex.

Definition

The degree sequence of a graph is the sequence of the degrees of it ordered nondecreasing.

Definition

The set of vertices adjacent to a vertex $V \in V(G)$ is denoted by $\Gamma_G(v)$ or $N_G(v)$. The degree of a vertex v is given by $D_G(v) = |\Gamma_G(v)|$.

Definition

If every vertex of G has degree k then G is said to be k-regular. A vertex of degree zero is said to be an isolated vertex.

Definition

The degree sequence of a graph is the sequence of the degrees of it ordered nondecreasing.

Proposition

Since each edge has two endvertices (the vertices incident to the edge), the sum of the degrees is exactly twice the number of edges:

$$\sum_{v \in V(G)} d_G(v) = 2|E(G)|.$$

- • ロ • • @ • • 注 • • 注 • の 9 0

Proposition

- have the same number vertices
- have the same number of edges
- share the degree sequence

Proposition

- have the same number vertices
- have the same number of edges
- share the degree sequence
- they have the same number of connected components

- ◆ ロ ▶ ◆ 個 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ ♀ ⑦ � ♡

Definition

A walk in a directed or undirected graph is a sequence

 $(x_0, e_1, x_1, e_2, x_2, ..., x_{k-1}, e_k, x_k)$ in which $x_0, x_1, ..., x_k$ are vertices and e_i is an edge from x_{i-1} to x_i (i = 1, 2, ..., k). The length of the walk above is k.

Definition

A walk in a directed or undirected graph is a sequence

 $(x_0, e_1, x_1, e_2, x_2, \ldots,$

 x_{k-1}, e_k, x_k) in which x_0, x_1, \ldots, x_k are vertices and e_i is an edge from x_{i-1} to x_i $(i = 1, 2, \ldots, k)$. The length of the walk above is k. A walk is a trail if no edge is used more than once.

Definition

A walk in a directed or undirected graph is a sequence

 $(x_0, e_1, x_1, e_2, x_2, \ldots,$

 x_{k-1}, e_k, x_k) in which x_0, x_1, \ldots, x_k are vertices and e_i is an edge from x_{i-1} to x_i $(i = 1, 2, \ldots, k)$. The length of the walk above is k. A walk is a trail if no edge is used more than once. A walk is a path if no vertex is used more than once.

Definition

A walk in a directed or undirected graph is a sequence

 $(x_0, e_1, x_1, e_2, x_2, \ldots,$

 x_{k-1}, e_k, x_k) in which x_0, x_1, \ldots, x_k are vertices and e_i is an edge from x_{i-1} to x_i $(i = 1, 2, \ldots, k)$. The length of the walk above is k. A walk is a trail if no edge is used more than once. A walk is a path if no vertex is used more than once.

Proposition

A path is a trail and a trail is a walk.

Definition

A walk in a directed or undirected graph is a sequence

 $(x_0, e_1, x_1, e_2, x_2, \ldots,$

 x_{k-1}, e_k, x_k) in which x_0, x_1, \ldots, x_k are vertices and e_i is an edge from x_{i-1} to x_i $(i = 1, 2, \ldots, k)$. The length of the walk above is k. A walk is a trail if no edge is used more than once. A walk is a path if no vertex is used more than once.

Proposition

A path is a trail and a trail is a walk.

Proposition

If two vertices of a graph are connected by a walk, they are also connected by a path

◆□→ ◆□→ ◆三→ ◆三→ ○ ● ● ●

Definition

Two vertices of a graph are called connected if they connected by a path.

Definition

Two vertices of a graph are called connected if they connected by a path.

Proposition

Connectedness of the vertices is an equivalence relation.

Definition

Two vertices of a graph are called connected if they connected by a path.

Proposition

Connectedness of the vertices is an equivalence relation.

Definition

The equivalence classes are called the (connected) components of the graph. A graph is connected if it consists of one connected component.

- • ロ • • @ • • 注 • • 注 • の 9 0

Proposition

- have the same number vertices
- have the same number of edges
- share the degree sequence
- they have the same number of connected components

Proposition

- have the same number vertices
- have the same number of edges
- share the degree sequence
- they have the same number of connected components
- they share the same connected component sequence

Proposition

- have the same number vertices
- have the same number of edges
- share the degree sequence
- they have the same number of connected components
- they share the same connected component sequence
- they have the same cycle length sequence

Proposition

If two graphs G and H are isomorphic, they

- have the same number vertices
- have the same number of edges
- share the degree sequence
- they have the same number of connected components
- they share the same connected component sequence
- they have the same cycle length sequence

Definition

A walk $(x_0, x_1, x_2, ..., x_{k-1})$ is a circuit or cycle if $x_0, x_1, x_2, ..., x_{k-1}$ are distinct vertices and $x_k = x_0$.

<ロ> < 部> < E> < E> E のの()

Definition

We say that the graph G' = (V', E') is a subgraph of G = (V, E) if $V' \subseteq V$ and $E' \subseteq E$.

Definition

We say that the graph G' = (V', E') is a subgraph of G = (V, E)if $V' \subseteq V$ and $E' \subseteq E$. If G' contains all edges of G joining two vertices in V' then G' is called the subgraph induced or spanned by V' and denoted by G[V'].

Definition

We say that the graph G' = (V', E') is a subgraph of G = (V, E)if $V' \subseteq V$ and $E' \subseteq E$. If G' contains all edges of G joining two vertices in V' then G' is called the subgraph induced or spanned by V' and denoted by G[V']. If V' = V then G' is said to be a spanning subgraph of G.

Definition

We say that the graph G' = (V', E') is a subgraph of G = (V, E)if $V' \subseteq V$ and $E' \subseteq E$. If G' contains all edges of G joining two vertices in V' then G' is called the subgraph induced or spanned by V' and denoted by G[V']. If V' = V then G' is said to be a spanning subgraph of G.

Definition

The complement of a graph G is the graph \overline{G} defined by $V(\overline{G}) = V(G), E(\overline{G}) = \{xy : x, y \in V(G), x \neq y, xy \notin E(G)\}.$

Definition

We say that the graph G' = (V', E') is a subgraph of G = (V, E)if $V' \subseteq V$ and $E' \subseteq E$. If G' contains all edges of G joining two vertices in V' then G' is called the subgraph induced or spanned by V' and denoted by G[V']. If V' = V then G' is said to be a spanning subgraph of G.

Definition

The complement of a graph G is the graph \overline{G} defined by $V(\overline{G}) = V(G), E(\overline{G}) = \{xy : x, y \in V(G), x \neq y, xy \notin E(G)\}.$

Definition

The complete graph of n vertices, denoted K_n , is the graph in which every pair of vertices is joined by an edge.

Definition

A coloring of the vertices of a graph G is an assignment of colors to the vertices in such a way that adjacent vertices get distinct colors.

Definition

A coloring of the vertices of a graph G is an assignment of colors to the vertices in such a way that adjacent vertices get distinct colors. The (vertex) coloring number or chromatic number $\chi(G)$ is the minimal number of colors in a (vertex) coloring of G.

Definition

A coloring of the vertices of a graph G is an assignment of colors to the vertices in such a way that adjacent vertices get distinct colors. The (vertex) coloring number or chromatic number $\chi(G)$ is the minimal number of colors in a (vertex) coloring of G.

Proposition

Clearly, $\chi(K_n) = n$ and $\chi(G) = |V(G)|$ iff $G = K_n$.

Definition

A coloring of the vertices of a graph G is an assignment of colors to the vertices in such a way that adjacent vertices get distinct colors. The (vertex) coloring number or chromatic number $\chi(G)$ is the minimal number of colors in a (vertex) coloring of G.

Proposition

Clearly, $\chi(K_n) = n$ and $\chi(G) = |V(G)|$ iff $G = K_n$. The chromatic number is monotone, thta is fro $G \subset H$ we have $\chi(G) \le \chi(H)$.

Definition

A coloring of the vertices of a graph G is an assignment of colors to the vertices in such a way that adjacent vertices get distinct colors. The (vertex) coloring number or chromatic number $\chi(G)$ is the minimal number of colors in a (vertex) coloring of G.

Proposition

Clearly, $\chi(K_n) = n$ and $\chi(G) = |V(G)|$ iff $G = K_n$. The chromatic number is monotone, thta is fro $G \subset H$ we have $\chi(G) \le \chi(H)$. If a graph G contains K_m as a subgraph then $\chi(G) > m$.

Definition

A coloring of the vertices of a graph G is an assignment of colors to the vertices in such a way that adjacent vertices get distinct colors. The (vertex) coloring number or chromatic number $\chi(G)$ is the minimal number of colors in a (vertex) coloring of G.

Proposition

Clearly, $\chi(K_n) = n$ and $\chi(G) = |V(G)|$ iff $G = K_n$.

The chromatic number is monotone, that is fro $G \subset H$ we have $\chi(G) \leq \chi(H)$. If a graph G contains K_m as a subgraph then $\chi(G) > m$.

Definition

A graph G is a bipartite graph with vertex classes V_1 and V_2 if $V(G) = V_1 \cup V_2$, $V_1 \cap V_2 = \emptyset$ and each edge joins a vertex of V_1 to a vertex of V_2 .

Definition

A coloring of the vertices of a graph G is an assignment of colors to the vertices in such a way that adjacent vertices get distinct colors. The (vertex) coloring number or chromatic number $\chi(G)$ is the minimal number of colors in a (vertex) coloring of G.

Proposition

Clearly, $\chi(K_n) = n$ and $\chi(G) = |V(G)|$ iff $G = K_n$.

The chromatic number is monotone, that is fro $G \subset H$ we have $\chi(G) \leq \chi(H)$. If a graph G contains K_m as a subgraph then $\chi(G) > m$.

Definition

A graph G is a bipartite graph with vertex classes V_1 and V_2 if $V(G) = V_1 \cup V_2$, $V_1 \cap V_2 = \emptyset$ and each edge joins a vertex of V_1 to a vertex of V_2 .

Notice that a graph G is bipartite if and only if $\chi(G) \leq 2$.