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There are 15 minicomputers and 10 printers in a computer lab. At
most 10 computers are in use at one time. Every 5 minutes, some
subset of computers requests printers. We want to connect each
computer to some of the printers so that we should use as few
connections as possible but we should be always sure that a
computer will have a printer to use. (At most one computer can
use a printer at a time.) How many connections are needed?
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Note that if there are fewer than 60 connections then there will be
some printers connected to at most 5 computers. If the remaining
10 computers were used at one time, there would be only 9
printers left for them. Thus, at least 60 connections are required.
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On the other hand, it can be shown that if the i -th printer is
connected to the i -th, (i + 1)-st, . . ., (i + 5)-th computers
(i = 1, . . . , 10) then these 60 connections have the desired
properties.
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Example

Show that if n + 1 numbers are selected from the set
{1, 2, 3, . . . , 2n} then one of these will divide another one of them.

Take n ”pigeonholes”. Put the selected numbers

of form (2k − 1)2α into the k-th pigeonhole (1 ≤ k ≤ n). Then at
least one pigeonhole will contain at least two numbers and one of
these will divide another one of these.


