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Proposition

A tree of n vertices has n − 1 edges.

Proof We prove the theorem by induction on n. For n = 1, the
statement is obvious. Suppose that the statement is true for any
tree of n − 1 vertices. Consider a tree T of n vertices. Delete a
vertex v of degree one. The resulted graph T [V (T )− {v}] is still
acyclic and connected since for any two vertices x and y in
V (T )−{v}, the path joining x and y in T could not use vertex v .
Thus T − v is a tree and has n − 2 edges by the inductional
hypothesis. Hence |E (T )| = (n − 2) + 1 = n − 1.
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Theorem
A connected graph of n vertices and n − 1 edges is a tree.

Proof We prove the theorem by induction on n. For n = 1, the
statement is trivial. Suppose that the statement is true for any
graph of n − 1 vertices and let G be a connected graph of n
vertices and n − 1 edges where n ≥ 2. Then G does not contain
any isolated vertex and so d(x) ≥ 1 for x ∈ V (G ). On the other
side,

∑

x∈V (G)

d(x) = 2n − 2 and so G contains at least two vertices

of degree one. Deleting one of them, we obtain a connected graph
of n− 1 vertices and n− 2 edges which is acyclic by the inductional
hypothesis. Since a vertex of degree one cannot be contained in a
cycle, it implies that G is acyclic, as well, and so G is a tree.
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Theorem
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components G1,G2, . . . ,Gp are trees and so |E (Gi )| = |V (Gi)| − 1.
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Theorem
An acyclic graph of n vertices and n − 1 edge is a tree.

Proof Let G be an acyclic graph of n vertices and n− 1 edges. Its
components G1,G2, . . . ,Gp are trees and so |E (Gi )| = |V (Gi)| − 1.
Thus

|E (G )| =

p
∑

i=1

|E (Gi )| =

p
∑

i=1

(|V (Gi)| − 1) = n − p ,

which implies that p = 1 and so G is connected.

Definition
A (not necessarily connected) graph without any cycle is a forest
or an acyclic graph.

Notice a forest is a graph whose every component is a tree.
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Spanning tree

Definition
A spanning subgraph of a graph G that is a tree is called a
spanning tree of G .

Theorem
If G is a connected graph then it has a spanning tree.

Proof Notice that a connected spanning subgraph of G with
minimum number of edges is a spanning tree.
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We speak about labeled graphs if the vertices of the graphs are
labeled with, say, the first n positive integers. In that case two —
otherwise isomorphic — graphs will be distinguishable simple due
to the fact that there edges run between vertices of different
labels. It turns out to be much easier to give the number of
labeled graphs with a certain property then the same question for
simple (non-labeled) graphs.

Proposition

The number of labeled graphs on n vertices is 2(
n

2), while the

number of labeled graphs on n vertices with k edges is
((n2)

k

)
.
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Labelled trees

A rather more difficult question is the number of labeled trees.
The answer is given by the Cayley Formula, which we give below.
Problem. How many different trees do we have on n labeled
vertices?

Lemma
Assume that d1, d2, . . . , dn are all ≥ 1 and

∑n
i=1 di = 2n− 2. Then

the number of trees on the given (labeled) vertices {v1, v2, . . . , vn}

such that vertex vi has degree di is equal to
(n−2)!

(d1−1)!···(dn−1)! .
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Proof Use induction on n. Base cases are trivial. Since
∑n

i=1 di = 2n − 2 < 2n we must have a vertex of degree one, say
di = 1. We may assume dn = 1 and remove vn. Assume it was
connected to vj and so the removal of it will result another tree on
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Proof Use induction on n. Base cases are trivial. Since
∑n

i=1 di = 2n − 2 < 2n we must have a vertex of degree one, say
di = 1. We may assume dn = 1 and remove vn. Assume it was
connected to vj and so the removal of it will result another tree on
n − 1 vertices with degrees d1, . . . , dj−1, dj − 1, dj+1, . . . , dn−1.
Similarly, for any given trees on {v1, . . . , vn−1} with degrees
d1, . . . , dj−1, dj − 1, dj+1, . . . , dn−1 we can join vj to the newly
added vn resulting a tree on {v1, . . . , vn} with degrees d1, . . . , dn.
By induction, the number of trees on {v1, . . . , vn−1} with degrees
d1, . . . , dj−1, dj − 1, dj+1, . . . , dn−1 is

(n − 3)!

(d1 − 1)! · · · (dj−1 − 1)!(dj − 2)!(dj+1 − 1)! · · · (dn−1 − 1)!
= (1)

=
(dj − 1)(n − 3)!

(d1 − 1)! · · · (dn − 1)!
. (2)

The formula is valid for dj = 0 as well.
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Proof cont’d
Thus the number of trees on vertices {v1, . . . , vn} with degrees
d1, . . . , dn is equal to

n−1∑

j=1

(dj − 1)(n − 3)!

(d1 − 1)! · · · (dn − 1)!
=





n−1∑

j=1

(dj − 1)




(n − 3)!

(d1 − 1)! · · · (dn − 1)!

=
(n − 2)(n − 3)!

(d1 − 1)! · · · (dn − 1)!

(3)
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Theorem
(Cayley Formula) The number of labeled trees on n vertices
is nn−2.

Proof It is equal to

∑

d1,...,dn≥1
d1+···+dn=2n−2
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Counting labelled trees, cont’d

Theorem
(Cayley Formula) The number of labeled trees on n vertices
is nn−2.

Proof It is equal to

∑

d1,...,dn≥1
d1+···+dn=2n−2

(n − 2)!

(d1 − 1)! · · · (dn − 1)!
=

∑

k1,...,kn≥0
k1+···+kn=n−2

(n − 2)!

k1! · · · kn!

= (1 + 1 + · · ·+ 1)
︸ ︷︷ ︸

n−2 = nn−2
.

(4)


