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1. BASIC COUNTING RULES

Product rule: If something can happen in n1 ways, and no matter how the first
thing happens, a second thing can happen in n2 ways, and so on, no matter how the
first k − 1 things happen, a k-th thing can happen in nk ways, then all the k things
together can happen in n1 × n2 × . . .× nk ways.

Example 1. A local telephone number is given by a sequence of six digits. How many
different telephone numbers are there if the first digit cannot be 0?

Answer: 9× 10× 10× 10× 10× 10 = 900, 000.

Example 2. The population of a town is 30,000. If each resident has three initials; is
it true that there must be at least two individuals with the same initials?

Answer: Yes, since 30, 000 > 26× 26× 26.

Example 3. The number of subsets of an n-set is 2n. (First we decide if the first
element of the n set belongs to the subset or not, then we decide if the second element
of the n-set belongs to the subset or not, etc.)

Sum rule: If one event can occur in n, ways, a second event can occur in n2

(different) ways, and so on, a k-th event can occur in nk (still different) ways then
(exactly) one if the events can occur in n1 + n2 + . . . + nk ways.

Example 4. A committee is to be chosen from among 8 mathematicians, 10 physicists,
12 physicians. If the committee is to have two members of different backgrounds, how
many such committees can be chosen?

Answer: 8× 10 + 8× 12 + 10× 12 = 296.

Example 5. See Ex. 2 if each resident has one, two or three initials.

Answer: Yes, since 30, 000 > 26 + 26× 26 + 26× 26× 26.
A permutation of a set of n elements is an arrangement of the elements of the set

in order. The number of permutations of an n-set is given by

n× (n− 1)× . . .× 1 = n! (product rule).

Example 6. How many permutations of {1, 2, 3, 4, 5}
(a) are there? (5!);
(b) begin with 5? (4!);
(c) begin with an odd number? (3× 4!).

Given an n-set, suppose that we want to pick out r elements and arrange them
in order. Such an arrangement is called an r-permutation of the n-set. The number
P (n, r) or r-permutations of an n-set is given by

n× (n− 1)× . . .× (n− r + 1) (product rule).
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Example 7. Let A = {0, 1, 2, 3, 4, 5, 6}.
(a) Find the number of sequences of length 3 using elements of A.
(b) Repeat (a) if no element of A is to be used twice.
(c) Repeat (a) if the first element of the sequence is 4.
(d) Repeat (a) if the first element of the sequence is 4 and no element of A is used

twice.

Answers: (a) 7× 7× 7; (b) 7× 6× 5; (c) (1×)7× 7; (d) (1×)6× 5.
An r-combination of an n-set is a selection of r elements from the set. Order does

not count. (I.e. an r-combination is an r-element subset.)
(
n
r

)
will denote the number

of r-combinations of an n-set. Notice that P (n, r) =
(
n
r

) × r! (product rule) and so(
n
r

)
= n!

r!(n−r)! .

Theorem 1. (
n

r

)
=

(
n− 1
r − 1

)
+

(
n− 1

r

)
.

Proof. Notice that the number of r-subsets of an n-set that contains the ”first” element
of the n-set is

(
n−1
r−1

)
and the number of r- subsets not containing the ”first” element is(

n−1
r

)
. Hence the sum rule yields the desired equality.

(You may prove the equality by means of algebraic manipulations, as well.)

Example 8. A committee is to be chosen from a set of 7 women and 4 men. How
many ways are there to form the committee if

(a) the committee has 5 people, 3 women and 2 men?
(b) the committee can be any size (except empty) but it must have equal numbers

of women and men?
(c) the committee has 4 people and one of them must be Mr. Smith?
(d) the committee has 4 people, 2 of each sex and Mr. and Mrs. Smith cannot both

be on the committee?

Answers: (a)
(
7
3

)× (
4
2

)
;

(b)
(
7
1

)× (
4
1

)
+

(
7
2

)× (
4
2

)
+

(
7
3

)× (
4
3

)
+

(
7
4

)× (
4
4

)
=

(
11
4

)− 1;

(c)
(
7
0

)× (
3
3

)
+

(
7
1

)× (
3
2

)
+

(
7
2

)× (
3
1

)
+

(
7
3

)× (
3
0

)
=

(
10
3

)
;

(d)
(
6
2

)× (
3
1

)
+

(
6
1

)× (
3
2

)
+

(
6
2

)× (
3
2

)
=

(
7
2

)× (
4
2

)− (
6
1

)× (
3
1

)
.

If we are choosing an r-permutation out of an n-set with replacement then we say
that we are sampling with replacement. The product rule gives us that the number of
r-permutations of an n-set with replacement is nr.

Similarly, we may speak of r-combinations of an n-set with replacement or
repetition. For example, the 3-combinations of a 2-set {0, 1} with replacement are
{0, 0, 0}, {0, 0, 1}, {0, 1, 1}, {1, 1, 1}.
Theorem 2. The number of k-combinations of an n-set with repetition is

(
n+k−1

k

)
.

Proof. We are looking for the number of ways one can choose k objects out of n types
of objects if repetition is allowed. In other words: How many different ways can one
choose a bunch of k flowers if n types of flowers are available, each in sufficiently large
supply? This problem later frequently will be referred as the florist shop problem.
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Assume that the flowers are sold in a florist shop where the containers of the n
types of flowers are lined up along a corridor. The customer buying the k flowers walks
along the containers and at every moment either he picks a piece of flower or steps to
the next container. He begins his walk at the first container and finishes at the nth one,
thus making n− 1 steps and k picks altogether.

E.g. if the containers contain carnations, roses, lilies and tulips (thus 4 type of
flowers) in this given order, the customer buys altogether 10 pieces and we denote by
p and s the “pick” and “step” moves, the pppssppppsppp sequence corresponds to the
choice of 3 carnations, 4 lilies and three tulips, while the sequence sppppspppppps to the
choice of 4 roses and 6 lilies.

Thus, the total number of choices of k pieces of flowers out of the given n types is
the same as the number of choices of the k “picks” out of the n−1+k = n+k−1 total
number of moves, or equivalently, as the number of choices of the n− 1 “steps” out of
the n− 1 + k = n + k − 1 total number of moves. This number is

(
n + k − 1

k

)
=

(
n + k − 1

n− 1

)
.

The same result may be obtained by a different way: the number of choices of the k
“picks” and n−1 “steps” is the same as the number of permutations of these altogether
n + k − 1 items, k and n− 1 of which are identical; assuming for a minute they are all
different the number of permutations is (n + k − 1)!, but any reordering of the k picks
and n−1 moves give us in fact the same permutation. Thus the final number of choices
is

(n + k − 1)!
k! · (n− 1)!

=
(

n + k − 1
k

)
=

(
n + k − 1

n− 1

)
.

Sample problems.

Choosing a sample of r elements from a set of n elements is summarized in the
following table.

Order Repetition The sample Number of ways to
counts? allowed? is called: choose the sample:

No No r-combination
(
n
r

)
Yes No r-permutation P (n, r) = n!

(n−r)!

No Yes r-combination
(
n+r−1

r

)
with replacement

Yes Yes r-permutation nr

with replacement
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Placement or occupancy problems.

Problems of placing balls into cells are called occupancy problems. In occupancy
problems, it makes a big difference whether or not the balls are distinguishable, whether
or not the cells are distinguishable and whether or not the cells can be empty. The
possible cases of occupancy problems are summarized in the following table.

Distinguished
balls?

Distinguished
cells?

Can cells
be empty

Number of ways
to place n balls

into k cells
Reference

Case 1. Yes No No S(n, k) definition

Case 2. Yes No Yes
k∑

i=1

S(n, i) Case 1

Case 3. Yes Yes No k! S(n, k) Case 1
Case 4. Yes Yes Yes kn product rule
Case 5. No Yes Yes

(
k+n−1

n

)
Thm.2

Case 6. No Yes No
(
n−1
k−1

)
Case 5

Case 7. No No Yes

Number of
partitions
of n into k

or fewer parts

C.Berge,
Principles

of Combinato-
rics,

Acad.Press,
1971Case 8. No No No

Number of
partitions
of n into

exactly k parts

The number S(n, k) defined in Case 1 (and to be determined later) is called a
Stirling number of the second kind.

Consider the particular occupancy problem of distributing n distinguishable balls
into k distinguishable cells so that we distribute n1 balls into the first cell, n2 into the
second cell, and so on, nk into the k-th cell. Let

(
n

n1,n2,...,nk

)
denote the number of ways

this can be done. Notice that
(

n
n1,n2,...,nk

)
=

(
n
n1

)× (
n−n1

n2

)× . . .× (
n−n1−n2−...−nk−1

nk

)
=

n!
n1!n2!...nk! . The numbers

(
n

n1,n2,...,nk

)
are called multinomial coefficients. (The numbers(

n
r

)
are called binomial coefficients.)

Theorem 3. Suppose that we have n objects, n1 of type 1, n2 of type 2, . . ., nk of type
k, with n1 + n2 + . . . + nk = n of course. Suppose that objects of the same type are
indistinguishable. Then the number of distinguishable permutations of these objects is(

n
n1,n2,...,nk

)
.

Proof. We have n places to fill in the permutation and we assign n1 of these to the
objects of type 1, n2 to the objects of type 2, and so on.
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Theorem 4. (Binomial expansion.) For n ≥ 0,

(a + b)n =
n∑

k=0

(
n

k

)
akbn−k .

Proof. In multiplying out, we pick one term from each factor (a + b). Note that to
obtain akbn−k, we need to choose k of the factors from which to choose a.

Theorem 5. (a)
(
n
0

)
+

(
n
1

)
+ . . . +

(
n
n

)
= 2n for n ≥ 0,

(b)
(
n
0

)− (
n
1

)
+ . . . + (−1)n

(
n
n

)
= 0 for n ≥ 1.

Proof. Binomial expansion of (1 + 1)n and (1 + (−1))n.

Exercises
1. How many m× n matrices are there each of whose entries is 0 or 1?
2. How many numbers are there which have five digits, each being a number in

{1, 2, . . . , 9} and either having all digits odd or having all digits even?
3. In how many ways can we get a sum of 3 or a sum of 4 when two dice are rolled?
4. Ten job applicants have been invited for interviews, five having been told to come

in the morning and five having been told to come in the afternoon. In how many
different orders can the interviews be scheduled?

5. Let A = {a, b, c, d, e, f, g}.
(a) Find the number of sequences of length 4 using elements of A.
(b) Repeat part (a) if no letter is repeated.
(c) Repeat part (a) if the first letter in the sequence is b.
(d) Repeat part (b) if the first letter is b and the last is d.

6. A pizza shop advertises that it offers over 500 varieties of pizza. The local consumer
protection bureau is suspicious. At the pizza shop, it is possible to have a choice
of any combination of the following toppings: pepperoni, mushrooms, peppers,
sardines, sausage, anchovies, salami, onions, bacon. Is the pizza shop telling the
truth in its advertisements?

7. An ice cream parlor offers 29 different flavors.
(a) How many different triple cones are possible if each scoop on the cone has to
be a different flavor?
(b) Repeat part (a) if the scoops do not have to be different flavors.
(We assume that the order of the scoops does not count.)

8. Repeat Ex. 7 if the order of the scoops does count.
9. Show (in two different ways if possible) that

(
n

m

)(
m

k

)
=

(
n

k

)(
n− k

m− k

) (
=

(
n

n−m, m− k, k

))
.

10. Show (in two different ways if possible) that

(
n

0

)
+

(
n + 1

1

)
+ . . . +

(
n + r

r

)
=

(
n + r + 1

r

)
.
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11. In how many different ways can we choose 12 cans of soup if there are 5 different
varieties available?

12. Suppose that a codeword of length 8 consists of letters A,B, C, D, or E and cannot
start with A. How many such codewords are there?

13. Compute (a) S(n, 0);
(b) S(n, 1);
(c) S(n, 2);
(d) S(n, n− 1);
(e) S(n, n).

14. Find the number of ways to pair off 10 police officers into partners for a patrol.
15. Find the number of ways to assign 6 jobs to 4 workers so that each job gets a worker

and each worker gets at least one job.
16. Find the number of ways to partition a set of 25 elements into exactly 4 subsets.
17. Show by a combinatorial argument that

S(n + 1, k) =
(

n

0

)
S(0, k − 1) +

(
n

1

)
S(1, k − 1) + . . . +

(
n

n

)
S(n, k − 1).

18. In how many ways can we partition n into exactly k parts if the order counts?
19. A code is being written using the four letters a, b, c and d. How many 12 digit

codewords are there which use exactly 3 of each letter?
20. Of 15 computer programs to be run in a day, 5 of them are short, 4 are long, and 6

are of intermediate length. If the 15 programs are all distinguishable, in how many
different orders can they be run so that
(a) all the short programs are run at the beginning?
(b) all the programs of the same length class are run consecutively?

21. How many ways are there to distribute 8 patients to 5 doctors?
22. How many numbers less then 1 million contain the digit 2?
23. How many 5-letter ”words” either start with f or do not have the letter f?
24. (a) In a 6-cylinder engine, the even-numbered cylinders are on the left and the

odd-numbered ones are on the right. A good firing order is a permutation of the
numbers 1 to 6 in which right and left sides are alternated. How many possible
good firing orders are there which starts with a left cylinder?
(b) Repeat part (a) for a 2n-cylinder engine.

25. If a campus telephone extension has four digits, how many different extensions are
there with no repeated digits
(a) if the first digit cannot be 0?
(b) if the first digit cannot be 0 and the second cannot be 1?

26. A value function on a set A assigns 0 or 1 to each subset of A. How many different
value functions are there on a set A of n elements?

27. How many odd numbers between 1,000 and 9,999 have distinct digits?
28. Show that

(
n + m

r

)
=

(
n

0

)(
m

r

)
+

(
n

1

)(
m

r − 1

)
+ . . . +

(
n

r

)(
m

0

)
.

29. In how many ways can we choose 8 bottles of soda if there are 4 brands available?
7



30. In checking the work of a proofreader, we look for 5 kinds of misprints in a textbook.
In how many ways can we find 12 misprints?

31. In Ex. 30, suppose that we do not distinguish the types of misprints but we do keep
a record of the page on which a misprint occurred. In how many ways can we find
25 misprints in 75 pages?

32. Show (by a combinatorial argument) that

S(n, k) = kS(n− 1, k) + S(n− 1, k − 1).

33. How many ways are there to form a sequence of 10 letters from 4 a’s, 4 b’s, 4 c’s
and 4 d’s if each letter must appear at least twice?

8



2. GENERATING FUNCTIONS

Suppose that we are interested in computing the k-th term in a sequence a0, a1, . . .
of numbers. The (ordinary) generating function for the sequence (ak) is defined to be

G(x) =
∑

k

akxk = a0 + a1x + a2x
2 + . . . .

The sum is finite if the sequence is finite, infinite if the sequence is infinite. In the latter

case, we will think of x having been chosen so that the power series
∞∑

k=0

akxk converges.

Ex. 1. Suppose that ak =
(
n
k

)
for k = 0, 1, . . . , n. Then the ordinary generating

function for the sequence (ak) is

G(x) =
(

n

0

)
+

(
n

1

)
x + . . . +

(
n

n

)
xn = (1 + x)n .

Ex. 2. Find the ordinary generating function for the sequence 1
2! ,

1
3! ,

1
4! . . .,

G(x) =
1
2!

+
1
3!

x +
1
4!

x2 + . . . =
1
x2

(
1
2!

x2 +
1
3!

x3 +
1
4!

x4 + . . .

)
=

1
x2

(ex − 1− x) .

Ex. 3. Let ak be the number of labeled graphs with n vertices and k edges. Find the
number of labeled graphs with n vertices using the ordinary generating function for the
sequence (ak).

ak =
((

n
2

)

k

)
, Gn(x) =

((
n
2

)

0

)
+

((
n
2

)

1

)
x + . . . +

((
n
2

)
(
n
2

)
)

x(n
2) = (1 + x)(

n
2) .

The number of labeled graphs with n vertices is
(n
2)∑

k=0

ak = Gn(1) = 2(n
2).

Theorem 1. Suppose that A(x), B(x) and C(x) are the ordinary generating functions
for the sequences (ak), (bk) and (ck), respectively. Then

(i) C(x) = A(x) + B(x) iff ck = ak + bk for k = 0, 1, 2, . . ..
(ii) C(x) = A(x)B(x) iff ck = a0bk + a1bk−1 + . . . + akb0 for k = 0, 1, 2, . . ..

((ck) is called the convolution of the sequences (ak) and (bk).)
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Ex. 4. Suppose that G(x) = 1+x+x2+x3

1−x is the ordinary generating function for a se-
quence (ak). Find ak.

We can write G(x) = (1 + x + x2 + x3) 1
1−x . Now 1 + x + x2 + x3 is the ordi-

nary generating function for the sequence 1, 1, 1, 1, 0, 0, 0 . . . and 1
1−x for the sequence

1, 1, 1, . . .. Thus, G(x) is the ordinary generating function for the convolution of these
two sequences and so

a0 = 1, a1 = 2, a2 = 3, a3 = 4, a4 = 4, a5 = 4, a6 = 4, . . . .

Theorem 2. Suppose that we have p types of objects with ni indistinguishable objects
of type i for i = 1, 2, . . . , p. The number of ways of picking k objects is given by the
coefficient of xk in the generating function

(1 + x + x2 + . . . + xn1)(1 + x + x2 + . . . + xn2) . . . (1 + x + x2 + . . . + xnp) .

If we have each type in infinite supply then the number of ways picking k objects is the
coefficient of xk in the generating function

(1 + x + x2 + . . .)(1 + x + x2 + . . .) . . . (1 + x + x2 + . . .)︸ ︷︷ ︸
p terms

=
1

(1− x)p
.

Ex. 5. In doing a sampling survey, suppose that we have divided the possible men to be
interviewed into r categories and similarly for the women. Suppose that in our group,
we have two men from each category and one woman from each category. In how many
ways can we pick a sample of k people? (People of the same sex are distinguished iff
they belong to different categories.)

The generating function is given by

G(x) = (1 + x + x2)(1 + x + x2) . . . (1 + x + x2)︸ ︷︷ ︸
r terms

(1 + x)(1 + x) . . . (1 + x)︸ ︷︷ ︸
r terms

=

= (1 + x + x2)r(1 + x)r .

The number of ways to select k people is the coefficient of xk.
In order to expand out the generating function (1−x)−p (Theorem 2, second part),

it will be useful to find the Maclaurin series for the function f(x) = (1 + x)s, where s
is an arbitrary real number. We have

f ′(x) = s(1 + x)s−1

f ′′(x) = s(s− 1)(1 + x)s−2

...

f (k)(x) = s(s− 1) . . . (s− k + 1)(1 + x)s−k .

Thus we have the following theorem.
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Theorem 3. (Binomial Theorem)

(1 + x)s =
(

s

0

)
+

(
s

1

)
x +

(
s

2

)
x2 + . . . ,

where the generalized binomial coefficient
(

s
k

)
is defined for any real number s and non-

negative integer k by
(

s

k

)
=

{ s(s−1)...(s−k+1)
k! if k > 0 ,

1 if k = 0 .

Theorem 4. If there are p types of objects, then the number of ways to choose k objects
if we are allowed unlimited repetition of each type is given by

(
p + k − 1

k

)
.

Proof. The generating function is G(x) = (1−x)−p by Theorem 2. Apply the binomial
theorem with −x in place of x and with s = −p. We have

G(x) =
∞∑

k=0

(−p

k

)
(−x)k .

The coefficient of xk (k > 0) is
(−p

k

)
(−1)k =

(−p)(−p− 1) . . . (−p− k + 1)
k!

(−1)k =

=
p(p + 1) . . . (p + k − 1)

k!
=

(
p + k − 1

k

)
,

which gives the coefficient of x0, as well.

Ex. 6. Three (distinguishable) experts rate a job candidate on a scale of 1 to 6. In
how many ways can the total of the ratings add up to 12?

The generating function to consider is G(x) = (x + x2 + . . . + x6)3, we want the
coefficient of x12.

Note that

G(x) = x3(1 + x + . . . + x5)3 = x3 (1− x6)3

(1− x)3
= (x3 − 3x9 + 3x15 − x21)(1− x)−3 .

Applying the binomial theorem (or directly Theorem 4), the coefficient of x12 is
(

3 + 9− 1
9

)
− 3

(
3 + 3− 1

3

)
=

(
11
9

)
− 3

(
5
3

)
= 25 .

The exponential generating function for a sequence (ak) is the function H(x) =
∞∑

k=0

ak
xk

k! .
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Theorem 5. Suppose that we have p types of objects with ni indistinguishable objects
of type i (i = 1, 2, . . . , p). The number of permutations of length k (with up to ni objects
of type i) is the coefficient of xk

k! in the exponential generating function

(
1 + x +

x2

2
+ . . . +

xn1

n1!

)(
1 + x +

x2

2
+ . . . +

xn2

n2!

)
. . .

(
1 + x +

x2

2
+ . . . +

xnp

np!

)
.

Theorem 6.

S(n, k) =
1
k!

k∑

i=0

(−1)i

(
k

i

)
(k − i)n =

1
k!

k∑

j=1

(−1)k−j

(
k

j

)
jn.

Proof. Let T (n, k) (= k! S(n, k)) denote the number of distributions of n distinguishable
balls into k distinguishable cells. The exponential generating function for T (n, k) is

H(x) = (x +
x2

2!
+

x3

3!
+ . . .)k = (ex − 1)k

and T (n, k) is the coefficient of xn

n! . Now

H(x) =
k∑

i=0

(
k

i

)
(−1)ie(k−i)x =

k∑

i=0

(
k

i

)
(−1)i

∞∑
n=0

1
n!

(k − i)nxn =

=
∞∑

n=0

xn

n!

k∑

i=0

(−1)i

(
k

i

)
(k − i)n =⇒ T (n, k) =

k∑

i=0

(−1)i

(
k

i

)
(k − i)n .

Exercises
1. In each of the following, set up the appropriate generating function and indicate

what coefficient you are looking for. But do not calculate the answer.
(a) In how many ways can 5 letters be picked from the letters a, b, c, d if b, c and

d can be picked at most once and a, if picked, must be picked 4 times?
(b) In how many ways are there to choose 10 voters from a group of 5 Republicans,

5 Democrats, and 7 Independents if we want at least 3 Independents and any
two voters of the same political persuasion are indistinguishable?

(c) How many ways are there to distribute 15 indistinguishable balls into 10 dis-
tinguishable cells?

(d) Repeat part (c) if no cell can be empty.
(e) A survey team divides the possible people to interview into 5 groups depending

on age and independently into 4 groups depending on geographic location. In
how many ways can 8 people be chosen to interview if 2 people are distinguished
only if they belong to different age groups, live in different geographic locations,
or are opposite sex?

(f) In how many ways can 8 binary digits be picked if each must be picked an even
number of times?
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(g) In checking the work of a proof reader, we look for 4 types of proof reading
errors. In how many ways can we find 40 errors?

(h) In part (g), suppose that we do not distinguish the types of errors, but we do
keep a record of the page on which an error occurred. In how many ways can
we find 40 errors in 100 pages?

(i) Find the number of solutions to the equation

x1 + x2 + x3 = 12

in which each xi is a nonnegative integer and xi ≤ 6.
(j) How many codewords of three letters can be built from the letters a, b, c, d if

b, c and d can only be picked once?
(k) How many 10-digit numbers contain at most three 0’s, at most three 1’s and

at most four 2’s.
(l) If n is a fixed even number, find the number of n-digit words from the alphabet

{0, 1, 2, 3} in each of which the number of 0’s and the number of 1’s is even.
(m) In how many ways can 200 identical terminals be divided among four computer

rooms so that each room will have 20 or 40 or 60 or 80 or 100 terminals?
(n) A codeword consists of at least one of each of the digits 0,1,2, and 3 and has

length 5. How many such codewords are there?
(o) In how many ways can 3n letters be selected from 2n A’s, 2n B’s, and 2n C’s?
(p) In how many ways can a total of 100 be obtained if 50 dice are rolled?

2. Suppose that there are p kinds of objects with ni indistinguishable objects of type
i. Suppose we can pick all or none of each kind. Set up a generating function for
computing the number of ways to choose k objects.

3. Suppose that there are p kinds of objects, each in infinite supply. Let ak be the
number of distinguishable ways of choosing k objects if only an even number (in-
cluding 0) of each kind of object can be taken. Set up a generating function for the
sequence (ak) and solve for ak.

4. Three people each roll a die once. In how many ways can the score add up to 11?
5. Suppose that there are p different kinds of objects, each in infinite supply. Let ak

be the number of permutations of k objects chosen from these objects. Find ak

explicitly by using exponential generating functions.
6. A small company wants to buy five vehicles including at most two pickup trucks,

at most two station wagons, at most two passenger cars, and at least one van but
at most two vans. How many ways are there to buy 5 vehicles if any two vehicles
of the same type are indistinguishable?

7. Suppose that there are p different kinds of objects, each in infinite supply. Let ak

be the number of ways to pick k of the objects if we must pick at least one of each
kind. Set up a generating function for (ak) and find ak for all k.

8. Let pr
n be the number of partitions of the integer n into exactly r parts where order

counts. Set up a generating function for the sequence (pr
n) and find pr

n.

13



3. RECURRENCE RELATIONS

4.1. Some examples

A recurrence relation is a formula reducing later values of a sequence of numbers
to earlier ones. Note that a recurrence in general has many solutions, i.e., sequences
satisfying it. However, there will be a unique solution when sufficiently many initial
conditions are specified.

Ex. 1. A codeword from the alphabet {0, 1, 2, 3} is legitimate iff it has an even number
of 0’s. How many legitimate codewords of length k are there?

Let ak be the answer. We derive a recurrence for ak. Observe that 4k − ak is the
number of illegitimate k-digit codewords. Consider a legitimate (k + 1)-digit codeword.
If it starts with 1,2 or 3 then the last k digits form a legitimate codeword of length k
and if it starts with 0 then they form an illegitimate codeword of length k. Thus

ak+1 = 3ak + (4k − ak) = 2ak + 4k .

We have initial condition a1 = 3.

Ex. 2. Suppose that we have n lines in ”general position”, i.e., no two are parallel and
no three intersect in the same point. Into how many regions do these lines divide the
plane?

For the number f(n) of regions, we have

f(n + 1) = f(n) + (n + 1)

and the initial condition
f(1) = 2 .

Using the recurrence, we obtain that

f(n) = 2 + 2 + 3 + 4 + . . . + n = 1 +
n(n + 1)

2
.

Ex. 3. Suppose that we study the prolific breeding of rabbits. We start with one pair of
adult rabbits (of opposite sex). Assume that each pair of adult rabbits produce one pair
of young (of opposite sex) each month. A newborn pair become adults in two months,
at which time they also produce their first pair of young. Assume the rabbits never die.
Let Fk denote the number of rabbit pairs present at the beginning of the kth month.
Then we have

F0 = 1, F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . .

and recurrence
Fk = Fk−1 + Fk−2 .

The numbers Fk are called the Fibonacci numbers.
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Ex. 4. Let n objects be labeled 1, 2, . . . , n. An arrangement (permutation) in which
object i is not placed in the ith place for any i is called a derangement. Let Dn be the
number of derangements of n objects.

A derangement of n objects involves a choice of first element and then an ordering of
the remaining n−1. The first element can be any of n−1 different elements: 2, 3, . . . , n.

Suppose that k is put first. Then either 1 appears in the k-th spot or it does not. If
1 appears in the k-th spot then there are Dn−2 ways to order 2, 3, . . . , k−1, k +1, . . . , n
so none appears in its proper place. Suppose next that 1 does not appear in the k-th
spot. Now if we replace 1 with k then we obtain a derangement of the objects 2, 3, . . . , n.
There are Dn−1 such derangements. Thus, we have

Dn = (n− 1)(Dn−1 + Dn−2)

and the initial conditions are

D1 = 0 , D2 = 1 .

Ex. 5. Generalizing Example 1, let a codeword from the alphabet {0, 1, 2, 3} be le-
gitimate iff it has an even number of 0’s and an even number of 3’s. Let ak denote
the number of legitimate codewords of length k. To find ak, it turns out to be useful
to consider other possibilities for a word of length k. Let bk be the number of k-digit
words with an even number of 0’s and an odd number of 3’s, ck the number with an
odd number of 0’s and an even number of 3’s, and dk the number with an odd number
of 0’s and an odd number of 3’s. Note that

a1 = 2, b1 = 1, c1 = 1, d1 = 0

and dk = 4k − ak − bk − ck .

It is easy to get the recurrences

ak+1 = 2ak + bk + ck ,

bk+1 = ak + 2bk + dk = bk − ck + 4k ,

ck+1 = ak + 2ck + dk = ck − bk + 4k .

We have found three relations which can be used simultaneously to compute the desired
numbers.

4.2. The method of characteristic roots

Consider the recurrence

an = c1an−1 + c2an−2 + . . . + cpan−p n ≥ p ,

where c1, c2, . . . , cp are constants and cp 6= 0. Such recurrences are called linear homo-
geneous recurrence relations with constant coefficients. The recurrence in Ex. 3 is an
example of such recurrences. The recurrence above has a unique solution once we specify
the values of the first p terms, a0, a1, . . . , ap−1; these values for the initial conditions. A
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recurrence has many solutions in general if the initial conditions are disregarded. Some
of these solutions will be sequences of form

α0, α1, α2, . . . , αn, . . . .

To find the values of α, let us substitute xk for ak and solve for x. We get

xn − c1x
n−1 − c2x

n−2 − . . .− cpx
n−p = 0

or dividing by xn−p,

xp − c, xp−1 − c2x
p−2 − . . .− cp = 0 .

It is called the characteristic equation of the recurrence. The roots of it are called
characteristic roots.

Theorem 1. Suppose that a linear homogeneous recurrence with constant coefficients
has characteristic roots α1, α2, . . . , αp. Then if λ1, λ2, . . . , λp are constants, every ex-
pression of the form

an = λ, αn
1 + λ2α

n
2 + . . . + λpα

n
p

is a solution to the recurrence. Moreover, if the characteristic roots are distinct, then
every solution to the recurrence has the form above for some constants λ1, . . . , λp. We
call the expression above the general solution of the recurrence.

Theorem 1 implies that if the characteristic roots are distinct then to find the unique
solution of the recurrence subject to initial conditions a0, a1, . . . , ap−1, we simply need
to find values for λ1, . . . , λp in the general solution.

Ex. 3. (Revisited.) We have the recurrence

Fk = Fk−1 + Fk−2

with initial conditions F0 = 1, F1 = 1. The characteristic equation is given by

x2 − x− 1 = 0 ,

the characteristic roots are given by

α1 =
1 +

√
5

2
and α2 =

1−√5
2

.

Because α1 6= α2, the general solution is

λ1

(
1 +

√
5

2

)k

+ λ2

(
1−√5

2

)k

.

The initial conditions give us the two equations

λ1 + λ2 = 1 ,

λ1

(
1 +

√
5

2

)
+ λ2

(
1−√5

2

)
= 1 .

Solving these equations for λ, and λ2, we get

λ1 =
1√
5

(
1 +

√
5

2

)
, λ2 = − 1√

5

(
1−√5

2

)
.

Hence

Fk =

(
1+
√

5
2

)k+1

−
(

1−√5
2

)k+1

√
5

.
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Theorem 2. Suppose that a linear homogeneous recurrence with constant coefficients
has characteristic roots α1, α2, . . . , αq with αi having multiplicity ni. Then the general
solution is given by

an = λ10α
n
1 + λ11nαn

1 + . . . + λ1(n1−1)n
n1−1αn

1 + . . . +

+ λq0α
n
q + λq1nαn

q + . . . + λq(nq−1)n
nq−1αn

q

for some constants λ10, λ11, . . . , λ1(n1−1), . . . , λq0, λq1, . . . , λq(nq−1).

Ex. 6. Solve the recurrence
an = 6an−1 − 9an−2

a0 = 1 , a1 = 2 .

The characteristic equation is x2−6x+9 = 0, 3 is a double root. The general solution
is λ103n + λ11n3n. The initial conditions give us the equations

λ10 = 1 ,

3λ10 + 3λ11 = 2 =⇒ λ11 = −1
3

.

Hence the solution is given by an = 3n − n3n−1.

4.3. Solving recurrences using generating functions

To illustrate the method, let us revisit

Ex. 1. We have

ak+1 = 2ak + 4k

a1 = 3 .

¿From the recurrence, we can derive a0 = 1 even though a0 is not defined. Multiply
both sides of the recurrence by xk and sum, obtaining

∞∑

k=0

ak+1x
k = 2

∞∑

k=0

akxk +
∞∑

k=0

4kxk .

Hence, for the ordinary generating function G(x) =
∞∑

k=0

akxk, we obtain

1
x

∞∑

k=0

ak+1x
k+1 = 2G(x) +

∞∑

k=0

(4x)k ,

1
x

G(x)− 1
x

= 2G(x) +
1

1− 4x
.

Solving for G(x), we obtain

G(x) =
1

1− 2x
+

x

(1− 2x)(1− 4x)
.
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Expanding the second term by the method of partial fractions, we get

G(x) =
1/2

1− 2x
+

1/2
1− 4x

.

Expanding it, we obtain

G(x) =
1
2

∞∑

k=0

(2x)k +
1
2

∞∑

k=0

(4x)k ,

and so
ak =

1
2
· 2k +

1
2
· 4k .

Ex. 4. (Revisited) We have

Dn+1 = n(Dn + Dn−1)
D1 = 0 , D2 = 1 .

Use the exponential generating functions

H(x) =
∞∑

n=0

Dn
xn

n!
(D0 = 1 from the recurrence).

Multiply the recurrence Dn+1 = n(Dn + Dn−1) by xn+1

(n+1)! and sum, obtaining

∞∑
n=0

Dn+1
xn+1

(n + 1)!
=

∞∑
n=0

nDn
xn+1

(n + 1)!
+

∞∑
n=0

nDn−1
xn+1

(n + 1)!
,

H(x)− 1 = x

∞∑
n=0

(n + 1)Dn
xn

(n + 1)!
−

∞∑
n=0

(Dn − nDn−1)
xn+1

(n + 1)!
.

Using that Dn − nDn−1 = (−1)n (prove by induction!), we get

H(x)− 1 = xH(x) +
∞∑

n=0

(−1)n+1 n + 1
(n + 1)!

= xH(x) + e−x − 1

H(x) = e−x(1− x)−1 = (1− x +
x2

2!
− x3

3!
+

x4

4!
− . . .)(1 + x + x2 + . . .)

H(x) =
∞∑

n=0

xn

(
1− 1

1!
+

1
2!
− 1

3!
+ . . . + (−1)n 1

n!

)
.

Thus

Dn = n!
(

1− 1
1!

+
1
2!
− 1

3!
+ . . . + (−1)n 1

n!

)
.

Ex. 5. (Revisited). We have the recurrences

ak+1 = 2ak + bk + ck ,

bk+1 = bk − ck + 4k ,

ck+1 = ck − bk + 4k ,

a1 = 2, b1 = 1, c1 = 1 .
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¿From the recurrences we get a0 = 1, b0 = c0 = 0. Let A(x) =
∞∑

k=0

akxk, B(x) =
∞∑

k=0

bkxk, C(x) =
∞∑

k=0

ckxk. Multiplying the recurrences by xk and summing, we get

some equations for these generating functions.

∞∑

k=0

ak+1x
k = 2

∞∑

k=0

akxk +
∞∑

k=0

bkxk +
∞∑

k=0

ckxk ,

∞∑

k=0

bk+1x
k =

∞∑

k=0

bkxk −
∞∑

k=0

ckxk +
∞∑

k=0

4kxk ,

∞∑

k=0

ck+1x
k =

∞∑

k=0

ckxk −
∞∑

k=0

bkxk +
∞∑

k=0

4kxk .

We obtain

1
x

(A(x)− a0) = 2A(x) + B(x) + C(x) ,

1
x

(B(x)− b0) = B(x)− C(x) +
1

1− 4x
,

1
x

(C(x)− c0) = C(x)−B(x) +
1

1− 4x
.

If follows that

B(x) = C(x) =
x

1− 4x
,

A(x) =
2x2 − 4x + 1

(1− 2x)(1− 4x)
.

Using partial fractions, we get that

B(x) = C(x) =
∞∑

k=0

4kxk+1 ,

A(x) = 1 +
∞∑

k=0

4kxk+1 +
∞∑

k=0

2kxk+1 .

Thus ak = 4k−1 + 2k−1 for k > 0.

Exercises
1. A codeword from the alphabet {0, 1, 2} is legitimate iff no two 0’s appear consec-

utively. Find a recurrence for the number bn of legitimate codewords of length
n.

2. Determine a recurrence for f(n) if f(n) is the number of ways that 2n tennis players
can be paired off in n matches.

3*. If Fn is the nth Fibonacci number, find a simple expression for

F1 + F2 + . . . + Fn ,
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which involves Fp for only one p.
4. Find the number of codewords of length k from an alphabet {a, b, c, d, e} if b occurs

an even number of times.
5. Suppose that we have 4 forint stamps, 6 forint stamps and 10 forint stamps, each

in infinite supply. Let f(n) denote the number of ways of obtaining n forints of
postage if the order in which we put on stamps counts. Derive a recurrence for
f(n) if n > 10.

6. A codeword from the alphabet {0, 1, 2} is legitimate iff there is an even number
of 0’s and an odd number of 1’s. Find simultaneous recurrences from which it is
possible to compute the number of legitimate codewords of length n.

7. Determine a recurrence for f(n), the number of regions into which the plane is
divided by n circles each pair of which intersect in exactly two points and no three
of which have a common point.

8. Solve the following recurrence relations under the given initial conditions

(a) ak = 10ak−1 − 16ak−2 a0 = 0, a1 = 1

(b) bn+1 = −bn + 2bn−1 b0 = b1 = 1

(c) ck = 14ck−1 − 49ck−2 c0 = 0, c1 = 10

(d) dn = 2dn−1 − dn−2 d0 = 1, d1 = 2

(e) en = 4en−2 e0 = 10, e1 = 2

(f) fn = 8fn−1 − 15fn−2 f0 = 0, f1 = 2

(g) gn = 10gn−1 − 25gn−2 g0 = 1, g1 = 2

(h) hk+2 = 2hk+1 − hk + 2k h0 = 2, h1 = 1

(i) in+1 = 2nin + 2in + 2 i0 = 1

(j) jn+1 = 3jn + 1 j1 = 1

(k) kn = kn−1 + n + 6 k0 = 0

(l) an+1 = an + bn + cn

bn+1 = 4n − cn a1 = b1 = c1 = 1
cn+1 = 4n − bn

(m) an+1 = 2an + bn + 2n a0 = 2

bn+1 = −an + bn + 3n+1 b0 = 0 .
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4. THE PRINCIPLE OF INCLUSION AND EXCLUSION

Inclusion-Exclusion Formula. Let A1, A2, . . . , An ⊆ S where S is a finite set, and
let

AI =
⋂

i∈I

Ai for I ⊆ {1, 2, . . . , n} (A∅ = S) .

Then
|S − (A1 ∪A2 ∪ . . . ∪An)| =

∑

I⊆{1,2,...n}
(−1)|I||AI | .

Proof. If x ∈ S−(A1∪A2∪ . . .∪An) then it is counted once. If x is contained in exactly
k sets Ai then it is counted

(
k
0

)− (
k
1

)
+

(
k
2

)
+ . . . + (−1)k

(
k
k

)
= (1− 1)k = 0 times.

Ch. 3. Ex. 6 (Revisited). We recall this problem in a new interpretation: Three
distinguishable experts rate a job candidate on a scale of 0 to 5. In how many ways can
the total of the ratings add up to 9?

Consider the case when the experts rate on a scale of 0 to infinite and let S be the set
of all the ways how the total of ratings add up to 9. (Notice that |S| = (

3+9−1
9

)
=

(
11
9

)
.)

Let Ai be the subset of S such that the i-th expert’s rating is at least 6. Now we are
looking for |S ∪ (A1 ∪A2 ∪A3)|. By the principle of inclusion and exclusion,

|S − (A1 ∪A2 ∪A3) = |S| −
3∑

i=1

|Ai|+
∑

1≤i<j≤3

|Ai ∩Aj | − |A1 ∩A2 ∩A3| =

=
(

11
9

)
− 3

(
3 + 3− 1

3

)
+ 0− 0 =

(
11
9

)
− 3

(
5
3

)
= 25 .

Exercises
1. How many integers between 1 and 10,000 inclusive are divisible by none of 5, 7

and 11?
2. How many integers between 1 and 500 inclusive are divisible by none of 2, 3 and

5?
3. A total of 5 misprints occur on 4 pages of a book. What is the number of distribu-

tions of these misprints such that each of these pages has at least one misprint?
4. Eight accidents occur during a week. Write an expression for the number of distri-

butions of the accidents such that there is at least one accident each day.
5. Use the principle of inclusion and exclusion to count the number of ways to choose

(a) 12 elements from a set of 5 a’s, 5 b’s, and 5 c’s;
(b) 8 elements from a set of 3 a’s, 3 b’s and 4 c’s;
(c) 9 elements from a set of 3 a’s, 4 b’s and 5 c’s.
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6. Use inclusion and exclusion to find the number of solutions to the equation
(a) x1 + x2 + x3 = 16;
(b) x1 + x2 + x3 + x4 = 18;

in which each xi is a nonnegative integer and xi ≤ 7.
7. Solve Ex. 6 if each xi is strictly positive.
8. Find the number of permutations of the set {1, 2, . . . , n} in which the patterns

(a) 124, 35
(b) 12, 23, 24, . . . , (n− 1)n do not appear.

9. Find the number of n-digit codewords from the alphabet {0, 1, . . . , 9} in which the
digits 1,2, and 3 each appears at least once.

10. Find the number of ways the letters a, a, b, b, c, c, d, d, d can be arranged so that two
letters of the same kind never appear consecutively.
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5. INTRODUCTION TO GRAPH THEORY

A graph is an ordered pair (V, E) of disjoint sets such that E is a subset of the set
of unordered pairs of the elements of V . The elements of V and E are called vertices
and edges of the graph, resp. If G = (V, E) is a graph then V = V (G) and E = E(G)
are the vertex set and the edge set of G, resp. An edge {x, y} is said to join the vertices
x and y and denoted by xy. If xy ∈ E(G) then x and y are said to be adjacent (in G)
and the vertices x and y are incident with the edge xy.

We say that the graph G′ = (V ′, E′) is a subgraph of G = (V, E) if V ′ ⊆ V and
E′ ⊆ E. If G′ contains all edges of G joining two vertices in V ′ then G′ is called the
subgraph induced or spanned by V ′ and denoted by G[V ′]. If V ′ = V then G′ is said to
be a spanning subgraph of G.

Two graphs are isomorphic if there is a one-to-one correspondence between their
vertex-sets that preserves adjacency.

The set of vertices adjacent to a vertex V ∈ V (G) is denoted by ΓG(v) or NG(v).
The degree of a vertex v is given by DG(v) = |ΓG(v)|. If every vertex of G has degree k
then G is said to be k-regular. A graph is regular if it is k-regular for some k. A vertex
of degree zero is said to be an isolated vertex.

Since each edge has two endvertices (the vertices incident to the edge), the sum of
the degrees is exactly twice the number of edges:

∑

v∈V (G)

dG(v) = 2|E(G)| .

If the edges are ordered pairs of vertices then we get the notion of directed graph or
digraph. An ordered pair (x, y) is said to be an edge directed from x to y and denoted
by xy.

A walk in a directed or undirected graph is a sequence (x0, e1, x1, e2, x2, . . . ,
xk−1, ek, xk) in which x0, x1, . . . , xk are vertices and ei is an edge from xi−1 to xi

(i = 1, 2, . . . , k). The length of the walk above is k. A walk is a trail if no edge is
used more than once. A walk is a path if no vertex is used more than once. A walk
(x0, x1, x2, . . . , xk−1) is a circuit or cycle if x0, x1, x2, . . . , xk−1 are distinct vertices and
xk = x0.

A graph G is a bipartite graph with vertex classes V1 and V2 if V (G) = V1 ∪ V2,
V1 ∩ V2 = ∅ and each edge joins a vertex of V1 to a vertex of V2.

A graph is connected if for any two vertices x and y, there is a path from x to
y. A maximal connected subgraph is a component of the graph. A digraph is strongly
connected if for any ordered pair (x, y) of vertices there is a path from x to y. A maximal
strongly connected subgraph is a strongly connected component of the digraph.

A coloring of the vertices of a graph G is an assignment of colors to the vertices
in such a way that adjacent vertices get distinct colors. The (vertex) coloring number
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or chromatic number χ(G) is the minimal number of colors in a (vertex) coloring of G.
Notice that a graph G is bipartite if and only if χ(G) ≤ 2.

The complete graph of n vertices, denoted Kn, is the graph in which every pair of
vertices is joined by an edge. Clearly, χ(Kn) = n and if a graph G contains Km as a
subgraph then χ(G) ≥ m.

A tree is a connected graph with no cycles. A (not necessarily connected) graph
without any cycle is a forest or an acyclic graph. Notice a forest is a graph whose every
component is a tree.

Lemma 1. A tree of at least two vertices has at least two vertices of degree one.

Proof. The terminal vertices of a maximal path have degree one.

Theorem 1. A tree of n vertices has n− 1 edges.

Proof. We prove the theorem by induction on n. For n = 1, the statement is obvious.
Suppose that the statement is true for any tree of n− 1 vertices. Consider a tree T of
n vertices. Delete a vertex v of degree one. The resulted graph T [V (T ) − {v}] is still
acyclic and connected since for any two vertices x and y in V (T )−{v}, the path joining
x and y in T could not use vertex v. Thus T − v is a tree and has n − 2 edges by the
inductional hypothesis. Hence |E(T )| = (n− 2) + 1 = n− 1.

Theorem 2. A connected graph of n vertices and n− 1 edges is a tree.

Proof. We prove the theorem by induction on n. For n = 1, the statement is trivial.
Suppose that the statement is true for any graph of n − 1 vertices and let G be a
connected graph of n vertices and n − 1 edges where n ≥ 2. Then G does not contain
any isolated vertex and so d(x) ≥ 1 for x ∈ V (G). On the other side,

∑
x∈V (G)

d(x) = 2n−2

and so G contains at least two vertices of degree one. Deleting one of them, we obtain
a connected graph of n− 1 vertices and n− 2 edges which is acyclic by the inductional
hypothesis. Since a vertex of degree one cannot be contained in a cycle, it implies that
G is acyclic, as well, and so G is a tree.

Theorem 3. An acyclic graph of n vertices and n− 1 edge is a tree.

Proof. Let G be an acyclic graph (i.e. a forest) of n vertices and n − 1 edges. Its
components G1, G2, . . . , Gp are trees and so |E(Gi)| = |V (Gi)|− 1 by Theorem 1. Thus

|E(G)| =
p∑

i=1

|E(Gi)| =
p∑

i=1

(|V (Gi)| − 1) = n− p ,

which implies that p = 1 and so G is connected.

A spanning subgraph of a graph G that is a tree is called a spanning tree of G.

Theorem 4. If G is a connected graph then it has a spanning tree.

Proof. Notice that a connected spanning subgraph of G with minimum number of edges
is a spanning tree.

Finally, we will discuss some basic counting results of labeled graphs. We speak
about labeled graphs if the vertices of the graphs are labeled with, say, the first n positive
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integers. In that case two — otherwise isomorphic — graphs will be distinguishable
simple due to the fact that there edges run between vertices of different labels. It turns
out to be much easier to give the number of labeled graphs with a certain property then
the same question for simple (non-labeled) graphs.

Fact. The number of labeled graphs on n vertices is 2(n
2), while the number of labeled

graphs on n vertices with k edges is
((n

2)
k

)
.

A rather more difficult question is the number of labeled trees. The answer is given
by the Cayley Formula, which we give below.
Problem. How many different trees do we have on n labeled vertices?

Lemma. Assume that d1, d2, . . . , dn are all ≥ 1 and
∑n

i=1 di = 2n − 2. Then the
number of trees on the given (labeled) vertices {v1, v2, . . . , vn} such that vertex vi has
degree di is equal to (n−2)!

(d1−1)!···(dn−1)! .

Proof. Use induction on n. Base cases are trivial. Since
∑n

i=1 di = 2n − 2 < 2n we
must have a vertex of degree one, say di = 1. We may assume dn = 1 and remove vn.
Assume it was connected to vj and so the removal of it will result another tree on n− 1
vertices with degrees d1, . . . , dj−1, dj − 1, dj+1, . . . , dn−1. Similarly, for any given trees
on {v1, . . . , vn−1} with degrees d1, . . . , dj−1, dj−1, dj+1, . . . , dn−1 we can join vj to the
newly added vn resulting a tree on {v1, . . . , vn} with degrees d1, . . . , dn. By induction,
the number of trees on {v1, . . . , vn−1} with degrees d1, . . . , dj−1, dj − 1, dj+1, . . . , dn−1

is

(n− 3)!
(d1 − 1)! · · · (dj−1 − 1)!(dj − 2)!(dj+1 − 1)! · · · (dn−1 − 1)!

=
(dj − 1)(n− 3)!

(d1 − 1)! · · · (dn − 1)!
.

The formula is valid for dj = 0 as well. Thus the number of trees on vertices {v1, . . . , vn}
with degrees d1, . . . , dn is equal to

n−1∑

j=1

(dj − 1)(n− 3)!
(d1 − 1)! · · · (dn − 1)!

=




n−1∑

j=1

(dj − 1)


 (n− 3)!

(d1 − 1)! · · · (dn − 1)!

=
(n− 2)(n− 3)!

(d1 − 1)! · · · (dn − 1)!

Theorem 5. (Cayley Formula) The number of labeled trees on n vertices is
nn−2.

Proof. It is equal to

∑
d1,... ,dn≥1

d1+···+dn=2n−2

(n− 2)!
(d1 − 1)! · · · (dn − 1)!

=
∑

k1,... ,kn≥0
k1+···+kn=n−2

(n− 2)!
k1! · · · kn!

= (1 + 1 + · · ·+ 1)︸ ︷︷ ︸
n−2

= nn−2.

Another way to deduce the Cayley Formula is via Prüfer Code. Let T be a tree on
vertices v1, v2, . . . , vn. Assign a code over the numbers {1, 2, . . . , n} to this tree by the
following procedure:

25



Delete the endpoint (vertex of degree 1) of the tree having he smallest index and
write down the index of its (only) neighbor (therefore you will register a number between
1 and n). Repeat this procedure with the resulting tree, until a tree with only one
endpoint remains. Note, that the vertex with label n may never be deleted (every tree
has at least two endpoints), this will be the label of the last, remaining vertex, and
therefore n will be the last, n− 1st member of the sequence.

On can see, that this sequence, called the Prüfer Code of the tree T uniquely
characterizes T . On the other hand, given any sequence (a1, a2, . . . , an−1) such that
1 ≤ ai ≤ n, an−1 = n there is a unique tree with this Prüfer code. Therefore, the
number of the labeled trees agrees with the number of such sequences, which is clearly
nn−2.

Exercises
1. Show that the complement of a disconnected graph is connected. (The complement

of a graph G is the graph G defined by V (G) = V (G), E(G) = {xy:x, y ∈ V (G), x 6=
y, xy 6∈ E(G)}.)

2. Are there two non-isomorphic graphs of 5 vertices with degree sequence 1,2,2,2,
and 3?

3. Let G be a graph of 2n vertices such that d(x) ≥ n for x ∈ V (G). Show that G is
connected. What is the situation if we have d(x) ≥ n− 1 only?

4*. If d(x) ≥ 3 for x ∈ V (G) then G contains a cycle of even length.
5. Let dout(x) and din(x) denote the number of edges directed from x to another

vertex and from another vertex to x in a digraph D, respectively. Show that for
any vertex set W ⊂ V (D), the number of edges leading from W to V (D) − W
equals the number of edges leading from V (D) −W to W if dout(x) = din(x) for
x ∈ V (D).

6*. Show that every digraph D contains an independent vertex set W such that any
vertex of D is reachable from W along a (directed) path of length at most two. (A
vertex set W is independent if there is no edge joining two vertices in W .)

7. Prove that a connected regular bipartite graph is 2-connected, i.e. it does not
contain any vertex whose deletion results a disconnected graph.

8. Show that χ(G) + χ(G) ≤ n + 1 for any graph G of n vertices.
9. Show that χ(G) · χ(G) ≥ n for any graph G of n vertices.

10. Show that every graph contains two vertices of equal degree.
11*. Determine all graphs with one pair of vertices of equal degree.
12. Show that in a graph G, there exists a set of cycles such that each edge of G belongs

to exactly one of these cycles iff every vertex has even degree.
13. Are there two non-isomorphic 2-regular graphs of n vertices?
14. Prove that G contains a circuit if d(x) ≥ 2 for x ∈ V (G).
15. Prove that G contains a circuit of length at least k + 1 if d(x) ≥ k for x ∈ V (G).

16. Prove that a graph G has at least
(
χ(G)

2

)
edges.

17. The vertex independence number α(G) is the size of the largest independent vertex
set in G. If G has n vertices show that

n

α(G)
≤ χ(G) ≤ n− α(G) + 1 .
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18. Prove that an acyclic graph G is a tree if and only if joining any two non-adjacent
vertices of G we get exactly one cycle. What if G is not necessarily acyclic?

19. Show that a graph G is a tree iff it is connected, however deleting any edge of G,
it will be disconnected.

20. Prove that if a graph G of n vertices has k components then |E(G)| ≥ n− k.
21. Prove that deleting an edge of a tree, we obtain a graph of exactly two components.
22. Find the number of labeled trees of six vertices, four having degree 2.
23. Find the number of labeled trees of five vertices, exactly three of them having

degree one.
24. Let G be a graph of n vertices. Prove that a connected acyclic subgraph G0 of G

with n− 1 edges is a spanning tree of G. What if G0 is not necessarily connected?
25. Construct a tree having exactly one isomorphism with itself, the identity.
26. Prove that a graph of n vertices and at least n edges contains a cycle.
27. Show that G is a tree iff for any two vertices x and y of G, there is exactly one

path between x and y.
28. Let G be a graph of n vertices and m edges consisting of k components. Prove that

G contains (at least) m− n + k cycles.
29. Prove that any acyclic subgraph of a connected graph can be completed into a

spanning tree of the graph.
30. Let G be a graph of n vertices and let H be an acyclic subgraph of G. Prove that

if H has n− 1 edges then G is connected.
31. Find the chromatic number of a tree.
32. Do we have a graph G on n vertices such that G and G are isomorphic for n =

3, 4, 5, 6, 7 and 8?
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6. THE PIGEONHOLE PRINCIPLE AND RAMSEY THEORY

Some versions of pigeonhole principle.

Proposition 1. If k +1 pigeons are placed into k pigeonholes then at least one pigeon-
hole will contain two or more pigeons.

Proposition 2. If m pigeons are placed into k pigeonholes then at least one pigeonhole
will contain at least bm−1

k c+ 1 pigeons.

Proposition 3. Given a set of real numbers, there is always a number in the set whose
value is at least as large (as small) as the average value of the numbers in the set.

Ex. 1. There are 15 minicomputers and 10 printers in a computer lab. At most 10
computers are in use at one time. Every 5 minutes, some subset of computers requests
printers. We want to connect each computer to some of the printers so that we should
use as few connections as possible but we should be always sure that a computer will
have a printer to use. (At most one computer can use a printer at a time.) How many
connections are needed?

Note that if there are fewer than 60 connections then there will be some printers
connected to at most 5 computers (Prop.3). If the remaining 10 computers were used
at one time, there would be only 9 printers left for them. Thus, at least 60 connections
are required. On the other hand, it can be shown that if the i-th printer is connected
to the i-th, (i+1)-st, . . ., (i+5)-th computers (i = 1, . . . , 10) then these 60 connections
have the desired properties.

Ex. 2. Show that if n + 1 numbers are selected from the set {1, 2, 3, . . . , 2n} then one
of these will divide another one of them.

Take n ”pigeonholes”. Put the selected numbers of form (2k − 1)2α into the k-th
pigeonhole (1 ≤ k ≤ n). Then at least one pigeonhole will contain at least two numbers
and one of these will divide another one of these.

Definition. The graph Ramsey number R(G1, G2) is the smallest n such that for
every graph G of n vertices, either G contains a subgraph (isomorphic to) G1 or G
contains a subgraph (isomorphic to) G2. If the two forbidden subgraphs, G1 = Kk and
G2 = Kl are complete graphs of size k and l, respectively, we denote the corresponding
Ramsey number by R(k, l) for k, l ≥ 2

Theorem 4. For every k, l ≥ 3 the following inequality holds:

(1) R(k, l) ≤ R(k − 1, l) + R(k, l − 1)

.
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Proof. Take a graph G on n = R(k − 1, l) + R(k, l − 1) vertices and fix any point x of
it. By the pigeonhole principle there must be either at least R(k-1,l) vertices through
x or at least R(k, l − 1) non-vertices from x (otherwise the total number of vertices
and non-vertices via x — which is naturally n − 1 — would be less then or equal to
[R(k−1, l)−1]+ [R(k, l)−1 = n−2). In the first case consider the other endvertices of
the edges through x and the graph spanned by them. In that graph either there will be
a Kk−1 which together with x and the edges from x to these vertices would form a Kk

in the bigger graph, or there would be Kl in the complement of it, giving a Kl in the
complement of the original, bigger graph G. The second case can be handled similarly.

With this theorem and the easy observation: R(2, k) = R(k, 2) = 2 we get that
R(k, l) ≤ (

k+l−2
k−1

)
=

(
k+l−2

l−1

)
, where the proof is by induction, the induction step being

the theorem above and the base cases are R(2, k) = R(k, 2) = 2.

Therefore a few upper bounds for the Ramsey numbers are given by the table below

k,l 2 3 4 5 6
2 2* 3* 4* 5* 6*
3 3* 6* 10 15 21
4 4* 10 20
5 5* 15
6 6* 21

In this table the values denoted by a * are exact values. However, a better, exact
estimate on R(3, 4) = R(4, 3) can be given, namely 9. This value itself will give better
estimates for the other members of the table by (1):

k,l 2 3 4 5 6
2 2* 3* 4* 5* 6*
3 3* 6* 9a 14b 20
4 4* 9a 18c

5 5* 14b

6 6* 20

In this table the values for R(3, 4) = 9, R(3, 5) = 14 and R(4, 4) = 18 are exact, as
the following figures on the next page shows.
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The validity of the statements about the Figures 8.3 and 8.4 are easy to check by
hand. It is also not very difficult to see that the graph on Figure 8.5 does not contain
a K4. Notice an interesting property of this graph: it’s a so called self-complementary
graph, that is the graph and its complement are the same (isomorphic). One can
easily check it by redrawing the graph around a circle where the order of the vertices
is 1,4,7,10,13,16,2,5,8,11,14,17,3,6,9,12,15 and only the edges which do not appear in G
will be drawn. You will get back exactly the picture of Figure 8.5 Therefore, G will not
contain a K4 either.

A possible generalization of the original Ramsey definition is the following:
Definition. Let Rt(G1, G2, G3, . . . , Gt) = R(G1, G2, G3, . . . , Gt) denote the small-

est n such that for every coloring of the edges of the complete graph Kn on n vertices
with t colors there will be a color, say i, such that the i colored edges will contain a
subgraph (isomorphic to) Gi.

Again, the first question is the existence of Rt(G1, G2, G3, . . . , Gt, which can be
proven easily by induction on t. R(G1, G2) exists, since it is bounded above by R(k, l),
where k and l are the number of the vertices of the graphs G1 and G2, respectively. On
the other hand, it is easy to see that

Rt(G1, G2, . . . , Gt−1, Gt) ≤ Rt−1(G1, G2, . . . , Gt−2, R(Gt−1, Gt)),

where the later expression does exits by the induction hypothesis.
Similarly to the ”classic” Ramsey definition, we may define R(k1, k2, . . . , kt) by

R(Kk1 ,Kk2 , . . . , Kkt), where all ki ≥ 2.
We’ve seen an upper estimate on it in the previous paragraph. However, a much

better estimation can be given on R(k1, k2, k3, . . . , kt):

Theorem 5. For every k1, k2, . . . , kt ≥ 3 we have

R(k1, k2, k3, . . . , kt) ≤ R(k1 − 1, k2, k3, . . . , kt) + R(k1, k2 − 1, k3, . . . , kt) + · · ·
+ R(k1, k2, k3, . . . , kt − 1)

Proof. It goes quite similar to the two color Ramsey case. Assume a graph has at least
R(k1 − 1, k2, k3, . . . , kt) + R(k1, k2 − 1, k3, . . . , kt) + · · ·+ R(k1, k2, k3, . . . , kt − 1) = m
vertices and the edges are t colored. Picking any vertex x and considering the m−1 edges
leaving that vertex, by the pigeonhole principle we will have a color class, say i, such that
the number of the ith colored edges leaving x will be at least R(k1, k2, . . . , ki−1, . . . , kt).
Now, either there will a complete Kkj with all edges colored j for some j 6= i among
the other end vertices of these edges or a complete Kki−1 with all edges ith colored,
which together with x and all edges connecting this subgraph to x (colored i) will result
a complete Kki all edges colored i, both cases completing the proof.

Corollary For every p1, p2, . . . , pt ≥ 1 we have

Rt(p1 + 1, p2 + 1, . . . , pt + 1) ≤
(

p1 + p2 + · · ·+ pt

p1, p2, . . . , pt

)
.
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Proof Goes by induction on t and for fixed value of t on the sum p1 + p2 + · · ·+ pt.
The base cases are the cases when any of the pi’s are equal to 1. However, it is easy to
see, that for pi = 1

Rt(p1 + 1, . . . , pi + 1, . . . , pt + 1) = Rt(p1 + 1, . . . , 2, . . . , pt + 1)

= Rt−1(p1 + 1, . . . , pi−1, pi+1, . . . , pt + 1)

≤
(

p1 + p2 + · · · , +pi−1 + pi+1 + · · ·+ pt

p1, p2, . . . , pi−1, pi+1, . . . pt

)
,

which is much less then(
p1 + p2 + · · · , +pi−1 + 1 + pi+1 + · · ·+ pt

p1, p2, . . . , pi−1, 1, pi+1, . . . pt

)
.

If all pi’s are at least 2, then the previous Theorem may be applied and the result simply
comes from the fact that

t∑

i=1

(
p1 + p2 + · · ·+ (pi − 1) + · · ·+ pt

p1, p2, . . . , (pi − 1), . . . , pt

)
=

(
p1 + p2 + · · ·+ pt

p1, p2, . . . , pt

)

where this later equality is an easy combinatorial exercise. (Both sides are the answer
to the question: how many different ways one can order p1 identical plus p2 identical
plus · · · plus pt identical objects, but on the left hand side we distinguish the cases
according to what type the first object in the order is.)

Now apply the results to the simplest cases. By the above argument (or triviality)
R(3, 2, 2) = 3 and R(3, 3, 2) = 6. What kind of upper bound can we get on R(3, 3, 3)?
The immediate application of the corollary would give:

R(3, 3, 3) ≤
(

(3− 1) + (3− 1) + (3− 1)
3− 1, 3− 1, 3− 1

)
=

(
6

2, 2, 2

)
= 90

However, the immediate applications of the theorem and the first observation of the
proof of the corollary, (2) immediately improves this result to

R(3, 3, 3) ≤ 3×R(3, 3, 2) = 3×R(3, 3) = 3× 6 = 18

And this is still not the best result.

Claim. R(3, 3, 3) ≤ 17

Proof Take a graph G on 17 vertices, edges colored by three colors, say blue, red
and green. Take any vertex x of it and focus on the 16 edges leaving this vertex. Due
to the pigeonhole principle there will be at least 6 of them of the same color, say blue.
Look at the 6 other end vertices of these blue edges and considered the colored edges
among them. If any of those are blue, that edge plus the two others going from its
vertices to x will form a blue triangle. Otherwise all the edges of this complete K6

are colored red an green, therefore — by an earlier result — there will either be a red
triangle or a blue triangle.

On the other hand, Claude Berge in Berge: Graphs and Hypergraphs shows a graph
on 16 vertices, edges colored with three colors and no monocolored triangle. This
example then shows that

R(3, 3, 3) = 17.

Finally let us see a few examples for the graph Ramsey numbers:
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Ex. 3. Determine the graph Ramsey number R(P3,K4).
First, notice that if G does not contain P3 then G cannot contain a vertex of degree

2 or more. So if G is maximal with respect to this property then it has
[
1
2 |V (G)|]

independent (pairwise disjoint) edges. (Maximal means that if we add any edge then
the resulting graph contains a P3.) Taking these maximal graphs G with |V (G)| ≤ 6, it
is easy to see that G does not contain K4. (E.g. if |V (G)| = 6 then G = and the
possible K4 in G must contain both endvertices of the three edges of G by pigeonhole
principle, a contradiction. If |V (G)| ≤ 5 then it can be obtained from by vertex
deletion and so P3 6⊆ G, K4 6⊆ G. However if |V (G)| = 7 then the unique maximal graph
without P3 is G = and G contains a K4 in this case. So R(P3,K4) = 7.

Ex. 4. Determine the graph Ramsey number R(P4, P4).
For n = |V (G)| = 4, let G = . Then G = and so P4 6⊆ G, P4 6⊆ G,

R(P4, P4) > 4.
For n = 5, we can find two maximal graphs without P4: G1 = and

G2 = . (You have to prove that there is no other maximal P4-free graph of 5
vertices!) And both G1 and G2 contain P4 as a subgraph (verify!), i.e. R(P4, P4) = 5.

Exercises
1. If a graph has 100 vertices and 7 connected components, what can you say about

the largest component? The smallest?
2. A tennis player preparing for a tournament wants to practice by playing at least

one match a day over a period of 50 days, but not more than 75 matches in all.
Show that during those 50 days, there is a period of consecutive days during which
the player plays exactly 24 matches. Is the same statement true with 30 matches?

3. An employee’s time clock show that he worked 81 hours over a period of 10 days.
Show that on some pair of consecutive days, the employee worked at least 17 hours.

4. Given a sequence of p integers a1, a2, . . . , ap, show that there exists consecutive
terms in the sequence whose sum is divisible by p.

5. A computer is used for 300 hours over-period of 15 days. Show that on some period
of 3 consecutive days, the computer was used at least 60 hours.

6. A social worker has 77 days to make his rounds. He wants to make at least one
visit a day, and has 132 visits to make. Is there a period of consecutive days in
which he makes 21 visits? Why?

7. There are 25 executives in a corporation sharing 12 secretaries. Every hour, some
group of the executives needs secretarial help. We never expect more than 12
executives to require secretarial help at any given time. We give each secretary a
list of the executives he or she is working for, and make sure that each executive is
on at least one secretary’s list. If the number of names on each of the lists is added
up, the total is 95. Show that it is possible that at some hour some executive might
not be able to obtain secretial help.

8. The graph Ramsey number R(G1, G2) is the smallest n such that for every graph
G of n vertices, either G contains a subgraph (isomorphic to) G1 or G contains a
subgraph (isomorphic to) G2. Suppose that Pk and Ck is the path and cycle of k
vertices, respectively.
(a) Find R(P3, P4).
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(b) Find R(P3, C4).
(c) Find R(P4, C4).
(d) Find R(C4, C4).

9*. Let Tm be an arbitrary, but fixed tree of m vertices. Show that

R(Tm,Kn) = 1 + (m− 1)(n− 1) .

10. Show that

Rt(p1 + 1, p2 + 1, . . . , pt + 1) ≤
(

p1 + p2 + . . . + pt

p1, p2, . . . , pt

)
.

11. Show that a sequence of n2 +1 real numbers always has a (not necessarily strictly)
monotone subsequence of length at least n + 1. Is the same statement true for a
sequence of length n2?
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7. EXPERIMENTAL DESIGNS

Due to the lack of time I skip here the justification of the importance of these
designs in the real life. Only I mention that in testing different agricultural or industrial
products, during the statistical planning of the tests they play important roles. We will
deal here with orthogonal Latin squares, Balanced Incomplete Block Desings ((BIBD’s)
and a special type of them, Steiner triple systems.

Orthogonal Latin Squares

Definition. A Latin square is a k × k matrix whose elements are chosen from a
set of n elements (like S = {a1, a2, . . . , an}) such that every row and every column of
the matrix contains each of these n elements exactly once.

In many cases we identify the n elements set with the set of the first n positive
integers, i.e. S = {1, 2, . . . , n}.

With this identification an example of an orthogonal Latin square is shown below:



1 2 3 · · · k − 1 k
2 3 4 · · · k 1
3 4 5 · · · 1 2

...
k − 1 k 1 · · · k − 3 k − 2

k 1 2 · · · k − 2 k − 1




Definition. Similarly, a Latin rectangle is an `× k matrix (k ≥ `) whose elements
are from a k element set (again, normally identified with {1, 2, . . . , k}) such that every
row of the matrix contains each of these elements (each of 1 ≤ i ≤ k) exactly once and
every column of the matrix contains each of these element (each of 1 ≤ i ≤ k) at most
once.

An example is shown below:



1 2 3 4 5 6
2 3 4 5 6 1
6 4 5 3 1 2
5 1 2 6 3 4




Definition. Two distinct Latin squares A = (aij) and B = (bij) are called orthog-
onal iff the n2 ordered pairs (aij , bij) are all different.

Thus the two 4× 4 Latin squares below are orthogonal:



1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1







4 1 2 3
3 2 1 4
1 4 3 2
2 3 4 1
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while the two 4× 4 Latin squares below are not orthogonal:




2 1 4 3
3 2 1 4
4 3 2 1
1 4 3 2







2 3 1 4
1 4 2 3
3 2 4 1
4 1 3 2




since the pair (2, 4) appears twice, at positions 2,2 and 3,3.
More generally, if A(1), A(2), . . . , A(r) are distinct n × n Latin squares, they are

said to form an orthogonal family if every pair of them is orthogonal.
The main questions here are the following:

1. does there exist a pair of orthogonal Latin squares for every k,
2. or in general, how big orthogonal family of Latin squares do we have for a given

size k.
3. is it always possible to augment a Latin rectangle into Latin square?

We will skip the last question here, since the graph theoretical background needed
to handle this question is not discussed during this course.

It is easy to see, that the only orthogonal Latin squares of order 2 are

[
1 2
2 1

] [
2 1
1 2

]

and they are not orthogonal.
On the other hand, the two 3× 3 orthogonal Latin squares




1 2 3
2 3 1
3 1 2







1 2 3
3 1 2
2 3 1




(and up to a certain symmetry they are the only pair of orthogonal Latin squares of
order 3) and previously we have seen pairs of orthogonal Latin squares of order 4 as
well.

Theorem. If there is an orthogonal family of r Latin squares of order n, then
r ≤ n− 1.

Proof Assume A(1), A(2), . . . , A(r) is a family of orthogonal Latin squares of order
n. Assume that the squares contains as elements the numbers 1, 2, . . . , n. We claim
that if carry out the following operation on one (and exactly one) of the r squares: for
a fixed pair 1 ≤ i < j ≤ k change each ”i” element of the square into ”j” and each ”j”
element of the square into ”i” then the family remains a family of r orthogonal Latin
squares. (Check!!)

With the help of this operation one may change first A(1) such that its first row
becomes 1, 2, . . . , n, then change A(2) the same way, and so on. Finally we will get
another family B(1), B(2), . . . , B(r) of Latin squares each having it’s first row equal to
1, 2, . . . , n. Then for every pair of them forming the pairs of the matrix elements of the
same position all the pairs (i, i), 1 ≤ i ≤ n will already occur in the first row. Therefore
no pair of these r matrices may have the same element in the same position (apart of the
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first row). E.g. the first elements of the second rows of these matrices are all different,
they come from the set {2, 3, . . . , n}, therefore the number of them is at most n − 1.
QED

Theorem. For every prime factor n = pk there is a family of n − 1 orthogonal
Latin squares.

Sketch of Proof It is a well known algebraic result that for every prime power n = pk

(and only for prime powers) there is a unique so called field, an algebraic structure which
behaves with respects to the operations addition and multiplication (and their inverses,
subtractions and division) basically like th filed of the rational numbers. They are called
Galois fields are denoted by GF(pk).

With the help of this Galois field we will define the n−1 orthogonal Latin squares.
Let the elements of the field be b1, b2, . . . , bn, where b1 is the multiplicative identity of
the field (think of 1 in the field of the rational numbers) and bn is the additive identity
(think of 0 of the field of the rational numbers). Now define for every e = 1, 2, . . . , n−1
a Latin square A(e) =

(
a
(e)
ij

)
by

a
(e)
ij = (be × bi) + bj .

One can check, that the family of matrices obtained this way form a family of n − 1
orthogonal Latin squares of size n = pk.

Theorem. Assume that there is an orthogonal family of r Latin squares of order
n and another orthogonal family of r Latin squares of order m. Then there is another
orthogonal family of r Latin squares of order nm.

Proof Let A(1), A(2), . . . , A(r) be the orthogonal family of Latin squares of order n
and B(1), B(2), . . . , B(r) be the orthogonal family of Latin squares of order m. For a
given element a

(e)
ij of A(e), let

(
a
(e)
ij , B(e)

)
be ×m matrix, whose k, l, entry is the pair

(note that this Latin square will not consist of numbers, rather from pairs as symbols)(
a
(e)
ij , b

(e)
kl

)
. Form from this m×m matrices an nm×nm matrix putting them together

according to the arrangement

C(e) =




(
a
(e)
11 , B(e)

) (
a
(e)
12 , B(e)

)
· · ·

(
a
(e)
1n , B(e)

)
(
a
(e)
21 , B(e)

) (
a
(e)
22 , B(e)

)
· · ·

(
a
(e)
2n , B(e)

)

· · ·(
a
(e)
n1 , B(e)

) (
a
(e)
n2 , B(e)

)
· · ·

(
a
(e)
nn, B(e)

)




Corollary. If n = pα1
1 pα2

2 · · · pαn
n is the prime power decomposition of the integer

n > 1, then there is an orthogonal family of Latin squares of order n of size

min {(pα1
1 − 1) , (pα2

2 − 1) · · · (pαn
n − 1)} .

Proof For every prime power pαi we have a family of pαi−1 orthogonal Latin squares
of order pαi . Then the repeated application of the previous theorem immediately finishes
the proof of the recent theorem.
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Corollary If for an n > 1 either 2 does not divide n or a higher then first power
of 2 divides n, then there is at least a pair of orthogonal Latin squares of order n.

Proof is immediate by the previous results.

By the above theorems only about the numbers of the form n = 2k, k odd are we
not able to decide if there is a pair of orthogonal Latin squares of the given size. It
turned out, that for n = 2 and 6 there are no pairs of orthogonal Latin squares, while
for all other numbers there is.

Balanced Incomplete Block Designs

Definition. A (b, v, r, k, λ)-design is a collection of b pieces of k-uniform (k sized)
subset (called blocks) of a v element set, such that each element of the set is in r blocks
and each pair of the elements of the set are in λ blocks. If k < v the design is called a
balanced incomplete lock design (in short BIBD) since each block consists of fewer than
the total number of available elements.

In the forthcoming we will see that for a given set of parameters we do not neces-
sarily have a BIBD.

Examples.

{{1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 7}, {5, 6, 1}, {6, 7, 2}, {7, 1, 3}}

is a (7, 7, 3, 3, 1)-design, while

{|[1, 2, 3}, {2, 3, 4}, {3, 4, 1}, {4, 1, 2}}

is a (4, 4, 3, 3, 2)-design.

We have numerous necessary conditions for the parameters of the BIBD’s.

Theorem. For a (b, v, k, r, λ) design we have bk = vr and r(k − 1) = λ(v − 1).

Proof The first equation comes from counting the pairs (blocks, elements of the sets
in the blocks). One way is to count that each of the b blocks contains k elements. The
other way is, that each of the v element are in exactly r blocks.

For the second equation fix an element x. Then first count the pairs (pairs of
elements (x, y), blocks containing the pair), (counting a pair each time it occurs in a
block). One way is: the element x is in r blocks and each of these blocks contain k − 1
elements apart of x. Another way is that there are v − 1 elements apart of x, and each
of those pairs are contained in λ pairs. QED

Corollary. If we only assume about a design that it is over v elements, each of
the b blocks contain k elements and each pair of the elements are contained in λ blocks,
then the design will be balanced, that is every element will be contained in exactly
r = λ(v − 1)/(k − 1) blocks.
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The proof of the above theorem shows that if rx denote the number of blocks the
element x is contained in, then

rx =
λ(v − 1)
(k − 1)

where the right hand side of the equations are independent of x.

The following basic theorem of the balanced incomplete block designs is given
without proof.

Theorem. In a (b, v, k, r, λ) design we have b ≥ v. (Fisher’s inequality)

Steiner triple systems

Definition. A (b, v, 3, r, 1) BIBD is called a Steiner triple system.

Steiner triple systems are important examples of BIBD because 1.) they are rela-
tively small, but applicable systems, 2.) we can give necessary and sufficient conditions
on the other parameters for the existence of the Steiner triple systems.

¿From the general equalities bk = vr and r(k − 1) = λ(v − 1) obtained for the
BIBDS substituting the values k = 3 and λ = 1 we get r = (v − 1)/(k − 1) = (v − 1)/2
and therefore 3b = v(v − 1)/2. The later implies that

b =
v(v − 1)

6

Therefore v must be odd and v(v−1) must be divisible by 6. A careful investigation
shows that Steiner triple system only may exist if v = 3 or v = 6n + 1 or 6n + 3 for
k ≥ 1.

These conditions turned out to be sufficient as well.
Theorem of Kirkman A Steiner triple system over v elements exists iff v = 3 or

v = 6n + 1 or 6n + 3 for k ≥ 1

Finally the last theorem of these chapter is:

Theorem. If there is a Steiner triple system S1 over v1 elements and a Steiner
triple system S2 over v2 elements, then their is a Steiner triple system over v1v2 elements.

Proof is by construction. If S1 over the set {a1, a2, . . . , av1} and S2 is over the
set {b1, b2, . . . , bv2} then let the new Steiner triple system S be defined over the v1v2

elements cij , 1 ≤ i ≤ v1, 1 ≤ j ≤ v2 where each cij represents the pair (ai, bj). A triple
{cir, cjs, ckt} will be in S iff either r = s = t and {ai, aj , ak} is in S1 or i = j = k and
{br, bs, bt} is in S2 or both {ai, aj , ak} is in S1 and {br, bs, bt} is in S2. The proof of the
fact that the obtained system S is a Steiner triple system is left to the reader.
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ANSWERS OR HINTS TO EXERCISES

1. BASIC COUNTING RULES

1. 2mn;
2. 55 + 45;
3. 1 + 2 = 3 if the dice are indistinguishable, 2 + 3 = 5 if the dice are distinguishable;
4. (5!)2;
5. (a) 74; (b) 7!

3! ; (c) 73; (d) 5× 4 = 20;
6. Yes, since 29 > 500;
7. (a)

(
29
3

)
; (b)

(
29+3−1

3

)
;

8. (a) 29× 28× 27; (b) 293;
11.

(
5+12−1

12

)
;

12. 4× 57;
13. (a) 0 if n > 0, 1 if n = 0; (b) 1; (c) 2n−1 − 1; (d)

(
n
2

)
; (e) 1;

14.
(
10
2

)× (
8
2

)× (
6
2

)× (
4
2

)× (
2
2

)× 1
5! ;

15. 4! S(6, 4);
16. S(25, 4);
18.

(
n−1
k−1

)
;

19. 12!
(3!)4 ;

20. (a) 5!× 10!; (b) (5!× 4!× 6!)× 3!;
21.

(
5+8−1

8

)
if the patients are not distinguished, 58 if the patients are distinguished;

22. 106 − 96;
23. 264 + 255;
24. (a) (3!); (b) (n!)2;
25. (a) 9× 9× 8× 7; (b) 1× 9× 8× 7 + 8× 8× 8× 7;
26. 22n

;
27. 5× 8× 8× 7;
29.

(
4+8−1

8

)
;

30.
(
5+12−1

12

)
;

31.
(
75+25−1

25

)
;

33.
(
4
1

)× (
10!

4!2!2!2!

)
+

(
4
2

)× (
10!

3!3!2!2!

)
.
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2. INTRODUCTION TO GRAPH THEORY

1. Prove that any two vertices are connected by a path of length at most 2.
2. Yes.
3. Show that any two vertices are connected by a path of length at most 2. For
d(x) ≥ n− 1, give a counterexample.
4. Prove that G contains a cycle and a path joining two vertices of the cycle whose
other vertices are not on the cycle.
5. Use the equality

∑
x∈W

dout(x) =
∑

x∈W

din(x).

6. First find a vertex set V0 = {v1, v2, . . . , vr} such that (i) any other vertex is reachable
from V0 along an edge, (ii) vivj 6∈ E(D) for 1 ≤ i < j ≤ r.
7. If the graph is k-regular then use divisibility by k.
8. E.g. prove the statement by induction on n.
9. Notice that if G and G are colored then the ordered color pairs give a coloring of
Kn.
10. If not then the degrees are 0, 1, 2, . . . , n − 1 where n is the number of vertices of
the graph. However 0 and n− 1 exclude each other.
11. Notice that if a graph has exactly one pair of vertices of equal degree then deleting
a vertex of degree 0 and a vertex of degree n− 2 or a vertex of degree 1 and a vertex of
degree n− 1 we obtain a graph of n− 2 vertices with the same property.
12. Find a cycle and delete the edges of it.
13. Yes, if n ≥ 6.
14. Take a longest path.
15. Take a longest path.
16. Color G with χ(G) colors. Notice that any two color classes are joined by an edge.
17. Use the fact that in a coloring of G, a color class is an independent vertex set.
18. (a) If we get a cycle joining any two non-adjacent vertices, then the graph is
connected. Adding an edge to a tree result in exactly one cycle since any two vertices
are joined by exactly one path in a tree. (b) If G is not complete then we do not have
to assume acyclicness.
19. If the deletion of an edge results in a disconnected graph then it is not contained
in any cycle (provided that the original graph was connected!).
20. Prove and use that a connected graph of n vertices has (at least) n− 1 edges.
21. If the deletion of an edge results in a connected graph then it was contained in a
cycle.
22.

(
6
2

)× 4!
23. 5× 4× 3
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24. A tree of n − 1 edges has n vertices, so G0 is a spanning tree of G. An acyclic
(but not necessarily connected) graph of n− 1 edges has at least n vertices, so G0 is a
spanning subgraph of G and an acyclic graph of n vertices and n− 1 edges is a tree.
25. E.g.
26. Take a spanning tree if the graph is connected. If it is disconnected then take a
component G0 with |E(G0)| ≥ |V (G0)|.
27. The existence of the paths implies the connectedness, the uniqueness implies the
acyclicness of G. On the other side, the connectedness implies the existence of the paths
and the acyclicness implies the uniqueness.
28. Prove that a connected graph of n vertices and m edges contains at least m−n+1
cycles. (Take a spanning tree and add the remaining edges to it one by one.)
29. Take a maximal acyclic subgraph containing the given one.
30. Prove that H is a spanning tree of G.
31. 2 if it has at least 2 vertices.
32. For 3, 6 and 7 such a graph does not exist, while for 4, 5 and 8 there is such a
graph.
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3. GENERATING FUNCTIONS

1. (a) (1 + x)3(1 + x4) coefficient of x5

(b) (1 + x + x2 + x3 + x4 + x5)2(x3 + x4 + x5 + x6 + x7) coefficient of x10

(c) (1 + x + x2 + . . .)10 coefficient of x15

(d) (x + x2 + x3 + . . .)10 coefficient of x15

(e) (1 + x + x2 + . . .)40 coefficient of x8

(f) (1 + x2 + x4 + . . .)2 coefficient of x8 (if order does not count)
(1 + x2

2! + x4

4! + . . .)2 coefficient of x8

8! (if order does count)
(g) (1 + x + x2 + . . .)4 coefficient of x40

(h) (1 + x + x2 + . . .)100 coefficient of x40

(i) (1 + x + x2 + x3 + x4 + x5 + x6)3 coefficient of x12

(j) (1 + x)3(1 + x + x2

2! + x3

3! + . . .) coefficient of x3

3!

(k) (1 + x + x2

2! + x3

3! )
2(1 + x + x2

2! + x3

3! + x4

4! + . . .)7 coefficient of x10

(l) (1 + x2

2! + x4

4! + . . .)2(1 + x + x2

2! + . . .)2 coefficient of xn

n!

(m) (x20 + x40 + x60 + x80 + x100)4 coefficient of x200

(n) (x + x2

2! + x3

3! + . . .)4 coefficient of x5

(o) (1 + x + x2 + . . . + x2n)3 coefficient of x3n

(p) (x + x2 + x3 + x4 + x5 + x6)50 coefficient of x100 (the dice are distinguishable)

2.
p∏

i=1

(1 + xni) coefficient of xk

3. (1 + x2 + x4 + . . .)p coefficient of xk = ak

ak =
{

0 if k is odd(
p+m−1

m

)
if k = 2m
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4. RECURRENCE RELATIONS

1. bn = 2bn−1 + 2bn−2

2. f(n) = (2n− 1)f(n− 1)
3. Fn+2 − 2

4. 5k+3k

2 (the recurrence is ak+1 = 3ak + 5k)
5. f(n) = f(n− 4) + f(n− 6) + f(n− 10)
6. ak = # codewords with an even number of 0’s, odd number of 1’s
bk = # codewords with an even number of 0’s, even number of 1’s
ck = # codewords with an odd number of 0’s, even number of 1’s
3k − ak − bk − ck = # codewords with an odd number of 0’s, odd number of 1’s

ak+1 = (3k − ak − bk − ck) + bk + ak a1 = 1 (a0 = 0)

bk+1 = ck − ak − bk b1 = 1 (b0 = 0)

ck+1 = bk + (3k − ak − bk − ck) + ck c1 = 1 (c0 = 0)

7. f(n + 1) = f(n) + 2n f(1) = 2
8. (a) ak = 1

6 (8k−2k); (b) bn = 1; (c) ck = 10k 7k−1; (d) dn = n+1; (e) e2k = 10 ·4k;
e2k+1 = 22k+1; (f) fn = 5n− 3n; (g) gn = 5n− 3n · 5n−1; (h) hk = 2k− 2k +1; (i) the
exponential generating function is H(x) = 2ex−1

1−2x , ik = 2kk! + 2kk!
1! + 2k−1k!

2! + . . . + 2k!
k! ;

(j) jn = 1
2 (3n − 1); (k) kn = n2+13n

2 ; (l) an = 1
15 (22n+1 + 10 + 3(−1)n), bn = cn =

1
5 (4n + (−1)n+1); (m) an = 3n + 2n, bn = 3n − 2n.
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5. THE PRINCIPLE OF INCLUSION AND EXCLUSION

1. 6233;
2. 134;
3. 45 − (

4
1

)
35 +

(
4
2

)
25 − (

4
3

)
15 + 0 if the misprints are distinguished,

(
4+5−1

5

) −(
4
1

)(
3+5−1

5

)
+

(
4
2

)(
2+5−1

5

)− (
4
3

)(
1+5−1

5

)
+ 0 if the misprints are not distinguished;

4. 78− (
7
1

)
68 +

(
7
2

)
58− . . . +

(
7
6

)
18− 0 if the accidents are distinguished,

(
7+8−1

8

)−(
7
1

)(
6+8−1

8

)
+

(
7
2

)(
5+8−1

8

)− . . . +
(
7
6

)(
1+8−1

8

)− 0 if the accidents are not distinguished;

5. (a)
(
3+12−1

12

)− (
3
1

)(
3+6−1

6

)
+

(
3
2

)(
3
0

)
; (b)

(
3+8−1

8

)− 2
(
3+4−1

4

)− (
3+3−1

3

)
+

(
3
0

)
; (c)(

3+9−1
9

)− (
3+5−1

5

)− (
3+4−1

4

)− (
3+3−1

3

)
+

(
3
0

)
;

6. (a)
(
3+16−1

16

)− 3
(
3+8−1

8

)
+ 3

(
3
0

)
; (b)

(
4+18−1

18

)− 4
(
4+10−1

10

)
+

(
4
2

)(
4+2−1

2

)
;

7. (a)
(
3+13−1

13

)− 3
(
3+6−1

6

)
; (b)

(
4+14−1

14

)− 4
(
4+7−1

7

)
+

(
4
2

)(
4
0

)
;

8. (a) n!− (n− 2)!− (n− 1)! + (n− 3)!; (b) n!− (
n−1

1

)
(n− 1)! +

(
n−1

2

)
(n− 2)!−

. . . + (−1)n−1
(
n−1
n−1

)
1!;

9. 10n − (
3
1

)
9n +

(
3
2

)
8n − (

3
3

)
7n;

10.
(

9
2,2,2,3

)−3
(

8
1,2,2,3

)−
[(

8
2,2,2,2

)− (
7

2,2,2,1

)]
+

(
3
2

)(
7

1,1,2,3

)
+3

[(
7

1,2,2,2

)− (
6

1,2,2,1

)]−
(

6
1,1,1,3

)− (
3
2

) [(
6

1,1,2,2

)− (
5

1,1,2,1

)]
+

[(
5

1,1,1,2

)− (
4

1,1,1,1

)]
.
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6. THE PIGEONHOLE PRINCIPLE AND RAMSEY THEORY

1. The largest component has at least 15 vertices, the smallest one has at most 14
vertices.
2. Let ai denote the number of matches on the first i days (i = 1, 2, . . . , 50). Study the
set of ai’s. (Pigeonholes: {1, 25}, {2, 23}, . . . , {24, 48}, {49, 73}, {50, 74}, {51, 75}, {52},
{53}, . . . , {72}.)
3. Let ai denote the total number of hours the employee worked on the (2i− 1)-st and
the 2i-th days (i = 1, 2, . . . , 5), Estimate the maximum ai.
4. Consider the remainder of bi = a1 + a2 + . . . + ai for i = 1, 2, . . . , p.
5. Let ai denote the total number of hours the computer was used on the (3i− 2)-nd,
(3i− 1)-st and 3i-th days (i = 1, 2, . . . , s). Estimate the maximum ai.
6. See Example 2.
7. See Example 1.
8. (a) 4; (b) 4; (c) 5; (d) 6.
9. Induction on n. Try to ”build” a Tm in color one.
10. Induction on p1 + p2 + . . . + pt. Prove and use that

Rt(p1, . . . , pt) ≤ Rt(p1−1, p2, . . . , pt)+Rt(p1, p2−1, . . . , pt)+. . .+Rt(p1, p2, . . . , pt−1) .

11. Hint: to every member of the sequence of length n2 + 1 assign a pair of positive
integers. The first item of the pair will be the length of the longest monotone increasing
subsequence beginning with the given number, while the second item the length of the
longest monotone decreasing subsequence. Show that we have no two numbers with the
same pair. Give a counterexample for length n2.
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