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1 Introduction to Balanced Incomplete Block Designs

Suppose we have a committee composed of a large number of members, and
from this committee we wish to create a number of smaller subcommittees,
each containing exactly the same number of members. Furthermore, in order to
preserve equality and keep all committee members happy, each member must sit
on exactly the same number of subcommittees and each pair of members must
also sit on the same number of subcommittees. Is it possible to create such a
family of subcommittees?

The structure of such a system of subcommittees can be described math-
ematically by a balanced block design, and the existence of a suitable design
depends on the desired value of each of the parameters.

Definition A Balanced Incomplete Block Design (BIBD) may be defined as
a pair (V,B) where V is a v ≥ 2 element set and B is a family of b > 0 subsets
of V , called blocks, such that each block is of order k < v, each element of V is
contained in exactly r > 0 blocks, and each pair of elements in V is contained
in exactly λ > 0 blocks. The values {v, b, k, r, λ} are called the parameters of
the design.

In the case that k = v, the design is referred to as the complete block design
and the parameters will have values v = k, b = r = λ = 1. This particular de-
sign is of no interest in the study of block designs and will be hereafter omitted
from consideration. For any design over v elements where k = 2 there is only
one possible BIBD. The blocks of this design are all the possible combinations
of the v elements in pairs and b =

(
v
2

)
, r = v − 1, and λ = 1.

Definition A BIBD (X,D) is a subdesign of the BIBD (V,B) if X ⊆ V and
D ⊆ B. The BIBD is a proper subdesign if X ⊂ V and D ⊂ B.

In order to determine whether or not a design exists, there are a number of
necessary relationships we may rely on.

Theorem 1.1 For a {v, b, k, r, λ} design we have the two following necessary
relationships:

bk = vr, (1)

λ(v − 1) = r(k − 1) (2)

A parameter set which satisfies these equations is admissable.

1



Proof [?] To prove equation (1), we simply perform a count of the number
of positions available over the total number of blocks. This number is easily at-
tained by multiplying the total number of blocks, b, by the number of positions
available in each block, k. However, we may perform this same count using
another method. If we multiply the total number of elements, v, by the number
of blocks each element is contained within, r, we will also count the number of
positions available over the total number of blocks. Thus, bk = vr.

To prove equation (2), a similar argument is used as in the proof of equation
(1). This time we are going to fix an element, x, and count the total number
of pairs x makes with the other elements contained within the blocks x is an
element of (this means counting all pairs, even those made with the same element
in different blocks). In the first method of counting, count the number of pairs
x makes in one block, k − 1, and then multiply this number by the number of
blocks x is an element of, r. Under the second method, take the total number of
elements x makes a pair with, v−1, and multiply this number by the number of
pairs x makes with each of these elements individually, λ. These two different
methods count the same number of pairs, therefore r(k − 1) = λ(v − 1).

Q.E.D.

Although a set of parameters may satisfy equations (1) and (2) and be
admissable, this does not imply a BIBD of these parameters actually exists. For
example, the set of parameters b = v = 43, k = r = 7, λ = 1 are admissable, yet
only some exhaustive experimentation disproves the existence of such a BIBD
[?].

Another condition for the existence of a BIBD follows directly from theorem
1.1:

r =
λ(v − 1)

k − 1
(3)

In order for a BIBD to exist, equation (3) must yield an integer value for
r. Notice that equations (3) and (1) allow us to determine all parameters of a
BIBD with the knowledge of only the three parameters {v, k, λ}. Thus, it is a
common practice to refer to a {v, b, k, r, λ} design simply as a {v, k, λ} design.

Example Suppose we are given the set, V = {1, 2, 3, 4, 5, 6, 7} and we want
to form a number of blocks, each of order 3, such that each pair of elements
in V is contained in exactly one block. In order to complete the structure of
the design, we use equations (3) and (1) and the given information to find that
b = 7 and r = 3. With this information (and because of the relatively small size
of the parameters) we can easily construct a family of blocks for the parameters:

B1 = {1, 2, 3} , B2 = {1, 4, 5} , B3 = {1, 5, 6} , B4 = {2, 4, 6} ,
B5 = {2, 5, 7} , B6 = {3, 4, 7} , B7 = {3, 5, 6} .

Definition Given a BIBD (V,B) where B = {B1, . . . , Bb}, the complement of
(V,B) is (V, B̄), where B̄ = {V \B : B ∈ B}.
Remark The complement of a BIBD with parameters {v, b, k, r, λ} is a BIBD
with parameters {v, b, b− r, v − k, b− 2r + λ}.
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1.1 Fisher’s Inequality

One of the most famous and most basic results concerning the structure of a
BIBD is Fisher’s Inequality. Fisher first proved his inequality in 1940 and it has
been of the utmost importance in the sutdy of BIBDs.

Theorem 1.2 (Fisher’s Inequality) For every {v, k, λ} design, we have the nec-
essary condition that

b ≥ v. (4)

Although Fisher’s Inequality seems like an elementary result, the proof is
more complex and we will have to first introduce the concept of an incidence
matrix and then give one of the fundamental results concerning incidence ma-
trices.

Definition If the pair (V,B) is a BIBD such that V = {x1, x2, ..., xv} and
B = {B1, B2, ..., Bb}, then the incidence matrix of such a BIBD is a v×b matrix
A = (aij) such that if xi ∈ Bj , then aij = 1 and if xi /∈ Bj , then aij = 0.

Example Referring to the previous example of this section, the incidence matrix
of the given {7, 7, 3, 3, 1} design is,

A =



B1 B2 B3 B4 B5 B6 B7

1 1 1 1 0 0 0 0
2 1 0 0 1 1 0 0
3 1 0 0 0 0 1 1
4 0 1 0 1 0 1 0
5 0 1 0 0 1 0 1
6 0 0 1 1 0 0 1
7 0 0 1 0 1 1 0


Theorem 1.3 For A, the incidence matrix of a given {v, k, λ} design, we have

AAT = (r − λ)I+ λJ, (5)

where I is the v × v identity matrix and J is a v × v matrix of all 1’s.

Proof [?] For the proof of this result, we must first notice that because ev-
ery element is found in exactly r blocks, the sum of the entries along any row of
an incidence matrix will be equal to the value of r for the given design. Further-
more, the inner product of the ith row of A and the ith column of AT is equal

to
b∑

s=1
aisais and because ais = 0 or ais = 1,

b∑
s=1

aisais =
b∑

s=1
ais = r. Therfore,

the entries along the main diagonal of the matrix AAT are equal to r.
Now, notice the product of entries aij and akj in matrix A will be 1 if and

only if elements i and k are found together in block Bj . This implies that the
inner product of the ith row of A with the kth column of AT (really the kth row
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of A) will be equal to the number of blocks i and k are common elements of,
i.e., λ. Therefore, all entries not along the main diagonal of the matrix AAT

will be λ. From here it is clear that AAT = (r − λ)I+ λJ.

Q.E.D.

.
Now, with this knowledge in mind, the use of theorem 1.3 and some linear

algebra, we are ready to prove Fisher’s Inequality.

Proof of Fisher’s Inequality [?] The proof of Fisher’s Inequality will done by
contradiction. Hence, we begin with the assumption that b < v and, if this be
the case, we may add v − b columns of 0’s to the v × b incidence matrix A to
create a v × v matrix B. However, because we added only columns of 0’s to A
in order to create B, it is clear that

AAT = BBT .

Furthermore, by the laws of determinants, det(AAT ) = det(BBT ) and, because
B contains a column of 0’s, we may further state that

det(AAT ) = det(BBT ) = 0.

At this point, we apply theorem 1.3 to obtain

det(AAT ) = det



r λ λ λ . . . λ
λ r λ λ . . . λ
λ λ r λ . . . λ
λ λ λ r . . . λ
...

...
...

...
. . .

...
λ λ λ λ . . . λ
λ λ λ λ . . . r


.

We will now compute the determinant of this matrix. In our effort to do this it
is important to remember that by the laws of determinants we may perform any
number of row and column transformations without changing the value of the
determinant. Thus, we will begin by subtracting the first column of the matrix
from all others. The result of this transformation is

det(AAT ) = det



r λ− r λ− r λ− r . . . λ− r
λ r − λ 0 0 . . . 0
λ 0 r − λ 0 . . . 0
λ 0 0 r − λ . . . 0
...

...
...

...
. . .

...
λ 0 0 0 . . . 0
λ 0 0 0 . . . r − λ


.

We will now add every row to the first row to obtain the following:
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det(AAT ) = det



r + (v − 1)λ 0 0 0 . . . 0
λ r − λ 0 0 . . . 0
λ 0 r − λ 0 . . . 0
λ 0 0 r − λ . . . 0
...

...
...

...
. . .

...
λ 0 0 0 . . . 0
λ 0 0 0 . . . r − λ


.

Now the matrix in question contains all 0’s in the upper-triangle and its deter-
minant may be computed directly by taking the product of the entries along its
main diagonal,

det(AAT ) = (r + (v − 1)λ)(r − λ)v−1.

Now, if det(AAT ) = 0, then either (r+(v−1)λ) = 0 or (r−λ) = 0. However, the
initial assumptions about BIBDs state that r > 0, λ > 0, and v ≥ 2. Therefore,

(r + (v − 1)λ) > 0.

As for (r−λ), our initial assumptions about BIBDs also state that v > k, which
implies by equation (2) that r > λ. Hence,

(r − λ) > 0

and det(AAT ) ̸= 0, a contradiction.

Q.E.D.

1.2 An Introduction to Finite Projective Planes

Some BIBDs can be described alternatively using geometry. If the parameter
λ = 1 is set, then a BIBD can be described using a number of points and lines
in a plane. Each element of the v-element set will correspond to a point on the
plane and every block will correspond to a line which connects a fixed number
of points. Thus, the same number of points will lie along each line and every
point will lie on exactly r lines. Further, given that λ = 1, between every pair
of points there will be a unique line.

Definition A finite projective plane is a finite set of points and lines such
that,

(P1) through any two points there is a unique line, and
(P2) any two lines have exactly one intersection point.

From this definition it is somewhat obvious that these conditions will be
trivially satisfied by a single line with any number of points on it. Other trivial
constructions also exist, however, to avoid these situations a third condition will
be introduced:

(P3) in any finite projective plane there exist four points, of which no three
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lie on the same line
A finite projective plane that satisfies (P3) is called nondegenerate and it is finite
projective planes of this kind that will be considered in this text.

Definition For a finite projective plane with m + 1 points on each line, m is
the order of the given projective plane.

Example The most famous example of a finite projective plane is the Fano
plane (see Figure 1). The plane consists of seven points and seven lines, six
straight and one circular. Three points lie along each of the lines (i.e., the Fano
plane has an order of two) and each pair of lines intersect at exactly one point.

Figure 1: The Fano plane. Line intersections occur only where there are large
points.

It is possible to describe a BIBD with λ > 1 geometrically, however, the
geometric object will not be in two dimensions. For further reading on such
geometries, see [?].

There are a number of important theorems that describe projective planes
and, later on, these theorems will be very useful in describing situations in which
BIBDs exist.

Theorem 1.4 For any finite projective plane, the number of lines through
each point is equal to the number of points on each line.

Proof [?] The three conditions which describe a finite projective plane will pro-
vide the proof for this theorem. Take any line within a finite projective plane,
L. By (P3) there is a point x that does not lie on L. Further, by (P1) for every
point y on L there exists a through x that intersects the point y, call these lines
Ly. Now, assume there is a line L′ through x that does not intersect any point
y on L. However, this is a contradiction by (P2). Hence, L′ is a line Ly through
some point y on L and the lines through x form a one-to-one correspondence
with the points on any given line L. In other words, the number of lines through
each point in a finite projective plane is equal to the number of points on each
line.

Q.E.D.
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In terms of a BIBD, this theorem implies the condition r = k. Theorem 1.1
further implies that if r = k, then b = v. Therefore, any BIBD that may be
represented by a finite projective plane will have the condition r = k and b = v.
This concept will be discussed further in section 3.2.

Corollary 1.4.1 A finite projective plane with m + 1 points on each line has
m2 +m+ 1 points and m2 +m+ 1 lines.

Proof By theorem 1.4, a finite projective plane with m + 1 points on each line
will have m + 1 lines through each point. Now, take any point x. There are
m+ 1 lines through x and each of these lines has m points on it other than x.
Now we can simply count the total number of points by multiplying the total
number of lines through x times the number of points on each of these lines
other than x, and adding x to the total:

m(m+ 1) + 1 = m2 +m+ 1

This same argument can be made to count the total number of lines in a finite
projective plane.

Q.E.D.

This corollary may also be explained through an application of theorem 1.1.
A plane with m + 1 points on each line implies k = m + 1 and from theorem
1.4 we have seen that r = k in such a situation. Therefore, equation (2) implies
the following relation:

v − 1 = (m+ 1)m, or

v = m2 +m+ 1.

It follows from our discussion of theorem 1.4 that b = v = m2+m+1, the result
given (in different terms) by the above corollary.

1.3 Orthogonal Latin Squares 1

Definition A Latin square is a k× k matrix whose elements are chosen from a
set of n elements (S = {a1, a2, . . . , an}, for example) such that every row and
every column of the matrix contains each of these n elements exactly once.

In many cases we identify the n elements set with the set of the first n
positive integers, i.e., S = {1, 2, . . . , n}. With this identification an example of
an orthogonal Latin square is shown below:

1This section has been closely adapted from a text prepared by Miklos[?]

7





1 2 3 · · · k − 1 k
2 3 4 . . . k 1
3 4 5 . . . 1 2
...

...
...

. . .
...

...
k − 1 k 1 . . . k − 3 k − 2
k 1 2 · · · k − 2 k − 1


Definition Similar to a Latin square, a Latin rectangle is an ℓ×k matrix (k ≥ ℓ)
whose elements are chosed from a k element set (again, normally identified with
the set {1, 2, . . . , k}) such that every row of the matrix contains each of these
elements (each of 1 ≤ i ≤ k) exactly once and every column of the matrix con-
tains each of these element (each of 1 ≤ i ≤ k) at most once.

Example An example of a Latin rectangle is shown below:
1 2 3 4 5 6
2 3 4 5 6 1
6 4 5 3 1 2
5 1 2 6 3 4


Definition Two distinct Latin squares A = (aij) and B = (bij) are called or-
thogonal if and only if the n2 ordered pairs (aij , bij) are all different.

Example It follows from the definition that the two 4× 4 Latin squares below
are orthogonal: 

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1



4 1 2 3
3 2 1 4
1 4 3 2
2 3 4 1


On the other hand, the two 4× 4 Latin squares below are not orthogonal:

2 1 4 3
3 2 1 4
4 3 2 1
1 4 3 2



2 3 1 4
1 4 2 3
3 2 4 1
4 1 3 2


since the pair (2, 4) appears twice, at positions 2,2 and 3,3.

More generally, if A(1), A(2), . . . , A(r) are distinct n× n Latin squares, they
are said to form an orthogonal family if every pair of them is orthogonal.

There are three main questions in the study of orthogonal Latin squares:

1. Does there exist a pair of orthogonal Latin squares for every k,

2. In general, how large is the orthogonal family of Latin squares for a given
size k, and

3. Is it always possible to augment a Latin rectangle into Latin square?
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We will skip the last question here, since the graph theoretical background
needed to examine this question will not be discussed in this paper.

As for the first question, it is easy to see that the only Latin squares of order
two are [

1 2
2 1

] [
2 1
1 2

]
and they are not orthogonal.2

On the other hand, we have previously seen a pair of 4× 4 orthogonal Latin
squares and the following two Latin squares make an orthogonal pair of order
three,  1 2 3

2 3 1
3 1 2

  1 2 3
3 1 2
2 3 1


Theorem 1.5 If there is an orthogonal family of r Latin squares of order n,
then r ≤ n− 1.

Proof Assume A(1), A(2), . . . , A(r) is a family of orthogonal Latin squares of
order n. Let the elements of the squares be the set of numbers {1, 2, .., n} and
perform the following operation on exactly one of the r squares: for a fixed pair
i and j (1 ≤ i < j ≤ n) exchange each ith element of the square with the jth

element and vice versa. This operation will permute the elements of the square
but the resulting square will be isomorphic to its predecessor and the family of
Latin squares will remain a family of r orthogonal Latin squares.

Using this operation, first changeA(1) such that its first row becomes 1, 2, . . . , n,
then change A(2) the same way, and so on. Finally, we will get another family
B(1), B(2), . . . , B(r) of Latin squares such that each square in this family will
have its first row equal to 1, 2, . . . , n. Now, when the elements of any two squares
in this new family are grouped in pairs, all the pairs (i, i), 1 ≤ i ≤ n will occur
in the first row. Therefore, except for in the first row, no pair of these r matrices
may have the same element in the same position. Clearly then, it follows that
the first element in the second row of each of these matrices is different and is
chosen from the set {2, 3, . . . , n}. Therefore, the number of matrices is at most
n− 1.

Q.E.D.

In the case that there exists an orthogonal family of r = n− 1 Latin squares
of order n, this is referred to as the complete orthogonal family of Latin squares
of order n.

Theorem 1.6 For every prime factor n = pk there is a complete orthogo-
nal family of Latin squares of order n.

2In some conventions a single 2 × 2 Latin square is allowed to represent an orthogonal
family.
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Sketch of Proof It is a well known algebraic result that for every prime power
n = pk (and only for prime powers) there is a unique so called field, an al-
gebraic structure which behaves with respects to the operations addition and
multiplication (and their inverses, subtractions and division). Essentially it is a
set which behaves like the field of rational numbers. The fields of order n = pk

are called Galois fields and are denoted by GF(pk).
With the help of this Galois field we will define the n− 1 orthogonal Latin

squares. Let the elements of the field be b1, b2, . . . , bn, where b1 is the multiplica-
tive identity of the field (think of 1 in the field of the rational numbers) and bn is
the additive identity (think of 0 of the field of the rational numbers). Now define

for every e = 1, 2, . . . , n−1 a Latin square A(e) =
(
a
(e)
ij

)
by a

(e)
ij = (be×bi)+bj .

One can check that the family of matrices obtained this way form a family of
n− 1 orthogonal Latin squares of size n = pk.

Theorem 1.7 Given an orthogonal family of r Latin squares of order n and
another orthogonal family of r Latin squares of order m, there is another or-
thogonal family of r Latin squares of order nm.

Proof Let A(1), A(2), . . . , A(r) be the orthogonal family of Latin squares of order
n and B(1), B(2), . . . , B(r) be the orthogonal family of Latin squares of order

m. For a given element a
(e)
ij of A(e), let

(
a
(e)
ij , B(e)

)
be a m×m matrix whose

(k, l) entry is the pair (note that this Latin square will consist of pairs, rather

than single numbers)
(
a
(e)
ij , b

(e)
kl

)
. From these m×m matrices form an nm×nm

matrix by assembling them together according to the arrangement,

C(e) =



(
a
(e)
11 , B

(e)
) (

a
(e)
12 , B

(e)
)

· · ·
(
a
(e)
1n , B

(e)
)

(
a
(e)
21 , B

(e)
) (

a
(e)
22 , B

(e)
)

· · ·
(
a
(e)
2n , B

(e)
)

...
...

. . .
...(

a
(e)
n1 , B

(e)
) (

a
(e)
n2 , B

(e)
)

· · ·
(
a
(e)
nn, B(e)

)


The matrices C(1), C(2), . . . , C(r) now form an orthogonal family of r Latin
squares of order nm.

Q.E.D.

Corollary 1.7.1 If n = pα1
1 pα2

2 · · · pαn
n is the prime power decomposition of the

integer n > 1, then there is an orthogonal family of Latin squares of order n of
size min {(pα1

1 − 1) , (pα2
2 − 1) , . . . , (pαn

n − 1)} .

Proof For every prime power pαi we have a family of pαi − 1 orthogonal Latin
squares of order pαi . Then the repeated application of theorem 1.7 finishes the
proof of the corollary.
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Corollary 1.7.2 For some n > 1, if n is not divisible by two or some higher
power of two, then there is at least one pair of orthogonal Latin squares of order
n.

The proof of this corollary is immediate by the previous result.

By the above theorems only numbers of the form n = 2k where k is odd are we
not able to decide if there is a pair of orthogonal Latin squares of the given size.
As it turns out, it has been shown that for n = 2 and n = 6 there is no pair of
orthogonal Latin squares, while for all other numbers there is.

1.4 Orthogonal Latin Squares and Finite Projective Planes

The existence of an orthogonal family of Latin squares is closely related to the
existence of a finite projective plane. Indeed, the following theorem and corol-
lary will describe a relation among the existence of an orthogonal family of Latin
squares, the existence of a finite projective plane, and possible values for the
order of a finite projective plane.

Theorem 1.8 If m ≥ 2, then a finite projective plane of order m exists if
and only if a complete orthogonal family of m×m Latin squares exists.3

Sketch of Proof [?] We will show the proof of this theorem in one direction
and outline the proof of the opposite statement. Let P be a finite projective
plane of order m. Designate a line L of P as the line at infinity. This line
will connect the m+1 points {u, v, w1, w2, . . . , wm−1} and there will be m lines
other than L through each of these points. Let the lines through each point be
designated as follows:

lines through u : L,U1, U2, . . . , Um,

lines through v : L, V1, V2, . . . , Lm,

lines through wj : L,Wj1,Wj2, . . . ,Wjm.

Every point x that does lie on L, there is a unique line connecting every point
on L to the point x. For u and x, let this line be Uh, for v and x let it
be Vi, and for wj and x let this line be Wjkj . Using this notation, we can
associate every point x with the (m+ 1)-tuple (h, i, k1, k2, . . . , km−1). Further,
the correspondence between points not on line L and couples (h, i) will constitute
a one-to-one relationship. If two points not on line L both lie on the line
represented by h, then the i coordinate for each point must be different by the
second condition (P2) of the definition of a finite projective plane. We can now

construct a family of matrices using this set of ordered pairs. Let a
(j)
hi = kj if

the point x corresponding to the pair (h, i) also corresponds to the (m+1)-tuple

3In the instance that m = 2, allow a single 2× 2 Latin square to constitute an orthogonal
family.
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(h, i, k1, . . . , km − 1) and let A(j) = a
(j)
hi for j = 1, 2, . . . ,m − 1. We will now

show that each of these matrices is indeed a Latin square. If a
(j)
hi = a

(j)
hi′ , then

both the line Uh and the line Wjkj will connect the two points corresponding to
(h, i) and (h, i′), a contradiction. The same can be if the two points in question
correspond to (h, i) and (h′, i). To finish this portion of the proof, see that for
any two Latin squares A(p) and A(q) of this family, where p ̸= q, all the pairs

(a
(p)
hi , a

(q)
hi ) must be different. If two pairs we have (a

(p)
hi , a

(q)
hi ) = (a

(p)
h′i′ , a

(q)
h′i′),

then the points corresponding to (h, i) and (h′, i′) will be connected by the lines
Wpkp and Wqkq , an obvious contradiction.

The proof is completed by showing a finite projetive plane of order m ex-
ists given a complete orthogonal family of Latin squares A(1),A(2), . . . ,A(m−1).
For this let the pair (h, i), where h = 1, . . . ,m, i = 1, . . . ,m, correspond to
m2 points. Also, assign each point an (m + 1)-tuple (h, i, k1, . . . , km−1 where

kj = a
(j)
hi . Then form m2 + m lines Wjk by letting Wjk correspond to the set

of all points (h, i) such that a
(j)
hi = kj . One more line is then constructed with

m+1 points so that every previously non-intersecting pair of lines will intersect
at a point along this line. Basically, this is the construction that will yield a
finite projective plane from a complete orthogonal family of Latin squares and
it can be verified that this construction does indeed produce a finite projective
plane.

Corollary 1.8.1 If m = pk, where p is a prime number and k is a positive
integer, then there exists a finite projective plane of order m.

The proof of this corollary is immediate by the above result and theorem
1.6.

2 Steiner Triple Systems

We previously mentioned that for k = 2 there is only one acceptable BIBD for
each value of v. Thus, we begin with the next smallest value, k = 3. Specifically,
we will begin with an investigation of designs with parameters k = 3 and λ = 1,
which are of particular interest and have been given a special title.

Definition A Steiner triple system (STS) is a BIBD such that k = 3 and
λ = 1 (a {v, 3, 1} design).

Remark The Fano plane mentioned in the previous section is the geometric
characterization of a STS over 7 elements. Each line (block) is defined by three
points (elements) and for every two points there exists a unique line through
them (every pair of elements appears in only one block).

Definition If the pair (V,B) defines a STS, W ⊆ V , D = {B ∈ B|B ⊂ W},
and (W,D) is a STS, then (W,D) is called a subsystem of (V,B).
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Steiner triple systems are of such great interest for a number of reasons.
Primarily, they are of intereset because their small size makes them quite man-
ageable to work with and because k and λ are fixed we are able to determine
necessary requirements for the other parameters of the design. This allows us
to give a more concrete description of when a STS actually exists. Indeed, from
theorem 1.1 it follows that for a STS

r =
v − 1

2
, (6)

and it follows that v must be odd.
From theorem 1.1 it can also be seen that for a STS 3b = vr, or after an

application of equation (6),

b =
v(v − 1)

6
. (7)

Although triple systems such that λ = 1 have been named for Steiner, it
was actually Kirkman who originally began studying them in the 1840’s. In
fact, it was Kirkman who in 1847 proved the most fundamental result about
the existence of a Steiner triple system over v elements.

Theorem 2.1 (Kirkman 1847) A Steiner triple system over v elements ex-
ists if and only if v ≡ 1, 3 (mod 6) for k ≥ 1 and v ≥ 3.

For each value v = {3, 7, 9} there is a unique STS, up to isomorphism. For
v = 13 there are two solutions and 80 different STSs have been found for v = 15.
For all values v > 15 it is not known how many STSs exist, however, the fol-
lowing theorems will show that is easy to determine whether or not a STS of
larger or smaller order exists given the existence of one or two initial systems.
Furthermore, these theorems will be necessary in order to sketch the proof of
Kirkman’s theorem in section 2.1.

Theorem 2.2 Given a STS (V,B), if there exists a set X ⊂ V such that
|X| = v−1

2 and at least one element from each block of B is contained in X,
then a STS exists over the set X.

Proof [?] Let D be the set of blocks over X. The set D will consist of all
the blocks of B that contain only elements of the set X. Now we must show
that the pair (X,D) constitutes a STS. Because we have chosen blocks from
an already existing STS, each block will have three elements and no pair of
elements will be found in more than one block. Therefore, all that remains to
prove is that every pair of elements in X is contained in a block of D. Consider
two elements xi, xj ∈ X. If xi and xj are not found together in a block of D,
they will be found in a block of the original STS. Furthermore, the third ele-
ment of this block will not be an element of X, otherwise the block in question
would be contained in D. Now let us consider this third element. This element
is contained in v−1

2 total blocks of the original STS and each of these blocks
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must have at least one element contained in X. However, one of these blocks
has both xi and xj contained in X. This implies the number of elements in X
is,

v−1
2 + 1 = v+1

2

a contradiction. Hence, two elements xi, xj ∈ X will be contained in a block of
D and (X,D) will constitute a STS.

Q.E.D.

Theorem 2.3 If there is a STS S1 over v1 elements and a STS S2 over v2
elements, then there exists a STS S over v1v2 elements.

Proof [?] The proof of this theorem will be done by construction. Let the STS S1

be over the elements {a1, . . . , av1} and let S2 be over the elements {b1, . . . , bv2},
then S will have elements cij where 1 ≤ i ≤ v1, 1 ≤ j ≤ v2 and each element cij
represents the pair {ai, bj}. The triple {cir, cjs, ckt} will define a block in the
STS S if and only if

(1) i = j = k and {br, bs, bt} defines a block in S2, or if
(2) r = s = t and {ai, aj , ak} defines a block in S1, or if
(3) {ai, aj , ak} defines a block in S1 and {br, bs, bt} defines a block

in S2.
To finish the proof we must show this construction defines a STS. Clearly each
block in S will contain 3 elements, so k = 3 is satisfied. Now, to show the
construction satisfies λ = 1 we will show in every case that the pair {cir, cjs}
will be contained in only one block. If for the pair {cir, cjs} both {ai, aj} and
{br, bs} are contained in a block in S1 and S2, respectively, then for {cir, cjs}
to be contained in a second block, either {ai, aj} would have to be in a second
block in S1 or {br, bs} would have to be found in a second block in S2, a con-
tradiction. Similarly, if i = j and {cir, cjs} is found in more than one block in
S, then the pair {br, bs} would have to be contained in more than one block
in S2, another contradiction based on our knowledge of the STS S2. The same
argument may be used if we assume r = s.

Q.E.D.

Theorem 2.4 If there is a STS of order v2 containing a subsystem of order
v3 (or if we take v3 = 1) and if a STS can be taken over a set of order v1,
then we can construct another STS of order v = v3 + v1(v2 − v3) containing v1
subsystems of order v2, one of order v1, and one of order v3.

Proof [?] The proof of this theorem is by construction. We will begin with
an array of v elements in (v1 + 1) sets. Among these sets, there will be one of
order v3 and v1 of order s = (v2 − v3):
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S0 = (a1, a2, . . . av3)
S1 = (b11, b12, . . . b1s)
S2 = (b21, b22, . . . b2s)
...

...
...

. . .
...

Sv1 = (bv11, bv12, . . . bv1s)

This array constitutes the elements of the STS of order v and the triples of this
STS will be formed according to the following three rules:

(a) Let the given STS of order v3 be taken over the set S0 and take all triples
{ai, aj , ak} of this STS to be triples of the new STS of order v.

(b) Make S0∪Si, i = 1, ..., v1 correspond to a STS of order v2. Each of these
systems will contain triples {ai, aj , ak} that have already been defined by rule
(a) and because no pair {ai, aj} may appear in another triple, the remaining
triples will have at most one element of the type am. Therefore, the remaining
triples will be of the form {am, bij , bik} or {bij , bir, bit} and all of these triples
will be added to the new STS under construction.

(c) Finally, write a STS over the set of integers {1, ..., v1} and if {j, k, r} is
a triple of this system, then {bjx, bky, brz} will be a triple of the new system if
x+ y + z ≡ 0 (mod s).

These rules form the triples of a STS over v elements. Notice that (a) gives
all triples containing three a’s and that no other triple contains more than one
a, therefore every pair of a’s is found in only one triple. By rule (b), all pairs of
b’s from the same row will be placed with an a in one triple and triples of all
b’s will contain three elements from the same row but will not repeat pairs from
the triples of the form {am, bij , bik}. Now, by rule (c) every pair {bjx, bky} will
appear in a unique triple with an element brz where r is determined by the triple
{j, k, r} and z is determined by the relation x+ y + z ≡ 0 (mod s). Further, it
is clear that this STS contains a subdesign of order v3 (the triples taken over
S0) and v1 subdesigns of order v2 (the triples taken over S0 ∪ Si, i = 1, ..., v1).
Another subdesign of order v1 is found among the triples taken over the set
{b1s, b2s, ..., bv1s}, which proves the theorem.

Q.E.D.

2.1 Proof of Kirkman’s Theorem

Here we will sketch the proof of Kirkman’s theorem of 1847. The first task is
to show a STS does not exist unless v ≡ 1, 3 (mod 6). This can be done with
the simple application of equations (6) and (7). It is clear from equation (6)
that v must be odd. Moreover, equation (7) implies that either v, v − 1, or the
product v(v − 1) must be divisible by six. Now, with these conditions in mind,
some careful calculation will show that v ≡ 1, 3 (mod 6) is a necessary condition
in order for b and r to be integers.

The next challenge is to show that a STS exists for every v ≡ 1, 3 (mod 6).
This is shown using a recursive construction that applies theorem 2.4 to con-
struct a number of recursive rules to build larger and larger STSs from a small
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number of initial values. Here is an example of such a recursive rule,

v1 = v′, v2 = 3, v3 = 1, v = 2v′ + 1, v′ ≥ 3. (8)

This is just one of a number of rules that can be used to show the existence of a
STS for almost every value v = 1, 3 (mod 6). In some cases these constructions
will not produce a STS for some value v ≡ 1, 3 (mod 6). In the case of such an
exception, theorems 2.3 and 2.4 can be applied directly to show an STS does
exist for such a value. For more on this proof see Hall [?]. A proof of Kirkman’s
theorem which uses a direct construction is known from Skolem sequences (for
a full discussion of Skolem sequences see [?]).

3 Symmetric BIBDs

Because there are so many variables to be considered in the study of BIBDs, of
main interest are types of BIBDs with a number of fixed or otherwise manipu-
lated parameters. As previously stated, Steiner triple systems deal with BIBDs
that have two fixed parameters. Another class of BIBDs lie at the lower bound
of Fisher’s inequality, those BIBDs with b = v.

Definition A symmetric BIBD (or simply a symmetric design) is a BIBD such
that b = v.

From theorem 1.1 we know that for every BIBD the relation bk = vr holds.
Hence,

b = v ⇐⇒ r = k (9)

and it is clear that we may equivalently define a symmetric BIBD as a BIBD
such that r = k. This alternative definition may now be applied to equation
(2) of theorem 1.1 to come up with the following relation which holds for every
symmetric BIBD:

λ(v − 1) = k(k − 1). (10)

Definition The order of a symmetric design is the value n = k − λ.

For every symmetric design the parameter v will satisfy the following inequality:

4n− 1 ≤ v ≤ n2 + n+ 1. (11)

We will see in the following sections that the designs found at the upper bound
of this inequality correspond to a projective plane of order n and will have
parameters v = b = n2 + n + 1, k = r = n + 1, and λ = 1. The designs at the
lower bound, on the other hand, correspond to a Hadamard design of dimension
n and will have parameters v = b = 4n− 1, k = r = 2n− 1, and λ = n− 1. The
relation of symmetric designs to each of these topics will be explored further in
the upcoming sections.
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3.1 Symmetric Designs and Finite Projective Geometry

A perfect example of a symmetric BIBD is once again provided by the Fano
plane, which represents a symmetric design with b = v = 7, r = k = 3, and
λ = 1. In fact, every finite projective plane is a representation of a symmetric
BIBD. In section 1.3 it has been described how a finite projective plane can
represent a BIBD. It follows from theorem 1.4 and corollary 1.4.1 that any pro-
jective plane will correspond to the conditions b = v and r = k. Hence, the
question of whether or not a symmetric BIBD exists can be asked: does a finite
projective plane of a given number of points exist?

Theorem 3.1 If m ≥ 2, a
{
m2 +m+ 1,m+ 1, 1

}
symmetric design exists

if and only if a projective plane of order m exists.

The proof of this theorem follows from corollary 1.4.1 and the correspondence
between a finite projective plane and a BIBD. A trivial corollary to this theorem
due to theorem 1.5 is as follows.

Corollary 3.1.1 There are
{
m2 +m+ 1,m+ 1, 1

}
symmetric designs when-

ever m = pk, where p is a prime and k is a positive integer.

With this result and theorem 1.6, we are now able to present an important
corollary relating the existence of a finite projective plane, a symmetric BIBD,
and a complete orthogonal family of Latin squares.

Corollary 3.1.2 For m ≥ 2 the following three statements are equivalent:

1. There exists a finite projective plane of order m.

2. There exists a complete orthogonal family of Latin squares of order m.

3. There exists an (m2 +m+ 1,m+ 1, 1) symmetric BIBD.

3.2 The Bruck-Ryser-Chowla Theorem

The most fundamental necessary condition for the existence of a symmetric
BIBD is due to the Bruck-Ryser-Chowla theorem. This result was first proved
for λ = 1 by Ryser and Bruck in 1949 and in generality by Ryser and Chowla
in 1950.

Theorem 3.2 (The Bruck-Ryser-Chowla Theorem) In order for a symmetric
BIBD to exist, the following conditions must be satisfied:

1. If v is even, then k − λ is the square of an integer.
2. If v is odd, then the equation

z2 = (k − λ)x2 + (−1)(v−1)/2λy2 (12)
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has a solution for integer values of x, y, and z not all equal to zero.

This theorem is an extremely powerful result and until quite recently it was
conjectured that any set of parameters that satisfied both equation (10) and
the Bruck-Ryser-Chowla theorem would produce a symmetric design. This con-
jecture, however, has been proven false by an extensive computer search that
showed a {111, 11, 1} symmetric design cannot exist [?]. For a full proof of this
theorem consult Hall [?] or Ryser [?].

3.3 Existence Problems for m ̸= pk

By corollary 3.2.1 it is clear that a {m2 + m + 1,m + 1, 1} symmetric design
exists when m is a power of a prime, but what happens when m is not a power
of a prime? Let us check first the integer that is not a power of a prime, six. For
m = 6 we will have to check for the existence of a {43, 7, 1} design, and because
v is odd the parameters of this design must produce a solution to equation (12)
of the Bruck-Ryser-Chowla theorem. Thus, there must be a solution to the
equation

z2 = 6x2 + (−1)21y2, or

6x2 = z2 + y2

in x, y, and z, not all zero.
Consider the following, 6x2 is divisible by three, so z2 + y2 must also be

divisible by three. If the sum z2 + y2 is divisible by three, then z2 and y2 must
each be divisible by three. Further, if z2 and y2 are each divisible by three, they
will each be divisible by nine. This implies that z and y will each be divisible
by three. Now, because six is clearly not divisible by nine but is divisible by
three, x2 must be divisible by three, which implies that x2 must be divisible
by nine and x must be divisible by three. Let ix be the highest power of three
which divides x. Likewise, let iy and iz denote the highest powers of three that
divide y and z, respectively. If we assume iy ≥ iz, it follows that the highest
power of three which divides z2+y2 will be an even power of three, 2iz. On the
other hand, the highest power of three that divides 6x2 will be 2ix + 1. This
contradiction proves no solution in integers x, y, and z (not all zero) exists for
the equation 6x2 = z2 + y2 and a {m2 +m+1,m+1, 1} symmetric design will
not exist for m = 6.

The next integer which is not a power of a prime is ten. In this case we
have previously mentioned that {111, 11, 1} does not exist, but this result was
not so easy to show. In fact, for all m ≥ 12 where m ̸= pk it is not known if
{m2 +m+ 1,m+ 1, 1} symmetric design exists or not.

3.4 Hadamard Designs and Matrices

Hadamard designs are a specific form of symmetric BIBDs found when the
parameter v lies at the lower bound of inequality (11). Moreover, Hadamard
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designs are particularly useful in the theory of error correcting coding.

Definition A Hadamard design of dimension m is a {4m− 1, 2m− 1,m− 1}
symmetric BIBD.

Definition A Hadamard matrix is a matrix H whose entries are 1’s and
-1’s such that HHT = nI, where I is the n × n identity matrix. A normalized
Hadamard matrix has only 1’s in its first row and column.

Hadamard matrices will be a useful tool in the proof of a fundamental result
concerning the existence of a Hadamard design. However, it is necessary to
show a few results describing Hadamard matrices.

Theorem 3.3 If H is a Hadamard matrix, so is HT .

Proof If HHT = nI, then
H√
n

HT

√
n

= I (13)

Now, from linear algebra it is true that if AB = I for square matrices A and
B, then BA = I. Therefore,

HT

√
n

H√
n
= I, (14)

or HTH = I. Since (HT )T = H, HT is also a Hadamard matrix.

Q.E.D.

Theorem 3.4 If H is a normalized Hadamard matrix of order n > 2, then
n = 4m, for some m. Furthermore, exactly 2m entries of each row (column)
except the first are 1’s, exactly 2m are -1’s, and for every two rows (columns)
other than the first, there are exactly m columns (rows) in which both rows
(columns) have a 1.

Proof [?] By Theorem 3.3, the results for columns will follow directly from
the results for rows. Therefore, here will we only show the result for rows. Let
H be a normalized Hadamard matrix of order n. Since HHT = nI, the inner
product of the ith row of H with itself will be 1, the inner product of rows i and
j (i ̸= j) is 0, and the first row and column of H will be all 1’s. This implies
that every row except the first must have an equal number of 1’s and -1’s. Thus,
n must be even and n/2 entries of each row are 1 and n/2 are -1.

Rearrange the columns of H so that the second row has all 1’s in the first
half and all -1’s in the second half. The first two rows now look like this:

1 1 . . . 1 1 . . . 1
1 1 . . . 1 −1 . . . −1

By switching the columns to manipulate the first two rows none of the properties
of the matrix have been changed and the inner product of each row with another
will still be 0.
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Consider the inner product of row i, i ̸= 1, 2, with row 2. The first half of
row i will have u entries that are 1 and n/2− u that are -1, in the second half
it will have v 1’s and n/2− v -1’s. Now, because the inner product of row i and
row 2 must be 0, exactly half of the entries of row i must be 1. Therefore,

u+ v =
n

2
. (15)

We can now give the equation to compute the inner product of row 2 with row
i,

u− (
n

2
− u)− v + (

n

2
− v) = 0. (16)

From here it follows that u − v = 0. After an application of equation (15) we
have 2u = n/2, which implies

n = 4u. (17)

This proves the first part of the theorem. Moreover, n/2 = 2u entries are 1 and
the same number are -1, which proves the second part of the theorem. Finally,
it is clear the second and ith rows in our construction have u columns with a 1
in common and the same can be shown for any pair of rows by interchanging a
number of columns to make this clear.

Q.E.D.

We are now ready to apply this knowledge of Hadamard matrices to prove
one of the key results about the existence of Hadamard designs.

Theorem 3.5 For arbitrarily large values of m, and in particular for m = 2k,
k ≥ 1, a Hadamard design of dimension m exists.

Proof [?] Given a normalized Hadamard matrix, we can define a {v, k, λ} sym-
metric design. This is done by deleting the first row and column from the
matrix. Then, every position where there is a -1 is changed to a 0, creating an
incidence matrix, A, of a {v, k, λ} design. Now, to show this design will always
be a Hadamard design, notice that by theorem 3.4 A will have 4m − 1 rows
and 4m − 1 columns. Thus, b = v = 4m − 1. Moreover, because one 1 has
been removed from every row and column of the Hadamard matrix, theorem
3.4 implies every row and column of the matrix A will have 2m − 1 1’s. So,
k = r = 2m − 1. Finally, notice that because A has one less column of 1’s
than the previous Hadamard matrix, every pair of rows in A will have exactly
m−1 columns with a common 1. Hence, A will yield a {4m− 1, 2m− 1,m− 1}
symmetric design, a Hadamard design of dimension m.

Now to prove the theorem we will show how to construct a normalized
Hadamard matrix of order 4m for some arbitrarily large m. Let H be a
Hadamard matrix of order n and define K as follows:

K =

[
H H
H −H

]
.
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Clearly, if H is a Hadamard matrix of order n, K will be a Hadamard matrix
of order 2n. All the entries of K will be 1’s and -1’s and it is easy to show that
the inner product of a row with itself will be 2n and the inner product of two
different rows will be zero. Furthermore, if H is a normalized Hadamard matrix,
it is clear that K will also be a normalized Hadamard matrix. This shows the
existence of Hadamard matrices of arbitrarily large orders and, in particular,
for n = 2p where p ≥ 1. We have previously shown that a Hadamard matrix
of order 4m will correspond to a Hadamard design and from theorem 3.4 we
have n = 4m for some m. Thus, we can say that a Hadamard design exists for
4m = 2p, where m ≥ 2, or equivalently, a Hadamard design of dimension m
exists for m = 2k, where k ≥ 1.

Q.E.D.

4 Resolvable BIBDs

We have already discussed two classes of BIBDs, we now look to a third class,
resolvable BIBDs. In order to understand the concept of a resolvable BIBD, we
must first define what is known as a parallel class.

Definition If the pair (V,B) is a BIBD, a parallel class (or resolution class)
in (V,B) is a set of blocks in B that partition the point set V . A partial parallel
class is a set of blocks that contain no element of V more than once.

Definition A resolvable BIBD (or simply a resolvable design) is a BIBD whose
blocks may be partitioned into parallel classes. The notation RBIBD is also
commonly used.

Example The following is an example of a {9, 3, 1} RBIBD over the point
set {1, 2, . . . , 9} (each column represents a parallel class).

{1, 2, 3} {1, 4, 7} {1, 6, 8}
{4, 5, 6} {2, 5, 8} {2, 4, 9}
{7, 8, 9} {3, 6, 9} {3, 5, 7}

Definition A near resolvable design is a BIBD with the property that the
blocks may be partitioned into partial parallel classes, each of which lacks a sin-
gle point. Furthermore, each point of the design is missing in exactly one partial
parallel class. The parameters of a near resolvable design will be {v, k, k − 1}.

Example Here is an example of a {7, 3, 2} near resolvable design over the set
{0, 1, . . . , 6} (each column is a partial parallel class),

missing point : {0} {1} {2} {3} {4} {5} {6}
blocks : {1, 2, 4} {2, 3, 5} {3, 4, 6} {4, 5, 0} {5, 6, 1} {6, 0, 2} {0, 1, 3}

{3, 5, 6} {4, 6, 0} {5, 0, 1} {6, 1, 2} {0, 2, 3} {1, 3, 4} {2, 4, 5}
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The following theorem is similar to Fisher’s inequality, yet is specific to
RBIBDs.

Theorem 4.1 (Bose’s Condition) If a {v, k, λ} RBIBD exists, then b ≥ v+r−1.

4.1 Kirkman Triple Systems

Suppose you have 15 schoolgirls, and each day the girls are to walk to and from
school in groups of three. Is it possible to arrange the girls in groups of three so
that no pair of girls walk with eachother twice over a period of one week? This
question was posed by Kirkman in 1850 and is known as the Kirkman schoolgirl
problem.

This question is put more simply in terms of resolvable BIBDs: how many
resolution classes exist for a {15, 3, 1} resolvable design? Kirkman found a so-
lution with seven resolution classes and, in fact, exactly seven distinct solutions
with seven resolution classes have been found. Here is a table including two
of the seven solutions to the problem. The girls are represented by the set
{a, b, c, . . . , o} and blocks are signified by the rows of three elements.

Day Number
1 2 3 4 5 6 7

Solution 1

a, b, c
d, j, n
e, h,m
f, i, o
g, k, l

a, h, i
b, e, g
c,m, n
d, k, o
f, j, l

a, j, k
b,m, o
c, e, f
d, h, l
g, i, n

a, d, e
b, l, n
c, i, j
f, k,m
g, h, o

a, f, g
b, h, j
c, l, o
d, i,m
e, k, n

a, l,m
b, i, k
c, d, g
e, j, o
f, h, n

a, n, o
b, d, f
c, h, k
e, i, l
g, j,m

Solution 2

a, b, c
d, j, n
e, h,m
f, i, o
g, k, l

a, h, i
b, e, g
c,m, n
d, k, o
f, j, l

a, j, k
b,m, o
c, e, f
d, h, l
g, i, n

a, d, e
b, i, k
c, l, o
f, h, n
g, j,m

a, f, g
b, l, n
c, h, k
d, i,m
e, j, o

a, l,m
b, d, f
c, i, j
e, k, n
g, h, o

a, n, o
b, h, j
c, d, g
e, i, l
f, k,m

Table 1: Two Distinct Solutions to the Kirkman Schoolgirl Problem[?]

As the first to question the existence of designs of this type, RBIBDs with
k = 3 and λ = 1 have been named for Kirkman.

Definition A Kirkman triple system (KTS) of order v is a {v, 3, 1} RBIBD
together with a resolution of its blocks into parallel classes.

The following theorem follows from Kirkman’s theorem of 1847 and some
further analysis, but will be given without proof.

Theorem 4.2 A KTS of order v exists if and only if v ≡ 3 (mod 6).
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5 Building New BIBDs from Existing Symmetric Designs

There are a number of easy constructions which can create new BIBDs once
given the existence of a symmetric design. Two such constructions will be ex-
amined here, but first we must present the following theorem.

Theorem 5.1 For every symmetric BIBD, any two blocks have exactly λ ele-
ments in common.

Proof [?] Let A be an incidence matrix of a symmetric design (this will be
a v × v incidence matrix). We know the following about A:

(1) Any row of A contains k 1’s,
(2) Any column of A contains k 1’s, and
(3) Any pair of columns of A have 1’s in exactly λ rows.

For the proof of this theorem, we will show that:
(4) Any pair of rows of A have 1’s in common in exactly λ columns.

Let J be the v × v matrix of all 1’s. With this in mind it is clear that every
position in the matrix AJ will be the sum of the entries along any row of A.
Therefore, we have AJ = kJ. Previously we have also shown in the proof of
Fisher’s inequality that theorem 1.3 implies detA ̸= 0. Hence, we know that
A−1 exists. The matrix A−1 can now be used to show that if AJ = kJ, then

A−1AJ = kA−1J or k−1J = A−1J. (18)

From theorem 1.3 we have the relation, AAT = (r−λ)I+λJ for any incidence
matrix A. With the above results, however, the following is also true:

A−1AATA = A−1 ((k − λ)I+ λJ)A, or

ATA = (k − λ)I+ λA−1JA

At this point we may apply equation (18) to come up with this result:

ATA = (k − λ)I+ λk−1JA (19)

A number of applications of linear algebra on this result will now finish the
proof.

ATAA−1J = ((k − λ)I+ λk−1JA)A−1J, or

ATJ = ((k − λ)A−1J+ k−1λJJ

Notice that the inner product of any two rows of J will yield the sum of the
entries along one row of J. Therefore, JJ = vJ because J is a v× v matrix. We
now apply this fact and equation (18) to above equation.

ATJ = k−1(k − λ)J+ k−1λvJ
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Notice that JT = J because J is a symmetric matrix. With this in mind, we
take the transpose of each side of the above equation to get

JA = k−1(k + λv − λ)J = k−1(k + λ(v − 1))J. (20)

From equation (10) we have λ(v − 1) = k(k − 1). Hence,

JA = k−1(k + k(k − 1))J, or (21)

JA = kJ = AJ (22)

which implies condition (4) from the beginning of the proof.

Q.E.D.

We may now use this result to present the following constructions. Note
that for any two sets U and V , the notation U − V will denote the set U ∩ V c,
where V c denotes the complement of the set V .

Theorem 5.2 Let (V,B) be a symmetric BIBD with B = {B1, B2, . . . , Bv}
and V = {x1, . . . , xv}. Then for any i,

B1 −Bi, B2 −Bi, . . . , Bi−1 −Bi, Bi+1 −Bi, . . . , Bv −Bi

are the blocks of a {v − k, v − 1, k − λ, k, λ} BIBD over the point set X −Bi.

Proof [?] Clearly, removing the elements of one block will remove k elements
from the set. Therefore, there v − k elements remain in the point set. It is
also quite clear that the removal of one block leaves v − 1 remaining blocks.
By theorem 5.1, every block has λ elements in common. Thus, the construc-
tion will leave k − λ elements in each block. The remaining elements of the
design will be unaffected by the construction. Each remaining element was
found in k blocks and will still be found in k blocks. Furthermore, each pair
of remaining elements was found in λ blocks together and this value will also
remain unchanged. Hence, it is clear a new BIBD has been created through this
construction.

Q.E.D.

The design resulting from this previous construction is known as a residual
design.

Theorem 5.3 Let (V,B) be a symmetric BIBD with B = {B1, B2, . . . , Bv}
and V = {x1, . . . , xv}. Then for any i,

B1 ∩Bi, B2 ∩Bi, . . . , Bi−1 ∩Bi, Bi+1 ∩Bi, . . . , Bv ∩Bi

are the blocks of a {k, v − 1, λ, k − 1, λ− 1} BIBD over the point set Bi.

Proof [?] This construction will clearly yield a k-element point set. Also, the
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deletion of one block from the design trivially implies the remaining number of
blocks will be v − 1 and an application of theorem 5.1 implies the number of
elements in each of these blocks will be λ. In the original design, an element of
the block Bi could be found in k different blocks:

Bj1 , Bj2 , . . . , Bjk−1
, Bi.

This same element will now be found in only k − 1 blocks:

Bj1 ∩Bi, Bj2 ∩Bi, . . . , Bjk−1
∩Bi.

Similarly, a pair of elements in the block Bi was originally found in λ blocks:

Bj1 , Bj2 , . . . , Bjλ−1
, Bi.

Now the same pair will be found in the following λ− 1 blocks:

Bj1 ∩Bi, Bj2 ∩Bi, . . . , Bjλ−1
∩Bi.

Q.E.D.
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