- 1. Prove that $\sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} \binom{n}{k} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}.$
- 2. Show (preferably by a combinatorial argument) that S(n,k) = kS(n-1,k) + S(n-1,k-1).
- 3. Show by a combinatorial argument that

$$S(n+1,k) = \binom{n}{0}S(0,k-1) + \binom{n}{1}S(1,k-1) + \dots + \binom{n}{n}S(n,k-1).$$

- 4. Compute S(n,4), S(n, n-3) and S(n, n-4).
- 5. In how many different ways can you reach the bottom-right corner of a chessboard from the top-left corner, if you may only step right and downward and you may never be above the top-left bottom-right diagonal of the board (hint: think of the Pascal triangle)
- 6. Find the ordinary generating function of the sequence n^2 , i.e. find a close formula for the function $\sum_{n=0}^{\infty} n^2 \cdot x^n$.
- 7. Find the sequence (a_k) such that the function $\frac{1}{1+x^4}$ is the ordinary generating function of (a_k) , that is $\frac{1}{1+x^4} = \sum_{n=0}^{\infty} a_n \cdot x^n$.
- 8. Find the sequence (b_k) such that the function $\frac{b}{a+x}$ is the ordinary generating function of (b_k) , that is $\frac{b}{a+x} = \sum_{n=0}^{\infty} b_n \cdot x^n$.

HOMEWORK SET #2 / CO1A / Spring 2020

- 1. Prove that $\sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} \binom{n}{k} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}.$
- 2. Show (preferably by a combinatorial argument) that S(n,k) = kS(n-1,k) + S(n-1,k-1).
- 3. Show by a combinatorial argument that

$$S(n+1,k) = \binom{n}{0}S(0,k-1) + \binom{n}{1}S(1,k-1) + \dots + \binom{n}{n}S(n,k-1).$$

- 4. Compute S(n, 4), S(n, n-3) and S(n, n-4).
- 5. In how many different ways can you reach the bottom-right corner of a chessboard from the top-left corner, if you may only step right and downward and you may never be above the top-left bottom-right diagonal of the board (hint: think of the Pascal triangle)
- 6. Find the ordinary generating function of the sequence n^2 , i.e. find a close formula for the function $\sum_{n=0}^{\infty} n^2 \cdot x^n$.
- 7. Find the sequence (a_k) such that the function $\frac{1}{1+x^4}$ is the ordinary generating function of (a_k) , that is $\frac{1}{1+x^4} = \sum_{n=0}^{\infty} a_n \cdot x^n$.
- 8. Find the sequence (b_k) such that the function $\frac{b}{a+x}$ is the ordinary generating function of (b_k) , that is $\frac{b}{a+x} = \sum_{n=0}^{\infty} b_n \cdot x^n$.