- 1. Find the number of non-isomorphic connected, unicyclic graphs (graphs with exactly one cycle) on 6 vertices (a bit boring, but useful).
- 2. Prove that a graph G contains a circuit of length at least k + 1 if $d(x) \ge k$ for all $x \in V(G)$.
- 3. Show that the complement of a disconnected graph is connected!
- 4. Determine all graphs with exactly one pair of vertices of equal degree (all other degrees are distinct).
- 5. For every $n \ge 3$ give an example of a graph G having $\chi(G) \ge n$ but $G \not\supseteq K_n$.
- 6. Prove that for every graph G on the vertex set V there is a partition of $V = V_1 \cup V_2$ such that if $G(V_1)$ and $G(V_2)$ denote the graphs spanned by G on the sets V_1 and V_2 respectively, than $\chi(G(V_1)) + \chi(G(V_2)) = \chi(G)$.
- 7. Prove that a graph has at least $\binom{\chi(G)}{2}$ edges.
- 8. Prove that for any graph G on n vertices $\chi(G)\chi(\overline{G}) \ge n$ holds.