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Discrete and Convex Geometry
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1. Introduction

Mathematical research in Hungary started with geometry: with the work
of the two Bolyais early in the 19th century. The father, Farkas Bolyai,
showed that equal area polygons are equidecomposable. The son, János
Bolyai, laid down the foundations of non-Euclidean geometry. The study
of geometric objects has been continuing ever since. The present chapter of
this book is devoted to describing what investigations took place in Hungary
in the 20th century in the field of convex and combinatorial geometry. This
includes incidence geometries, finite geometries, and stochastic geometry
as well. The selection of the material is, of course, a personal one, and
some omissions are inevitable (though most likely unjustified). The choice
is made difficult by the wide variety of topics that were to be included.

Besides mathematics, or discrete and convex geometry (to be more pre-
cise), this survey is about people, is about mathematicians. Whenever ap-
propriate, I have tried to say a few words not only about the mathematics
but the person as well. There are quite a lot of them, but the heroes of the
story are two giants who stand out head and shoulder above the rest. They
are László Fejes Tóth and Pál Erdős. Both of them helped to create the
school of Hungarian discrete geometry, and both of them were extremely
successful problem solvers and exceptionally prolific problem raisers. Yet
they were of different taste, style, and character. Their questions, their
results, and, in general, their mathematics have, to a large extent, deter-
mined what discrete and convex geometry in Hungary means, and how and
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in what directions the Hungarian school of geometry has developed. I have
tried to group geometric research in Hungary around topics, and not so
much around people. Sometimes this has been difficult and occasionally
I have had to take the liberty of proceeding differently.

2. The beginnings

Geometric research in Hungary, after the work of the two Bolyais, besides
containing many scattered results, is concentrated around two topics. One is
geometric constructions, and the other one is equidecomposability of equal
area polygons.

Geometric constructions has always been a popular topic in high school
mathematics in Hungary, and the theory of geometric constructions had
been popular subject in geometric research as well. The starting point is a
theorem of Hilbert’s from Grundlagen der Geometrie (Teubner, 1899) saying
that usual geometric constructions (with ruler and compass) can be accom-
plished by a ruler alone if a circle, together with its centre, is drawn in the
plane. (He also showed that the centre is necessary.) Hilbert proved, fur-
ther, that the compass is needed only to copy segments on a line, that is, the
ruler and the ability of copying segments suffice for the usual geometric con-
structions. Continuing Hilbert’s work, József Kürschák proved (Math. Ann.,
55 (1902), 597–598) that whatever can be constructed using a ruler and the
ability of copying segments, can be constructed by a ruler and the ability of
copying a fixed segment, say the unit segment. The algebraist Mihály Bauer
proved (Ungar. Ber., 20 (1905), 43–47), that in Kürschák’s “unit segment”
theorem the unit segment cannot be replaced by any fixed, unmovable seg-
ment, or even by any fixed, unmovable polygon. Richárd Obláth continues
these investigations. He simplifies Kürschák’s proof (Math. Phys. Lapok,
18 (1909), 174–176). In Obláth (Monatsh. Math., 26 (1915), 295–298) it is
proved that in Hilbert’s theorem the circle can be replaced by an arbitrary
arc of the circle (its centre is, of course, necessary). This was also shown by
Gyula Szőkefalvi-Nagy (Tohoku J. Math., 40 (1934), 76–78). Many decades
later, Obláth proved (Matematikai Lapok, 2 (1951), 219–221) that, the cir-
cle and its centre can be replaced by an arbitrary arc together with the two
points that split the arc into three arcs of equal length. Gyula Szőkefalvi-
Nagy wrote a book on geometric constructions: A geometriai szerkesztések
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elmélete (Kolozsvár, 1943). Pál Szász and Gyula Strommer had also worked
in this area.

Farkas Bolyai’s equidecomposablity theorem has been a popular subject
as well. Mór Réthy (Ann. Math., 38 (1891), 405–428) extends the result
from polygons to some other planar regions, and Zsigmond Spiegl (Math.
Phys. Lapok, 2 (1893), 17–30) gives a new proof of the result. 60 years
later Tamás Varga found a short and transparent proof of Farkas Bolyai’s
theorem (Mathematikai Lapok, 5 (1954, 101–114).

In (Ungar. Ber., 15 (1898), 196–197) Kürschák gave a purely geometric
proof of the fact that the area of the regular twelvegon P is exactly three
times the area of the square Q whose side length is the radius of circle,
circumscribed about P . The proof is accomplished by decomposing P and
three copies of Q into finitely many congruent pieces. W. Csillag (Ungar.
Ber., 19 (1903), 70–73) gives an alternative proof, based on a remark of
Kürschák.

Concerning best approximation problems, József Kürschák gave the first
elementary proof (see [41], page 6) of the following inequalities. Let R resp.
r the circumradius and inradius of a convex n-gon Kn with area A and
perimeter L. Then

nr2 tan
π

n
≤ A ≤ 1

2
nR2 sin

2π

n
,

and
2nr tan

π

n
≤ L ≤ 2nR sin

π

n
,

and equality holds in all inequalities if and only if Kn is the regular n-gon.

There are further geometric results from the turn of the century. For in-
stance, Lipót Klug (Monatsh. Math., 10 (1889), 84–87) proves the following
interesting generalization of Pythagoras’s theorem. Denote by [x1, . . . , xk]
the (k−1)-dimensional volume of the simplex with vertices x1, . . . , xk ∈ Rn,
where k ≤ n. If v1, . . . , vn is a system of n pairwise orthogonal vectors in
Rn, then

∑[
vi1 , . . . , vik

]2 = (n− k + 1)
∑ [

0, vj1 , . . . , vjk−1

]2
,

where the summation is taken over all k, resp. (k− 1) membered subsets of
{1, . . . , n}. It is readily seen that the case k = 2 is a simple consequence of
the Pythagoras theorem.
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Gusztáv Rados (Ungar. Ber., 22 (1907), 1–12) considers regular star-n-
gons inscribed in the unit circle. (A star-n-gon is obtained by connecting
two vertices of a reguler n-gon when there are exactly k−1 vertices between
them; k must be relative prime to n.) Their number is clearly 1

2ϕ(n) (where
ϕ(n) is Euler’s totient function). The star-n-gon is subdivided by its edges
into cells, the cell containing the centre is called the “kernel”. Denote the
sum of the areas of the 1

2ϕ(n) kernels by In, and the area of the regular
convex n-gon, circumscribed about the unit circle by Cn. Then the ratio
In/Cn is a rational number which is equal to 1

4

(
ϕ(n) + µ(n)

)
where µ(n)

is the Möbius function. As expected, the proof uses geometry and number
theory. It is shown further that if n is a prime, then C2nIn = n2/2.

Gyula Vályi (1855–1913) was a respected professor in Kolozsvár, who
lectured on various subjects. He was almost blind. He did some work
in geometry. For instance, (Math. Phys. Lapok, 10 (1901), 309–321), he
considers the foot-triangle, A1B1C1, of the triangle ABC where A1 is the
foot of the altitude starting at A and B1 and C1 are defined similarly. The
foot triangle has its own foot triangle A2, B2, C2, and so on. Can the nth
foot triangle be similar to the original triangle? Vályi shows that there are
exactly 2n(2n− 1) (non-similar) triangles that are similar to their nth foot-
triangle. Vályi together with Gyula Kőnig was also interested in perspective
triangles and tetrahedra.

Dénes Kőnig’s (1884–1944) main interest was graph theory, but had a
few nice results in geometry as well. For instance, his joint paper with Adolf
Szűcs (Mat. Természettud. Ért., 31 (1913), 545–558) investigates the orbit
of a point in the 3-dimensional cube when it starts moving in direction v,
and is reflected like light whenever it meets the boundary of the cube. They
show that the orbit is periodic if and only if the ratio of any two components
of v is rational (v is a rational vector, for short), the orbit is everywhere
dense if and only if v is not orthogonal to any rational vector, and if v is
orthogonal to exactly one rational vector, then the orbit lies on the boundary
of a polyhedron and is everywhere dense there. He proves Helly’s theorem
(Math. Zeitschrift, 14 (1922), 208–210); the proof is identical with Helly’s
original proof that only appeared in 1923. (Helly found his famous theorem
in 1913 but could not publish it because of the First World War. The first
proof, by Radon, appeared in 1921.)

In this book, there are two long chapters about Lipót Fejér and his work
in analysis. In his student years, Fejér had been attracted to geometry where
he surprised his colleagues by beautiful elementary proofs. One survives,
see [140] or [40], Vol. II, pp. 844–847: Assume ABC is an acute triangle.
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Then its foot-triangle has the the smallest perimeter among all triangles
XY Z where the point X comes from the line through B, C, the point Y
from the line through C, A, and Z from the one through A, B.

Of course, János Bolyai’s ground-breaking result on non-Euclidean
geometry, whose real importance was understood quite late, was a cen-
tral topic in the mathematical life of the time. In 1897, János Bolyai’s
Appendix appeared in Hungarian translation for the first time. Even more
significantly, there was to be a volume on the achievements of mathemat-
ics, edited by Poincaré, which was to contain a chapter on “Géométrie de
Lobatschewsky”. The title of this chapter finally became “Géométrie de
Bolyai et Lobatschewsky”, thanks to the work of a committee consisting of
G. Rados, B. Tőttössy, J. Kürschák, and L. Kopp. In another development,
under the auspices of Gyula Kőnig and Mór Réthy, the Tentamen of Farkas
Bolyai appeared a second time in two volumes, the first in 1897, the second
in 1904.

3. Packings and coverings by circles

László Fejes Tóth has been working in geometry since 1939. His interests are
very broad: packing and covering, approximation, isoperimetric inequalities
for polytopes, and much more. We start by describing his ground-breaking
research in the theory of packings and coverings.

One of László Fejes Tóth’s early results is a new proof (the first correct
proof, according to C. A. Rogers) of a theorem of Thue from 1882:

Thue’s theorem ([41], page 58). The density of any packing of congruent
circles in the plane is at most π/

√
12.

Here and in what follows packing means a collection of pairwise (in-
ternally) disjoint sets, while a covering is a collection of sets whose union
contains the set which is to be covered. Density has just the usual defi-
nition: on a bounded set D it is the total area of the circles divided by
AreaD, and one takes the limit if the set in question is not bounded. Dual
to Thue’s theorem is that of Kershner.

Kershner’s theorem ([41], page 58). The density of any covering of the
plane with congruent circles is at least 2π/

√
27.
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László Fejes Tóth has proved many extensions and generalizations of
these results. The theory of “packings and coverings” he developed in 2
and 3-dimensions is the content of his book Lagerungen in der Ebene, auf
dem Kugel und im Raum [41]. The extension of the theory to higher di-
mension is carried out in the book by C. A. Rogers, Packing and covering,
Cambridge, 1964. This extension is rather restricted since the higher di-
mensional packing and covering problems are much more difficult, and as a
consequence, there are only few results about them.

We describe now some generalizations of Thue’s and Kershner’s theorem
that are due to László Fejes Tóth, see [41], page 67.

Theorem. Every packing of (at least two) congruent circles in a convex
domain has density at most π/

√
12.

Theorem. Every covering of a convex domain by (at least two) congruent
circles has density at least 2π/

√
27.

When one is only interested in the asymptotic behaviour of an extremal
system of circles, the shape of the domain does not matter much. So it
is quite natural to consider hexagons instead of general convex domains.
The dual problems of packing and covering can be unified in the following
way. How to place congruent circles in the plane, when the density is given
a priori, and we want to maximize the area covered by the circles. The
answer is in the following theorem, see [41], page 80.

Theorem. Given a hexagon of area H and a system of congruent circles
of total area T , let A denote the area of that part of the hexagon that is
covered by the circles. Then A ≤ A∗ where A∗ is the area of the intersection
of the circle of area T and a concentric regular hexagon of area H.

This result is a special case of the so-called Moment Theorem (see [41],
page 81 and Section 5 below for this particular application) which was
invented in connection with isoperimetric problems for polyhedra (see later).
The Moment Theorem has found several further extensions and applications
in the works of P. M. Gruber and Gábor Fejes Tóth.

4. Packings and coverings by incongruent circles

The problems become more involved when incongruent circles are used. In
a joint work of L. Fejes Tóth and J. Molnár (Math. Nachr., 18 (1958),
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235–243), any kind of circle of radius r from the interval [a, b] can be used,
and the question is how to choose and arrange such circles to obtain a
densest possible packing, or a thinnest possible covering. Upper and lower
bounds are given for the densities in question. József Molnár constructed
examples of packings and coverings, using only circles of radius a and b,
that are almost optimal. An interesting remark from [41], page 79 says that
if the ratio b/a is close to one, then the density is maximal if the system
is the densest lattice packing of congruent circles. This line of research has
been continued by Károly Böröczky, Aladár Heppes, András Bezdek, Károly
Bezdek, József Molnár, Gábor Fejes Tóth, and others.

Another result concerning packings with incongruent circles (see [41],
page 75) says that if a hexagon H contains n non-overlapping circles with
radii r1, . . . , rn, then (r1 + . . . rn)2 ≤ n AreaH

√
12. This means, roughly

speaking, that the total area of circles, packed in a hexagon, is maximal if
they are congruent and each is touched by six others.

It is perhaps worth mentioning here that in this field there is still much
to be discovered.

5. Packings and coverings by convex sets in the plane

In connection with packings and coverings it is quite natural to consider
not only circles but other convex bodies as well. The following far-reaching
generalization of Thue’s theorem is due to László Fejes Tóth ([41], page 85).

Theorem. Let K ⊂ R2 be a convex body, and let P6 be a hexagon, of
minimum area, circumscribed about K. If n congruent (non-overlapping)
copies of K are packed in a convex hexagon H, then n AreaP6 ≤ AreaH.

In the proof one grows the congruent copies, Ki, of K into (non-
overlapping) convex polygons Ri with Ki ⊂ Ri. Next, Euler’s theorem
on planar graphs implies that the total number of sides of the Ris is at
most 6n. Then Dowker’s theorem (see a little later) and an application of
the Jensen inequality finishes the proof. For details see [41]. When K is
a circle, then AreaP6 = π√

12
AreaK, which gives Thue’s theorem. A very

general corollary of the previous theorem says the following:
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Corollary. No packing of congruent, centrally symmetric convex bodies in
the plane can have density larger then that of the densest lattice packing of
the same convex body.

Rogers proved that the above theorem remains valid for non-symmetric
convex bodies K as well provided only translated copies of K are allowed
to form the packing. A beautiful and short proof of this fact was given by
L. Fejes Tóth (Mathematika, 30 (1983), 1–3). In the covering version of
the previous theorem an extra (and most likely only technical) condition is
needed, namely, that the covering is “non-crossing”. Two copies Ki and Kj

are said to be crossing if removing their intersection from their union, both
sets split into disjoint parts.

Theorem ([41], page 86). Let K ⊂ R2 be a convex body, and let p6 be a
hexagon, of maximum area, inscribed in K. If n congruent and pairwise
non-crossing copies of K cover a convex hexagon H, then n Area p6 ≥
AreaH.

An interesting generalization of the last three theorems is due to Gábor
Fejes Tóth (Acta Math. Acad. Sci. Hungar., 23 (1972), 263–270). It goes
as follows.

For a convex body K ⊂ R2 of unit area let fK(x) denote the maximum
area of the intersection of K and a hexagon of area x. Further, let f̄K(x)
be the least concave function greater than or equal to f(x). Given a convex
hexagon of area H and a system of congruent non-crossing copies of K with
total area T , let A denote the area of that part of the hexagon which is
covered by the copies of K. Then

A ≤ T f̄K(H/T ).

This bound is sharp if K is centrally symmetric. In this case, for given
density T/H an arrangement of a large number of copies of K for which
A is arbitrarily close to the upper bound is generally not lattice-like, but
is given by an appropriate combination of two lattice arrangements. This
phenomenon shows a remarkable analogy with the phase transition of crys-
tals, as Gábor Fejes Tóth and László Fejes Tóth remark (Computers Math.
Applic., 17 (1989), 251–254).

This is the point where a result of István Fáry (1922–1984) should be
mentioned. Besicovitch proved that every convex body K in the plane
contains a centrally symmetric hexagon whose area is at least 2/3AreaK.
Fáry gave an alternative proof of this and characterized the case of equality
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(Bull. Soc. Math. France, 78 (1950), 152–161). Moreover, he used it in the
following result on packings and coverings in the plane (see [40], page 100).

Theorem. Assume K ⊂ R2 is a convex body. Let δL(K) and θL(K) denote
the density of the densest lattice packing and the density of the thinnest
lattice covering of K (by translates of K) in the plane. Then

δL(K) ≥ 2
3

and θL(K) ≤ 3
2
,

with equality if and only if K is a triangle.

We mention, however, that the question whether θ(K) ≤ 3/2 for non-
lattice coverings by translates of a triangle K is still wide open. There are
plenty of such questions in this area.

6. Packings and coverings on the sphere

Packing and covering of the 2-dimensional sphere by spherical caps is a
problem, analogous to the previous. For instance, Thammes’s question asks
for the densest packing of n circles (caps) on the sphere. The dual problem is
that of the thinnest covering by n circles (caps) of the sphere. L. Fejes Tóth
gives upper resp. lower bounds for the densities in question. Set ωn = n

n−2
π
6 .

Theorem ([41], page 114). When n ≥ 3 congruent caps are packed on the
sphere, then their density is at most

n

2

(
1− 1

2 sin ωn

)
.

When the sphere is covered by n ≥ 3 congruent caps, then their density is
at least

n

2

(
1− 1√

3 tanωn

)
.

These inequalities solve the question of densest packing, resp. thinnest
covering of the sphere for n = 3, 4, 6, 12 (see [41]). The proof shows at the
same time, that the extremal systems are formed by the circles, inscribed
in, resp. circumscribed about, the faces of the regular mosaics with symbols
{k, 3} with k = 2, 3, 4, 5. (These mosaics, for k > 2, correspond to a regular
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polytope in 3-space whose facets are regular k-gons.) Also, the above result
gives an alternative proof of the theorems of Thue and Kershner (when n
goes to infinity), and shows that the extremal configuration corresponds to
the regular mosaic {6, 3} which is the usual tiling of R2 by regular hexagons.

These questions are closely related to isoperimetric problems about poly-
topes. For instance, assume that V is the volume, F is the surface area
of a convex polytope P ⊂ R3 with f faces. What’s the smallest value
of the so-called isoperimetric quotient F 3/V 2? Steiner conjectured that if
the polytope is combinatorially equivalent to a regular polytope, then the
isoperimetric quotient is minimal for the corresponding regular polytope.
(Steinitz had doubts about this conjecture.) László Fejes Tóth proved the
validity of the conjecture for the case of the tetrahedron, cube, and dodec-
ahedron (f = 4, 6, 12) with the following theorem (see [41], page 135, and
[42], page 283).

Theorem. Under the above conditions

F 3

V 2
≥ 54(f − 2) tanωf (4 sin2 ωf − 1).

The proof of Steiner’s conjecture goes via Lindelöf’s theorem (stating
that any polytope, extremal to the isoperimetric quotient is circumscribed
about the sphere), and the so-called Moment Theorem (see [42], page 219).
The Moment Theorem has various forms, here we give the one used in the
plane ([41], page 81). We assume that g : R+ → R+ is an increasing
function, H ⊂ R2 is a convex hexagon and a1, . . . , an are points in H. Set
finally d(x) = min

{ |x− a1|, . . . , |x− an|
}

.

Moment Theorem. Under these conditions
∫

H
g
(
d(x)

)
dx ≤ n

∫

h
g
( |x|) dx,

where h is a regular hexagon, of area AreaH/n, centered at the origin.

There are several other isoperimetric problems concerning packings and
coverings. For instance, in a given a hexagon H ⊂ R2 n non-overlapping
convex bodies are placed. What is the minimum of the total perimeter of
these n convex bodies, if each has area at least a? This is the perimeter
problem. Or what is the maximum of the total area of the n convex bodies,
if each has perimeter at most p? This is the so called area problem, which
was solved by László Fejes Tóth, [42], page 175. He and Aladár Heppes
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solved the perimeter problem, see [42], page 174. The extremal configuration
consists, in both cases, either of arbitrarily arranged circles, or of certain
“smooth polygons” inscribed in the faces of (a bounded piece) of the regular
mosaic {6, 3}. Heppes proved further (Publ. Math. Inst. Hungar. Acad.
Sci., 8 (1964), 365–371) that in the area problem the same conclusion holds
without assuming the convexity of the pieces.

7. Packings and coverings in the hyperbolic plane

Packing and covering problems arise naturally in hyperbolic spaces as well.
However, it is impossible to define the density of a packing or covering that
would satisfy the most natural and simple requirements. This was pointed
out by an ingenious example due to Károly Böröczky. László Fejes Tóth
gives an alternative notion of densest packing and thinnest covering, that of
“solidity’. A packing of convex bodies is called solid if altering the positions
of finitely many of the bodies, and leaving the remaining ones unmoved, the
new packing obtained this way is always congruent with the original one.
The definition is analogous for coverings. A solid packing (and covering) on
the sphere and on the Euclidean plane is automatically the densest (thinnest,
resp.). So the following theorems, due to Margit Imre (Acta Math. Hung.,
15 (1964), 115–121), generalize the corresponding spherical and Euclidean
results. We mention that the regular mosaic {n, 3} forms a tessellation of
the sphere for n = 2, 3, 4, 5, of the Euclidean plane for n = 6, and of the
hyperbolic plane for n > 6.

Theorem. For every n ≥ 2, the circles inscribed in the faces of the regular
mosaic with symbol {n, 3} form a solid packing.

For every n ≥ 3, the circles circumscribed about the faces of the regular
mosaic with symbol {n, 3} form a solid covering.

We mention in passing that András Bezdek extended the first statement
from the above theorem by showing that for n > 7 the packing is “super-
solid”, which means that removing n of the circles and putting back only
n− 1 so as to form a packing, one gets back the original system minus one
circle. The question is still open for n = 6, 7.

The Hungarian school of discrete geometry was founded by László Fe-
jes Tóth and was strongly influenced by his results, insight and inspiring
questions. László Fejes Tóth had the exceptional ability of addressing the
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right question to the right people. Several young mathematicians-to-be
started working in discrete geometry because of an intriguing problem of
László Fejes Tóth, and became discrete geometers under his guidance and
influence. The Hungarian school of discrete geometry has been incessantly
working on the “Fejes Tóth” theory of packings and coverings. The follow-
ing names must be mentioned here: Imre Bárány, András Bezdek, Károly
Bezdek, Károly Böröczky, Károly Böröczky Jr., Gábor Fejes Tóth, Zoltán
Füredi, Aladár Heppes, Jenő Horváth, Gábor Kertész, Endre Makai Jr.,
Emil Molnár, József Molnár, and János Pach.

8. Packings and coverings in higher dimensions

In higher dimensions the problem of densest packing and thinnest cover-
ing (of congruent balls, say) is much harder. The densest sphere packing
problem in 3-dimensional space goes back to Kepler and is part of problem
18 of Hilbert’s famous set of unsolved problems. In the early 50’s László
Fejes Tóth made a significant step toward the solution of this problem. He
proposed a strategy which, if carried out succesfully, solves the problem by
reducing it to a finite optimization problem. A decade later, he even fore-
saw the possibility of using computers in the solution. In [42], page 300,
László Fejes Tóth writes that “. . . this problem can be reduced to the de-
termination of the minimum of a function of a finite number of variables,
providing a programme realizable in principle. In view of the intricacy of
this function we are far from attempting to determine the exact minimum.
But, mindful of the rapid development of our computers, it is imaginable
that the minimum may be approximated with great exactitude.”

We close this section by recalling two general covering theorem of Erdős
and Rogers. One is from (J. London Math. Soc., 28 (1953), 287–293) and
gives the first nontrivial lower bound on the density of any covering, by
congruent balls, of Rd. The second result (Acta Arithmetica, 7 (1962),
281–285) is very general and has been used often. Its proof is a powerful
combination of random methods and maximal lattice packing.

Theorem. For every convex body K ⊂ Rd there exists a covering of Rd

by translates of K whose density is less than d(log d + log log d + 4) and so
that no point is covered more than ed(log d + log log d + 4) times.
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9. Approximation

Approximation problems of convex bodies by special classes of convex bod-
ies, usually by polytopes with few vertices or faces belong to the theory of
convex sets. László Fejes Tóth has made pioneering research in this direc-
tion and used his results in the theory of packings and coverings.

Assume K ⊂ R2 is a convex body. Denote by Tn (resp. tn) the area
of the maximal (minimal) area convex n-gon inscribed in (circumscribed
about) K. Answering a question of Kershner, Dowker (Bull. AMS., 50
(1944), 120–122) proved that the sequence T3, T4, . . . is concave, and the
sequence t3.t4, . . . is convex. In other words,

Tn−1 + Tn+1 ≤ 2Tn and tn−1 + tn+1 ≥ 2tn.

László Fejes Tóth and József Molnár extended this result to inscribed (cir-
cumscribed) polygons with maximal (minimal) perimeter: (Molnár, Matem-
atikai Lapok, 26 (1955), 210–218; Fejes Tóth, Math. Phys. Semesterber., 6
(1958/59), 253–261).

It had been generally known or assumed that, among all d-dimensional
convex bodies, the Euclidean ball can be approximated worst. When we
measure approximation by an affinely invariant quantity (like missed area)
the extreme case should be the set of ellipses.

An early example of this phenomenon is given by a theorem of Ernő Sas.
Answering a question of L. Fejes Tóth, he proved the following, (see E. Sas,
Compositio Math., 6 (1939), 468–470), and [41], page 36, as well. For a
convex body K ⊂ R2, Tn still denotes the maximal area of an inscribed
convex n-gon. Then

Tn ≥ AreaK
n

2π
sin

2π

n
,

with equality if and only if K is an ellipse.
Dezső Lázár, a promising young mathematician (who became a victim

of holocaust in 1942) proved the following result, (Lázár, Acta Univ. Szeged,
11 (1947), 129–132) and [41], page 40, as well. We keep the previous
notation tn and Tn. Then

Tn

tn
≥ cos2

π

n
,

with equality if and only if K is an ellipse. The analogous statement for
the best approximation in perimeter was proved by László Fejes Tóth ([41],
page 30).
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There is a strong relation between best approximation of a convex body
K ⊂ R2 and its affine perimeter, when approximation is measured by
an affinely equivariant quantity. This was pointed out by László Fejes
Tóth. The affine perimeter was defined by Blaschke as

∫
κ1/3ds where the

integration goes on the boundary of K according to arc-length. Fejes Tóth
proves, among other similar results, the following one. Again, K and tn
have the same meaning as above.

Theorem. Assume K has twice differentiable boundary, and its affine
perimeter is λ. Then λ3 ≤ 8tnn2 sin2(π/n).

This result implies Blaschke’s affine isoperimetric inequality, which says,
that λ3 ≤ 8π2 AreaK. Fejes Tóth proves a further remarkable property of
the affine perimeter: in a given triangle ABC, among all curves connecting
A to B within the triangle, and bounding, together with the side AB, a fixed
area, the largest affine arc-length goes with the cone-section that touches
the side AC at A, and BC at B.

L. Fejes Tóth proves [41], page 89, the following result concerning affine
perimeter and packings by convex bodies:

Theorem. Assume n convex bodies are packed in a hexagon H, and let Λ
denote the sum of the affine perimeters of the convex bodies. Then

Λ3 ≤ 72n2 AreaH.

10. The Erdős–Szekeres theorem

Discrete geometry in Hungary was born when Erdős and his friends (Tibor
Gallai, György Szekeres, Pál Turán, Eszter Klein, and many others) were
very young and became interested in all kinds of combinatorial questions.
A good example of this is the so-called Erdős–Szekeres theorem, which grew
out of the following observation of Eszter Klein from 1934. From every set
of five points in general position in the plane one can choose four that are in
convex position, where k points are said to be in convex position if none of
them is contained in the convex hull of the other k− 1. Erdős immediately
generalized the question and, together with Szekeres, proved the following
result.
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Erdős–Szekeres theorem. For every k ≥ 4 there exists a finite number
N(k) such that every set X ⊂ R2 in general position with |X| ≥ N(k)
contains k points that are in convex position.

This appeared in Erdős, Szekeres (Compositio Math., 2 (1935), 463–
470), in the proof they rediscover Ramsey’s theorem. They published a
second paper on this problem 26 years later (Ann. Univ. Budapest, Sectio
Math., 3-4 (1961), 53–62). They prove, denoting by N(k) the smallest
integer the theorem is valid for, the following bounds

2k−2 + 1 ≤ N(k) ≤
(

2k − 4
k − 2

)
.

Earlier Endre Makai Sr. and Pál Turán showed that N(5) = 9, and Es-
zter Klein’s observation gives N(4) = 5. This is in accordance with the
conjecture that N(k) = 2k−2 + 1 which has become known as the Happy
End Problem because Eszter Klein and Szekeres got married, escaped from
Hungary to Australia via Shanghai (because of the holocaust) and have
been living happily ever since. (Actually, there is no other evidence than
N(4) = 5 and N(5) = 9 for the conjecture.)

Later, Erdős asked whether among sufficiently many points (in general
position) in the plane one can always find the vertices of an empty k-gon,
that is, k points in convex position such that their convex hull contains no
more points from the original set. This turned out to be true for k = 3, 4, 5,
false for k > 6. Very annoyingly, the problem is still open for k = 6.

There are several further extensions, generalizations, and applications
of the Erdős–Szekeres theorem that are beyond the scope of this survey.
For instance, the theory of order types (started by Goodman and Pollack)
grew out of an attempt to prove the Happy End Conjecture. The recent
overview of these developments by W. Morris and V. Soltan (Bull. AMS.,
37 (2000), 437–458) lists more than 200 references. The Hungarian school
of discrete geometers, namely Imre Bárány, Tibor Bisztriczky, Gábor Fejes
Tóth, Zoltán Füredi, Gyula Károlyi, János Pach, József Solymosi, Géza
Tóth, have been actively pursuing Erdős–Szekeres type phenomena.



442 I. Bárány

11. Repeated distances, distinct distances in the plane

Erdős was interested in all kinds mathematics, he knew very well that math-
ematics develops by asking questions, as they constitute the raw material
mathematicians can work on. He himself was a prolific problem raiser, often
more proud of a good question he asked than a theorem he proved. He once
said that he had never been jealous of a result of someone else, but he had
often been jealous of a good problem someone else asked. He raised several
questions a day, some based on new insight or new theorems, some in the
hope of getting closer to the solution of the some old problem, sometimes
the question came just out of curiosity. With the following two questions
(Erdős, Amer. Math. Monthly, 53 (1946), 248–250), he struck gold:

At most how many times can a given distance occur among a set of n
points in the plane?

What is the minimum number of distinct distances determined by a set
of n points in the plane?

To be more formal, let X be a set of n points in the plane, and let
f(X) denote the number of pairs x, y ∈ X such that their distance |x−y| is
equal to one, and let g(X) denote the number of distinct distances |x− y|,
x, y ∈ X. Define

f(n) = max f(X), and g(n) = min g(X).

With this notation, Erdős’s question is to find, or at least estimate, f(n)
and g(n). These two questions have turned out both extremely hard and
extremely influential.

Erdős proves, in the same paper, that f(n) ≤ cn3/2. In the proof Erdős
uses a simple geometric argument to show that the graph of unit distances
(with vertex set X) does not contain the complete bipartite graph K2,3.
Since such a graph cannot have more than cn3/2 edges, the upper bound
on f(n) follows immediately. This is the first application of extremal graph
theory in combinatorial geometry, that has been followed by many others.
The effect is mutual and mutually beneficial: a question in combinatorial
geometry often leads to a problem in extremal graph or hypergraph theory.
Erdős did pioneering work in this direction. The best upper bound to date
is f(n) ≤ cn4/3 (due to Spencer, Szemerédi, Trotter). Here is another
formulation of the “unit distances” question: given n points in the plane and
the n unit circles centred at these points, how many point-circle incidences
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can occur among them? In this form, the question immediately leads to
incidence problems to be discussed in Section 12.

Again in the same paper, Erdős gives the lower bound, (which is con-
jectured to be the proper order of magnitude of f(n)):

f(n) > n1+c/ log log n.

The construction is just the
√

n × √n grid; the proof uses a little number
theory. The same construction gives, for the number of distinct distances,
that

g(n) ≤ cn√
log n

.

This is again the conjectured value of g(n). Moser gave the lower bound

g(n) > cn2/3

which has been improved several times by methods combining geometry and
combinatorics. The current best lower bound (due to Katz and G. Tardos,
based on earlier work of Solymosi and Cs. Tóth) is cn.864.... (A recent result
of Imre Ruzsa shows that the current techniques cannot give anything of
the form n8/9.)

The problem changes if one strengthens the non-collinearity condition
on X by assuming, say, that the points are in convex position, or that X
is in general position. The convexity condition gave rise to the theory of
forbidden submatrices. For the general position case, Erdős, Füredi, Pach,
Ruzsa (Discrete Math., 111 (1993), 189–196) show that

ggen(n) ≤ ne
√

c log n,

while the lower bound (n − 1)/3 is due to Szemerédi. In the same paper
Erdős et al. show that, if X contains no three points on a line and no four on
a circle, then the inequality g(X) ≤ C|X| does not hold for any constant C.
The proof uses a celebrated result of Freiman from additive number theory.

Erdős also asked, in his 1946 Monthly paper, how often the maximal,
minimal distance can occur among pairs of points of a set X ⊂ R2. The
minimal distance problem has been completely solved in R2, but not in
higher dimensions. The maximal distance can occur n times in R2, and
2n− 2 times in R3 (the latter result is due to Heppes and Grünbaum). For
higher dimensions, the Lenz construction (see in the next chapter) gives
asymptotically optimal point sets. A more general question concerns the
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distribution of distances. Erdős, Lovász, Vesztergombi (Discrete Comp.
Geom., 4 (1989), 341–349) investigate the graph determined by the k largest
distances.

Concerning the possible distribution of distances, Ilona Palásti con-
structed examples of point sets X ⊂ R2 with |X| = k for k = 4, 5, 6, 7, 8
where the k(k−1)/2 distances occur with very special distribution: one dis-
tance occurs once, another twice, a third three times, etc. See for instance
Palásti (Discrete Math., 76 (1989), 155-156). In general, she was working
on geometric problems proposed by Erdős, we will encounter another result
of hers in Section 14.

12. Repeated and distinct distances elsewhere

Of course the same questions can be asked in any dimension. Denoting
the corresponding functions by fd(n) and gd(n), Erdős proved (Publ. Math.
Inst. Hung., 5 (1960), 165–169) that

cn4/3 ≤ f3(n) ≤ cn5/3.

By now there are better estimates for f3(n). The behaviour of fd(n) for
d > 3 is simple, because of the so-called Lenz construction, (see the same
paper of Erdős): half of the points are on the circle (x, y, 0, 0) with x2+y2 =
1/2, the other half on the circle (0, 0, u, v) with u2 + v2 = 1/2. This gives
that f4(n) is asymptotically n2/4. Even more precise information on fd(n)
is available. The question of distinct distances does not, however, become
simpler. Here Erdős proved, still in the 1946 Monthly paper, that

cn3/(3d−2) ≤ gd(n) ≤ cn2/d.

Many of these results have been improved since, and many by the Hungar-
ian school of combinatorial geometry: József Beck, Zoltán Füredi, Endre
Makai Jr., János Pach, Imre Ruzsa, László Székely, Endre Szemerédi, Csaba
Tóth, Gábor Tardos.

Erdős, together with Hickerson and Pach (Amer. Math. Monthly, 96
(1989), 569–577) consider the same problem on the 2-dimensional unit
sphere S2 and show that every distance d ∈ (0, 2) can occur cn log∗ n times,
and the special distance

√
2, surprisingly, occurs cn4/3 times; this bound is

optimal. (Here log∗ n is the number one has to take logarithm from n to
get below 2.)
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A minor modification of the Lenz construction shows, further, that the
maximal distance in Rd, d ≥ 4 can occur asymptotically

n2

2

(
1− 1

bd/2c
)

times. The maximal distance question is related to the famous Borsuk
conjecture stating that every set S ⊂ Rd can be partitioned into d + 1 sets
of smaller diameter. So the modified Lenz construction was an indication
that the Borsuk conjecture might be false. This turned out to be the case
later, from dimension 1000 onwards (but with a different example).

It is natural to ask the same questions about angles, directions instead
of distances, and Erdős, of course, was asking, popularizing, and answering
such questions. For details, see the survey by Erdős, Purdy: Extremal
problems in combinatorial geometry (Handbook of Combinatorics, North
Holland, (1995)). The following intriguing problem of Erdős is again of
a similar kind: How many similar copies of a regular pentagon can an
n element planar point set contain? The answer, by Erdős and Elekes
(Intuitive Geometry, Colloq. Math. Soc. János Bolyai 63, 85–104, North-
Holland, 1994) is surprising: the construction of a pentagonal lattice in
R2 contains cn2 regular pentagons. Far reaching generalizations of this
construction were given by Miklós Laczkovich and Imre Ruzsa.

The two questions asked by Erdős in 1946 started a novel and exciting
research field in discrete geometry that has given rise to many beautiful
results and hundreds of new problems. Erdős himself writes in his 80th
birthday volume: “My most striking contribution to geometry is, no doubt,
my problem on distinct distances”.

13. Incidences

In the Educational Times in 1893, J. J. Sylvester raised the following ques-
tion. Assume n points are given in the plane, not all of them on a line. Is it
true then that they determine an ordinary line, that is, a line containing ex-
actly two of the given n points. It seems that the problem lay dormant until
Erdős revived it some 40 years later. Soon after that Tibor Gallai (1912–
1992) found a beautiful proof which appeared (Amer. Math. Monthly, 51
(1944), 169–171) as a solution to a question posed by Erdős.
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The following Euclidean Ramsey theorem, probably the first of its kind,
is also due to Gallai: Given a finite set P ⊂ Rd, and a colouring of Rd

by r colours, there always exists a monochromatic and homothetic copy
of P . Gallai never published this result which appeared first in R. Rado
(Sitzungsber. Preuss. Akad. Wiss., Phys.-Math., 16/17 (1933), 589–596).

Now back to the Sylvester–Gallai theorem, which clearly implies that
n points (not all of them on a line) determine at least n lines. A far
reaching combinatorial generalization of this fact (including the case of
finite projective planes) was proved by Erdős, de Bruijn (Indag. Math.,
10 (1948), 421–423): Suppose {A1, . . . , Am} are proper subsets of a ground
set {a1, . . . , an} Suppose also that each pair ai, aj occurs in one and only
one A. Then m ≥ n.

Motivated, among others, by the Sylvester–Gallai theorem, Erdős con-
jectured that given n points in the plane, the number of lines containing at
least

√
n of the points is at most c

√
n (where c is some positive constant).

This was proved by Szemerédi and Trotter, and independently and about
the same time by József Beck. In fact, Szemerédi and Trotter proved a much
stronger conjecture of Erdős which says that the number of incidences be-
tween n points and m lines in the plane cannot exceed O

(
m2/3n2/3+m+n

)
.

A minor modification of Erdős’s construction for the upper bound for f(n)
shows that this bound is best possible (apart from the implied constant).
This conjecture of Erdős, which is now called Szemerédi–Trotter theorem,
has turned out to be a central result in the theory of complexity of line
arrangements. It is not only point-line incidences that are important, but
point-curve incidences as well. The curves here should by defined by fixed
degree polynomials. This type of problems have been considered by Sze-
merédi, Beck, Pach, Székely, Tóth. We have seen above that the “unit
distance” problem of Erdős can be formulated as a question on incidences
between points and unit circles.

Incidence problems are closely related to the complexity of geometric
objects. For instance, a set of n lines dissects the plane into cells. The com-
plexity of a cell is the number of lines incident to the cell. In computational
geometry, interest is frequently focused on the complexity of a cell, or the
total complexity of some cells, or the sum of the complexities of all cells.
The smaller this complexity is, the simpler the description of the system.
Miraculously, or maybe not so miraculously, the complexity bounds are of-
ten close to the corresponding incidence bounds. Here is a sample theorem
(due to Clarkson et al. (1990)):
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Theorem. Given a system of n lines in the plane, and some m distinct
cells they determine, the total number of edges bounding one of these m
cells is at most c

(
m2/3n2/3 + n

)
.

This estimate is best possible. This is shown, again, by a small modifi-
cation of Erdős’s

√
m×√m grid construction.

This is perhaps the point where the problem of halving lines should be
mentioned. Given a set X ⊂ R2 of n points in general position (with n
even), how many pairs x, y ∈ X determine a halving line? That is, a line
that has (n− 2)/2 points of X on both sides. Denote this number by h(X)
and define h(n) = minh(X). What’s the value of h(n)?

This innocent looking question is still unsolved. László Lovász proved in
1972, that the number of halving lines is at most (2n)3/2, the lower bound
cn log n is due to Erdős et al. (Proc. Internat. Symp., Fort Collins, Colo.
(1973), 139–149, North-Holland). The best bounds, currently known are
O

(
n4/3

)
(upper bound, by Tamal Dey) and Ω(ne

√
log n ) (lower bound, by

Géza Tóth). The dual to the halving lines problem is that of the com-
plexity of the mid-level of an arrangement of n lines. This turned out to
be important in computational geometry. Higher dimensional variants and
analogous questions have been intensively investigated by the Hungarian
school of discrete geometry, namely by Bárány, Füredi, Lovász, Pach, Sze-
merédi, Tardos, Tóth.

The following theorem, due to Erdős and Péter Komjáth (Discrete
Comp. Geom., 5 (199)), 325–331), is just a sample of similar results from
an interesting mixture of discrete geometry, combinatorics, and set theory.

Theorem. The continuum hypothesis is equivalent to the existence of a
colouring of the plane, with countably many colours, with no monochro-
matic right angled triangles.

14. Miscellaneous results in combinatorial geometry

We have mentioned Tibor Gallai’s result on ordinary lines. Gallai mainly
worked in combinatorics, graph theory and was extremely modest, and had
not published much. (But, according to Erdős, he should have published
a theorem that he had proved which later became known as Dilworth’s
theorem.) However, a question of Gallai which appeared first in Fejes Tóth’s
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book [41], page 97, motivated by combinatorial analogues, has proved to be
very important and has become the starting point of a whole theory. This
question is related to Helly’s theorem: Assume that a system of unit circles
in the plane has the property that any two of them have a point in common.
Does this condition imply the existence of a set F ⊂ R2 of at most k points
such that F intersects every circle in the family. (The answer is yes: Danzer
proved that k = 4 always works, and cannot be improved, earlier Ungár and
Szekeres showed k ≤ 7, and L. Sztachó proved k ≤ 5.)

József Molnár was mainly working in the theory of packings and cover-
ings. He has an interesting Helly-type result as well. The question is the
incidence structure of a finite family of convex sets in Rn, which is only
solved for n = 1. Molnár proves (Matematikai Lapok, 8 (1957), 108–117)
the following generalization of Helly’s topological theorem.

Theorem. Let C be a finite family of connected compact sets in R2, |C| ≥ 3.
Assume any two of the sets have connected intersection, and any three have
nonempty intersection. Then there is a point common to all sets in C.

Danzer and Grünbaum proved that if every angle spanned by three
points of a set X ⊂ Rd is at most π/2, then X has at most 2d elements.
(The cube shows that this bound is sharp.) They conjectured that, for
n ≥ 3, the size of X is at most 2n − 1 if all angles spanned by three
points of X are strictly smaller than π/2. This conjecture turned out
to be absolutely wrong: Erdős and Füredi (Combinatorial Mathematics,
North Holland Math. Studies 75 (1983), 275–283) constructed a set, X,
of n = 1.15d points in Rd such that all angles spanned are acute. The
construction is a random subset of the vertices of the unit cube, with a few
unsuitable vertices deleted. A similar construction (in the same paper) gives
a set X of size (1 + δ)d with all distances within X are almost all equal:
any two of them are at distance (1 + O(

√
δ )).

Ákos Császár has been working mainly in measure theory and topology.
In 1949 he constructed a “polyhedron without diagonals”, that is, a 3-
dimensional polyhedron P with triangular faces and straight edges such
that each pair of vertices is connected by an edge. P has seven vertices
and is homeomorphic to the torus (see Császár, Acta Sci. Math. Szeged,
13 (1949), 140–142). This beautiful construction has become known as
Császár’s torus in the literature.

In (Acta Sci. Math. Szeged, 11 (1948), 229–233) István Fáry proves that
every every planar graph can be drawn in the plane so that its edges are non-
crossing straight line segments. (Actually, this follows from a remarkable
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theorem of Koebe from 1936, but the connection was not known at the
time.) Erdős considered the problem of straight line planar representation
of graphs with few crossing edges. For instance, Alon and Erdős show
(Discrete Comp. Geom., 4, (1989), 287–290) that any straight line planar
drawing of a graph with n vertices and 6n− 5 edges contains three pairwise
disjoint edges. This type of problems about geometric graphs was initiated
by Erdős and Perles. By now, due to the work of János Pach and his
students, the theory of geometric graphs is an exciting new field on the
boundary of geometry and graph theory, rich with beautiful results and
intriguing questions.

In connection with Sylvester’s Orchard problem (Educational Times,
59 1893) Ilona Palásti, together with Füredi (Proc. AMS., 92 (1984), 561–
566) constructs a set of n lines, An, such that the number of triangles
determined by the cell decomposition defined by An is 1

3n(n − 3). An is
a simple arrangement (no three lines concur), and it is known that the
number of triangles determined by a simple arrangement of n lines is at
most 1

3n2 + O(n). So An is an asymptotically optimal arrangement.

15. Finite geometries

The outstanding Hungarian number theorist and algebraist, László Rédei,
had made several interesting excursions to geometry. The first is closer
to algebra than to geometry and is, in fact, about polynomials and finite
geometries. Let p be a prime and U a subset of p elements of the affine
plane over GF (p). What Rédei (together with Megyesi) proves in [149] is
that U determines at least (p + 3)/2 directions unless it is a line. Further
research in this direction is due to Blokhuis, Szőnyi, Lovász, and Schrijver.

We mention in passing that the analogous question (due to Erdős) for
the Euclidean plane was solved by Péter Ungár (J. Comb. Theory Ser. A., 20
(1967)). His result says that 2n non-collinear points in the plane determine
at least 2n distinct directions. The proof uses allowable sequences, or order
types, if you like.

Rédei gave a new proof (J. London Math. Soc., 34 (1959), 205–207) of a
result of Delone stating that, given a 2-dimensional lattice L, there always
exists a lattice parallelogram P , such that L ∩ P consists of the vertices of
P and these four vertices lie in four different quadrants of the plane. (The
origin need not belong to L.) The “book-proof” of this theorem was found
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by János Surányi (Acta Sci. Math. Szeged, 22 (1961), 85–90), together with
several applications.

János Surányi has been working mainly in number theory, and in geom-
etry of numbers, in particular. He gave beautiful combinatorial geometric
proofs of Wilson’s theorem and Fermat’s little theorem (Matematikai Lapok,
23 (1972), 25–29; joint work with K. Härtig).

We have encountered the name of Endre Makai Sr., in connection with
the Erdős–Szekeres theorem. In (Mat. Fiz. Lapok, 50 (1943), 47–50) he
gave an elementary proof of the fact that an empty lattice triangle has area
1/2.

Ferenc Kárteszi’s field of interest was projective and later finite geome-
tries. He ran a popular seminar on this subject. He and his disciples
(G. Korchmáros, E. Boros, G. Kiss, M. H. Nguyen, T. Szőnyi and oth-
ers) extended the notion of affine regular n-gon to finite geometries, see for
instance, G. Kiss (Pure Math. Appl. Ser. A, 2 (1991), 59–66). An interest-
ing result of Kárteszi (Publ. Math. Debrecen, 4 (1955), 16–27) says that,
given n points in the plane, no three on a line, no point can be contained
in more than n3/24 of the triangles, spanned by the points.

16. Stochastic geometry

Crofton defined the mass of a set of lines in R2 as
∫

dpdφ where p and φ
are the polar coordinates of the projection of the origin onto the line. Pólya
was an analyst whose interests were very broad. For instance, he shows in
(J. Leipz. Ber., 69 (1917), 457–458) that, if a mass distribution on lines is
positive, additive, and independent of the position, then it is, apart from
a constant factor, necessarily the one defined by Crofton. This fact has
obvious implication on how to define a natural probability distribution on
a (compact) subset of lines in the plane.

Alfréd Rényi (1920–1971) was a probabilist with broad interests in math-
ematics. He was a very influential mathematician and an able organizer. He
is the founding father, and first director, of the Mathematical Institute of
the Hungarian Academy of Sciences which now carries his name. He is the
author of severals short popular books on mathematics, including Dialogues
on Mathematics that has been translated into seven languages.

He wrote two papers on stochastic geometry: the motivation came from
the so-called four-point problem of J. J. Sylvester (1863) who asked the
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probability that four points randomly chosen on the plane form the vertices
of a convex quadrilateral. Rényi, together with Sulanke (Z. Wahrschein-
lichkeitstheorie 2 (1963), 75–84, and 3 (1964), 138–147) modifies the ques-
tion: drop n uniform, random, independent points x1, . . . , xn in a convex
body K ⊂ R2, let Kn be their convex hull. What’s the expectation of the
number of vertices, area, and perimeter, of Kn? They determine these ex-
pectations for smooth enough convex bodies and for polygons. For instance,
when K is a polygon with k vertices, then the expected number of vertices
of Kn is equal to

2
3
k log n

(
1 + o(1).

When K is smooth with curvature κ, then the expected number of vertices
is (

2
3

)2/3

Γ
(

5
3

) ∫

bdK
κ1/3n1/3

(
1 + o(1)

)
.

These two papers initiated a new direction that have resulted in hundreds
of papers on the study of the so-called random polytopes.

The second paper contains the following interesting, and purely geomet-
ric, result: Let P be a convex polygon with vertices v1, . . . , vk. Write 4i

for the triangle with vertices vi−1, vi, vi+1. Then the product

k∏

1

Area4i

AreaP

is the largest when P is an affinely regular k-gon. Actually, László Fejes
Tóth theorem from Section 8 (or rather its proof, see L. Fejes Tóth (Matem-
atikai Lapok, 29 (1977/81), 33–38)) gives the stronger inequality that

k∑

1

(
Area4i

AreaP

)1/3

is the largest when P is an affinely regular k-gon.

17. Miscellaneous results in convex geometry

Gyula Pál was working mainly in convex geometry. He was born in Hungary
and later moved to Denmark. In an often cited paper J. Pál (Kgl. Danske
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Videnskab. Selskab Med. 3 (1920), 1–35) he proves two interesting results.
The first is that for every compact set S ⊂ R2 there is a convex set, K ⊂ R2,
of constant width with S ⊂ K and having the same diameter as S. The
other result is about universal covers: every set S ⊂ R2 of diameter at
most one is contained in a regular hexagon of width 1. This shows that
the regular hexagon of width 1 is a universal cover for sets of diameter
one. (This universal cover theorem can be used to show the validity of the
Borsuk conjecture in the plane.) In the same paper, Pál constructs another
universal cover with slightly smaller area than the hexagon.

The following nice result on universal covers is due to Károly Bezdek
(Amer. Math. Monthly, 96 (1989), 789–806, joint work with R. Connelly).
Let C be the class of closed planar curves of length one; a set K ⊂ R2

is universal translation cover for C, if every curve in C is contained in a
translated copy of K. Now the cited result says that every convex body
of constant width 1

2 is a universal translation cover for C. Moreover, every
universal translation cover for C which is convex and has minimal perimeter
is of constant width 1

2 .
We mention here that Jenő Egerváry (1891–1958), who mainly worked

in algebra and matrix theory, proved an isoperimetric result on curves in R3

(Publ. Math. Debrecen, 1 (1949), 65–70): he finds, among such curves of
length one that have at most three coplanar points, the one whose convex
hull has minimal volume.

In connection with geometric constructions, we encountered the name
of Gyula Szőkefalvi-Nagy (1982–1959). He worked in various fields of math-
ematics. He considered the minimal ring containing a convex curve in the
plane in (Acta Sci. Math. Szeged, 10 (1943), 174–184). In another paper
(Acta Math. Hung., 5 (1954), 165–167) he proves that, given finitely many
planes (not all parallel with a line) in 3-space, the set of points with sum
of distances to the planes equal to d > d0 form the boundary of a convex
polytope. Here d0 > 0 is a constant that depends only on the set of given
planes.

Béla Szőkefalvi-Nagy (1914–1998) was an analyst whose research field
was Hilbert spaces and operators on Hilbert spaces. He liked geometry
and had written about 6 papers in geometry. (One of them is mentioned
below, together with his coauthor Rédei.) In a paper (Bull. Soc. Math.
France, 69 (1941), 3–4) he constructs, in dimension 4 and higher, convex
polytopes, different from the simplex, that have no diagonals. This is an
early example of the so-called neighbourly polytopes. Szőkefalvi-Nagy’s
most famous result in convex geometry states that the Helly number of axis
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parallel boxes (in Rd) is 2. That is, if in a family of axis parallel boxes in
Rd, every two boxes have a point in common, then there is a point common
to every box in the family. See Szőkefalvi-Nagy (Acta Sci. Math. Szeged,
14 (1954), 169–177). This paper turned out to be very influential, and
the Helly number of various families of convex sets has been thoroughly
investigated, for instance in the work of V. Boltjanski and János Kincses.

László Rédei and Béla Szőkefalvi-Nagy proved an interesting result in
convex geometry. It is a Heron-type formula which expresses the product of
the areas of two convex polygons as a polynomial of the distances between
the vertices of the two polygons. For details see Rédei, Szőkefalvi-Nagy
(Publ. Math. Debrecen, 1 (1949), 42–50).

Another result, again from convex geometry, of Rédei is joint with István
Fáry and is about the maximal volume of a centrally symmetric convex set
contained in a fixed convex body K ⊂ Rd (see Fáry, Rédei, Math. Ann.,
122 (1950), 205–220). If the centrepoint is x ∈ K, then this maximal body
is exactly K ∩ (2x − K). Fáry and Rédei show that the level sets of the
function x → Vol

(
K ∩ (2x − K)

)
are convex, the function has a unique

maximum, and compute it when K is the d-dimensional simplex.

György Hajós (1912–1972) was a very influential person in Hungarian
mathematical life. He is the author of the textbook “Introduction to Geom-
etry” that was used at Eötvös University for teaching geometry to several
generations of mathematicians and high-school teachers of mathematics.
On his famous Monday evening seminar one could learn clarity of ideas,
precision in proofs, and rigour in presentation. He published surprisingly
few papers, but there is one among them that made Hajós world-famous.
It contains the solution of a long-standing conjecture of Minkowski (Hajós,
Math. Z., 47 (1941), 427–467). The conjecture which is now Hajós’s the-
orem states that in every lattice tiling of Rd by congruent d-dimensional
cubes, there always exists a “stack” of cubes in which each two adjacent
cubes meet along a full facet. The theorem has several equivalent forms
and Hajós’s proof is algebraic.

Hajós and Heppes construct a three-dimensional (non-convex) polyhe-
dron P whose supporting planes intersect exactly at the vertices of the
polyhedron, (see Hajós, Heppes, Acta Math. Hung., 21 (1970), 101–103).
Here a supporting plane is a plane that contains at least one point of P and
P is contained in the one of the halfspaces bounded by the plane.

István Vincze was a statistician who was interested in convex geometry.
In 1939, motivated by a sharpening of the planar isoperimetric inequality
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due to Bonnesen and Fenchel, he considered the following question. Given
a convex body K ⊂ R2, and a point x ∈ K, let R(x) denote the radius
of the smallest disk centered at x which contains K. Similarly, let r(x)
denote the radius of the largest disk, centered at x, which is contained in
K. The function x → R(x) − r(x) attains its minimal value at a unique
point x0 ∈ K, and the circular ring about x0 with radii R(x0) and r(x0) is
called the minimal ring containing the boundary of K. Vincze (Acta Sci.
Math. Szeged, 11 (1947), 133–138) proved that

min
{

R(x) : x ∈ K
} ≥

√
3

2
R(x0), and max

{
r(x) : x ∈ K

}
< 2r(x0).

Both inequalities are best possible.
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