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Topology

MÁTYÁS BOGNÁR and ÁKOS CSÁSZÁR

Topology emerged as a separate branch of mathematics at the end of the
nineteenth and the beginning of the twentieth century as a result of efforts
to deal with convergence problems, to lay the foundations of real analysis
and functional analysis, and to understand the geometric aspects of complex
analysis. The main contributions were made in Western Europe, especially
by Bernhard Riemann, Georg Cantor, Jules Henri Poincaré and Felix Haus-
dorff.

Hungarian research in topology started with nine articles published by
Frigyes Riesz between 1904 and 1908 (Qeuvres Complètes, pp. 27–161). The
first of these papers considers the Schoenflies theorem (the converse of the
Jordan theorem on simple closed curves). In 1905 he published a paper on
Borel’s covering theorem for line segments in which he showed that Borel’s
assumption of countability of the covering can be omitted. Also in 1905,
he published a paper on a theorem of L. Zoretti and a paper in which he
attempted to give a description of Rn using a collection of n relations of
order.

F. Riesz published two papers in Hungarian in 1906 and 1907, then
their translation in German (Die Genesis des Raumbegriffes) also in 1907,
in which he made an attempt to define something similar to the later concept
(due to Hausdorff) of a topological space. Riesz’s concept is based on the
notion of an accumulation point. It appeared approximately at the same
time as the investigations of Maurice Fréchet. A short description of the
ideas of Riesz was contained in his talk at the International Congress of
Mathematicians, held in Rome in 1908 (Stetigkeitsbegriff und abstrakte
Mengenlehre).

Also in this talk he introduced a new structure, the so called “Verket-
tungstypus” (chaining type). The starting point is the observation that not
every property of continuity can be described with the help of accumulation
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points. Such properties are for example the Cantor connectedness or the
property of a planar domain to be bounded by a simple closed curve.

For that reason Riesz introduced this new structure based on the notion
that any two subsets of the underlying set of the structure are either near
to or far from each other (Are they “verkettet” or not?). Also he began to
develop a theory of these structures.

The ideas of Riesz with respect to the “Verkettungstypus” were almost
totally forgotten. As far as we are aware, before 1950 the only reference to
this structure can be found in a paper of Tibor Radó and Paul Reichelderfer
{24} where they write:

“The earliest suggestion of this kind of axiomatic treatment seems to be
due to F. Riesz, who proposed to use (essentially) the concept of a pair of
not mutually separated sets as a primitive concept (Stetigkeitsbegriff und
abstrakte Mengenlehre)” (Oeuvres Complètes I, pp. 155–161).

The whole paper on this talk had little impact on the further develop-
ment of topology before 1950.

It should be mentioned that a few decades later in 1951, independently
of Riesz, V. A. Efremovich introduced the so called proximity spaces, which
are in some respect similar to the “Verkettungstypus” of Riesz.

After these early papers Riesz abandoned publishing papers on topology
except for a proof of the Jordan curve theorem (1938 in Hungarian and 1939
in French). He wrote exclusively on analysis. But his inspirations, letters
and also some oral communications on topology were presented in the works
of some other mathematicians.

First of all we should mention the only paper of Károly Kaluzsay which
was published in Hungarian in 1915. Kaluzsay proved a three dimensional
analogue of Schoenflies’s theorem. This paper was quoted by Raymond
Louis Wilder {28}. Here Wilder writes:

“I have recently come across an early attempt at the converse for the
case of an H2 in E3 in a paper by K. Kaluzsay, A felületre vonatkozó
Jordan tétel megford́ıtása, Matematikai és Physikai Lapok, vol. 24 (1915),
pp. 101–141. Upon obtaining a translation of Kaluzsay’s results, I have
found the interesting fact, that these conditions (No. 5 apparently gives the
uniform connectedness im kleinen of the complementary domains) closely
approximate those which I gave in the Transaction paper just cited, except
that instead of the condition on the Betti number, which I used, he assumed
that (condition 3) any closed polygon in a complementary domain can be
continuously deformed into a point, thus yielding only a special case.”
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According to Kaluzsay the inspiration of the problem treated in this
paper came from F. Riesz.

Also to be mentioned is Dénes Kőnig’s proof of the Helly–Radon the-
orem. D. Kőnig considers first a finite number of bounded closed convex
sets and for passing from the finite case to the infinite one, he refers to an
oral communication of a proof by F. Riesz. Thus in fact Riesz indirectly
published a topological proof in 1921.

On the other hand, Béla Kerékjártó refers in his book [87] to a letter of
Riesz’s which contains a simple proof of Tietze’s extension theorem. This
proof of Riesz’s figures in the book of Kerékjártó.

Beside Riesz there were a few other Hungarian mathematicians, widely
known researchers on other chapters of mathematics than topology, also
publishing in topology in this period.

György Pólya was a well-known analyst. However, in 1913 he published
a construction of a Peano curve such that each point belongs at most to
three values of the parameter (the existence of such a curve was claimed
earlier).

Dénes Kőnig is known for his work in graph theory. But in 1918 he
published a small book (in Hungarian) on the elements of analysis situs.
The book contains a proof of the classification of closed and of bounded
surfaces. For its clarity and suggestivity this book was very popular in
Hungary for several years.

Kőnig published between 1911 and 1924 five papers which deal with the
genus of systems of lines, with the combinatorial properties of surfaces and
with one- and two-sidedness of manifolds of dimension higher than 2. Also
he published a paper in 1922 in Acta Szeged, where he gave a generalization
of a theorem of Borel.

It should be mentioned that Kőnig’s investigations in graph theory are
closely related to combinatorial topology as is referred in the introduction
of his book [94].

Tibor Radó mainly worked in analysis, but he wrote an early paper in
which he proved the triangulability of two-dimensional manifolds with a
countable base in {22}:

“Lemma 2. If R is a two-dimensional manifold for which the countabil-
ity axiom holds, then it can be triangulated.” (Translation from German,
p. 111).

Radó’s proof is the first of this fundamental theorem of topology.
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Later in 1936 he wrote two papers in connection with the topological
index of a point under a continuous complex-valued function with respect
to a directed continuous closed curve. In the second paper {23} he proves a
lemma about the topological index with respect to some sequences of closed
continuous curves and shows some corollaries of this lemma.

In a paper written together with J. W. T. Youngs and published in
Acta Szeged in 1940, referring to the works of Moore, Alexandroff and
Kerékjártó, the authors consider upper semicontinuous collections. The
upper semicontinuity is the subject also of a paper co-authored with E. J.
Mickle and published in the Proceedings of the Amer. Math. Soc. in 1950.
The Borel transformations, i.e. the mappings, where the preimages of Borel
sets are Borel sets, play an important role in this paper.

Tibor Radó also published a paper on semicontinuity of functions and
functionals in the Amer. Math. Monthly in 1942.

Chiefly interesting is the paper of T. Radó and P. Reichelderfer “On
cyclic transitivity” mentioned above. The authors suggest the desirability
of a full axiomatic treatment of the theory of the structure of a general space
using the notion of a “connected” set as an undefined concept. They refer
also to section 2.1 of their paper, however this part of the paper was burned
by the Germans. The editors of the Fundamenta Mathematicae announced
on page 14:

“The manuscript of the work of Messrs. T. Radó and P. Reichelder-
fer was burned by the Germans and a large part of the already typeset
pages destroyed. We were left by chance with these few sheets which had
printed. . . . ” (Translation from French.)

We should mention that a condensed version of this paper was published
in Duke Math. Journal but this version ends with section 1.23 and thus there
is no reference to 2.1.

Between 1943 and 1949 T. Radó published three papers on Peano spaces
and after 1950 five papers on algebraic topology: on singular homology, on
chain homotopy and on general cohomology theory. It should be mentioned
that in the monograph of T. Radó and P. Reichelderfeld [145], published in
1955, the subject of almost half of the book is topology, mainly cohomology
theory.

The first paper of T. Radó, where the concept of the Čech cohomology
group with integral coefficients occurs, is a paper co-authored with P. Re-
ichelderfer written in 1949 (see {25}). The authors use this concept for the
definition of the index in Euclidean n-space.
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Two lemmas on metric spaces occur in a paper published in 1958 (E. J.
Mickle and T. Radó {17}). One of them says that if A is a subset of a
separable metric space M and ∅ 6= X is covering of A by proper closed
spheres such that the diameters of these spheres have a finite upper bound,
then there is a sequence Cn = γ(an, rn) of pairwise disjoint members of X
such that A ⊂ ⋃

n
γ(an, 5rn), where γ(an, s) is the closed sphere in M with

centre an and radius s.
Gyula Pál mainly worked in analysis. However he also published some

papers on topology. Three papers concern the construction of Jordan curves
with given projections. In the third one {19}Gy. Pál proves that each locally
connected planar continuum with at least two points is the orthogonal
projection of a closed Jordan curve of the Euclidean 3-space.

Two papers are devoted to plane topology. In the second one {20} he
describes the topic of a projected volume on topology.

Gyula Szőkefalvi Nagy mainly worked in geometry. However among his
150 papers there are also some papers belonging to topology. He published
a paper in Hungarian and then in German {26} proving a theorem of Gauss
on the double points of closed planar curves. The theorem says that under
a successive numeration of the points of self intersection of a closed planar
curve without singularities the serial number of each such point is once an
even and once an odd number. The proof is based on the fact that two
closed planar curves in relative general position have an even number of
common points. Gy. Sz. Nagy’s proof is also quoted in the book of Hans
Rademacher and Otto Toeplitz {21}.

Gy. Sz. Nagy introduced in the paper mentioned above a new topological
symbol connected with the cycles of the curves in question. He showed that
planar curves with at most four double points can be fully characterized
with these symbols.

Three papers of Gy. Sz. Nagy deal with closed curves on the sphere and
on surfaces. In the first one {27} he considered cuts of self intersections of
oriented closed curves on surfaces and proves the equality h+k = n+2−2r
where n is the number of self intersection points of the curve C in question,
r is a nonnegative integer, h is the number of components of the figure
obtained from C after cutting it at each point of self intersection, and k
is the number of components of the figure obtained from C making the
complementary cut at each point of self intersection.

Pál Erdős was one of the most prolific and most travelled mathemati-
cians ever. He worked in number theory and combinatorial analysis, and is
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considered the founder of discrete mathematics. Among his more than 1500
papers, there are also papers belonging to topology.

In his paper written in 1940 he states and proves the astonishing fact
that the Menger–Urysohn dimension of the rational points of Hilbert space
is 1 (Ann. of Math., 41 (1940), 734–736).

One of the papers of Erdős published in 1944 concerns connected and
biconnected sets. Some problems and questions related to these concepts
are included there.

Also in 1945 and 1946 he published two papers on the Hausdorff dimen-
sion of some sets in Euclidean spaces.

In a paper co-authored with George Piranian (Michigan Math. J., 5
(1958), 139–148) the authors have shown how the convergence field of certain
regular Toeplitz matrices can serve as neighborhoods in the topologization
of a quotient space of bounded sequences.

Erdős investigated Borel sets together with Arthur Stone (Proceedings
of the Amer. Mat. Soc., 25 (1970), 304–306). Erdős and Stone proved that
the linear sum of two Borel subsets of the real line need not be Borel, even
if one of them is compact and the other is a Gδ. However, after publication
the authors have been informed of the earlier work of B. S. Sodnomov who
proved in 1951 a theorem equivalent to the first theorem of Erdős and Stone.

Some papers of Erdős on topology are closely related to set theory.
In a paper co-authored with A. Tarski and published in 1943 the authors

give a set theoretical equivalent of the statement that in every topological
space of power ≤ 2ℵ0 there exists a family of mutually disjoint open sets
with a maximal power.

Two papers co-authored with András Hajnal and published in 1961 con-
sider propositions of the form: Any product of ℵµ discrete λ-compact spaces
is κ-compact, where µ, λ, κ are ordinals and for µ > 0 ℵµ is the least cardi-
nal number larger than all cardinals ℵδ with δ < µ, moreover a topological
space is said to be µ-compact if each open cover has a subcover with cardi-
nality less than ℵµ. Using the generalized continuum hypothesis the authors
show that the topological product of ℵκ 1-compact (i.e. Lindelöf) discrete
spaces is not necessarily κ-compact for any finite κ.

The subject of a paper of Erdős and Mary Ellen Rudin is the box product
(1973). Erdős proves there that it is consistent with the usual axioms of set
theory that the box product ωk × (ω0 + 1)× (ω0 + 1)× . . . is ether normal
or not normal for all integers k > 1, where ωm is the initial ordinal number
with the cardinality ℵm for all nonnegative integers m.
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Finally, one of the main results of an abstract and of a paper co-
authorized with F. S. Cater and Fred Galvin (1976 and 1978) is that if
κ and λ are infinite cardinals with λ ≤ κ+, where κ+ is the least cardinal
larger than κ, and X is a topological space with density d(X) ≥ 2, where the
density d(Y ) of a topological space Y is the minimum cardinality of a dense
subset of Y , then the cofinality cfd (Xκ)(λ) ≥ cf λ, where (Xκ)(λ) is the
product of κ copies of X with λ-box topology, i.e. the basic open sets of this
product are of the form

∏
ξ∈κ

Uξ, where Uξ is open in X and the cardinality

of the set {ξ; Uξ 6= X} is less than λ, moreover for any infinite cardinal
number µ the cofinality cf µ of µ is the least cardinal α such that µ is the
sum of α cardinals less then µ. In a certain sense this result generalizes the
theorem of Gyula Kőnig that cf 2κ > κ.

György Alexits worked mainly in the theory of orthogonal series. How-
ever between 1932 and 1942 he was primarily interested in topology and
wrote around 15 papers related to it. A part of them is devoted to Menger’s
theory of curves, another to locally connected continua.

One of his results is that each homogeneous rational curve is homeomor-
phic to the circle. This result was published only in Hungarian in {1}. It is
closely related to a theorem of Mazurkiewicz which says that each locally
connected homogeneous plane curve is homeomorphic to the circle.

His last paper on topology concerns spaces which are the union of a
countable set of hereditarily locally connected continua. Among others,
generalizing certain theorems of Gordon Thomas Whyburn, Alexits shows
that a subset of such a space is totally disconnected if and only if it is
zero dimensional, or if and only if each quasicomponent of the subset is a
singleton, see {2}.

Alexits was also interested in defining some concepts of differential geom-
etry (curvature, torsion) in metric and semimetric spaces using topological
methods. One of the papers in this direction was co-authored with Jenő
Egerváry.

∗

The only Hungarian researcher of the first half of the century who
devoted his activity mainly to topology was Béla Kerékjártó who wrote
between 1919 and 1944 more than 70 scientific papers. Furthermore he is
the author of the monograph [87]. He also planned to write the second
volume of this books, but it has never been done.
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The book itself is divided into two parts. The first deals with the
topology of the plane, while the subject of the second part is the topology of
surfaces. In the introductory chapter, which gives a view of the development
of topology, also the notion of an n-manifold is formulated as follows:

An n-manifold is a connected Hausdorff space having a countable basis
such that each member of this basis is homeomorphic to the interior of an
n-ball.

Nowadays the existence of a countable basis is usually not assumed,
but otherwise in general the formulation of Kerékjártó or some formulation
equivalent to it is used for the notion of an n-manifold.

The main subject of the first part of the monograph are Jordan’s theorem
and numerous assertions closely related to this theorem. Here one can
find the so called Kerékjártó theorem, which says that if J1, . . . , Jk are
simple closed curves in the plane such that each pair of them has at least
two common points, then the boundary of each complementary domain of
J1 ∪ · · · ∪ Jk is a simple close curve (p. 87). This theorem is quoted in the
book of M. H. A. Newman {18}.

The classification theorem of open surfaces, i.e. of the non-compact 2-
manifolds, can be found in the second part. Kerékjártó’s result in this re-
lation was published earlier in the Jahresbericht der Deutschen Matematis-
chen Vereinigung in 1922 (Bd. 31) with the heading: Haupsatz der Flächen-
topologie bei unendlich hohen Zusammenhang.

There is a fundamental difference between the open and the closed
surfaces. In fact there is only a countable set of pairwise non-homeomorphic
closed (i.e. compact) surfaces and they can be characterized in both the
orientable and non-orientable cases with only one integer, e.g. with their
genus. On the other hand there is a set of pairwise non-homeomorphic
open surfaces of the cardinality of the continuum. This is true also in the
case where we consider only simple surfaces, i.e. surfaces which are divided
into two parts by each of their simple closed curves. One of the theorems
of Kerékjártó says that each simple open surface is homomorphic to a
domain of the plane, where the complementary set of the domain is totally
disconnected. Moreover two open surfaces are homeomorphic if and only if
these complementary sets are homeomorphic. But in the plane there can
be found pairwise non-homeomorphic totally disconnected closed subsets of
the cardinality of the continuum and the complement of each such subset is
a domain in the plane, i.e. a simple open surface.
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Kerékjártó formulated his scientific programme in his Privatdocent lec-
ture held in Szeged on 15. December 1921 with the title “Az anaĺızis és a
geometria topológiai alapjairól” (On the topological fundaments of analysis
and geometry). Here the intention formulated by Brouwer in his Privatdo-
cent lecture in 1910 is emphasized, namely that complex analysis should be
built with instruments of topology without metric elements such as length
and area.

The principal direction of Kerékjártó’s investigation is attached to this
intention. He mainly investigates the properties of the topological transfor-
mations and groups of transformations of surfaces with special emphasis on
continuous transformation groups.

One of the important periods of his investigations is the first half of
the thirties. At that time he introduced the notion of regular map. He
calls a bijective map τ of the plane onto itself regular at a point P if to
each positive ε there is a positive δ such that if the distance of P and Q
is less than δ then for each integer n the distance of τn(P ) and τn(Q) is
less than ε, where the distance is obtained from the spherical distance by
a stereographic projection. The map τ itself is said to be regular if it is
regular at each point P of the plane.

The notion of regularity can be defined in the same way in arbitrary
metric spaces, and it can be transported to topological spaces as it is shown
in a paper of Kerékjártó.

Now a fundamental statement of Kerékjártó says that the orientation
preserving regular transformations without fixed points of the plane are
equivalent to translations.

Several papers of Kerékjártó deal with regular topological transforma-
tions of various surfaces. One of them states that if p > 1 then each regular
map of an orientable closed surface with genus p onto itself is periodic.

It should be mentioned that a somewhat strengthened version of the
denial of Kerékjártó’s regularity, the so called expensiveness, had a funda-
mental role in several branches of dynamical systems.

In the early forties Kerékjártó also investigates compact topological
transformation groups. For example he examines the question of which
closed surfaces with or without boundary have infinite compact transfor-
mation groups. He shows that there are only seven surfaces of this kind.
These are: the sphere, the closed disc, the annulus, the torus, the projective
plane, the Moebius strip and the Klein bottle.



18 M. Bognár and Á. Császár

Kerékjártó was the author also of the monographs “A geometria alap-
jairól” (Foundation of geometry) I. and II. (see [88]). The first volume was
printed in 1934 and the second in 1944. The topological view appears in
both volumes. For example in the introductory chapter of the second vol-
ume Kerékjártó mentions that each 2-times transitive continuous group of
the topological transformations of the plane is equivalent to the group of
similarity transformations of the Euclidean plane, where a group of topo-
logical transformations of a topological space is said to be n-times transitive
if for any two n-tuples (A1, . . . , An) and (A′1, . . . , A

′
n) of pairwise distinct

points of the space there is precisely one element of the group which takes
for i = 1, . . . , n the point Ai into A′i. Also the topological concepts play an
important role at the end of the second volume at the common characteri-
zation of the real and complex projective geometry.

We have to mention the simple proofs of Kerékjártó to some well known
topological theorems of fundamental importance, e.g. the proof of the theo-
rem of Schoenflies for the invariance of domains in the plane. The theorem
says that if M and N are homeomorphic subsets of the plane then either
both of them are open, or neither of them is open. Kerékjártó published
his proof first in Hungarian, but the same proof appears in his monograph
“Vorlesungen über Topologie”. The proof is based on the fact that if Q is
a square, and we consider a topological map of Q into the plane, then the
image of the midsegments of Q cannot lie in the external residual domain
of the image of the boundary of Q.

The proof of Kerékjártó, as well as the original proof of Schoenflies, re-
quires an extension of the Jordan curve theorem, formulated by Schoenflies,
however Kerékjártó’s proof is quite different from that of Schoenflies.

To the Jordan curve theorem itself Kerékjártó gave two totally different
proofs. One of them appeared also in his book “Vorlesungen über Topolo-
gie”. More interesting is the second one which was published in 1930 in
the Acta Szeged. The fundamental idea of this second proof is one of the
simplest among the proofs of the theorem.

In the introductory chapter of the “Vorlesungen” Kerékjártó describes
also the content of the second volume planned. However his early death
prevented the implementing of his plans.

∗
At present Hungarian research in topology is mainly inspired by the

concept of syntopogeneous spaces due to Ákos Császár. They are a common
generalization of topological spaces, uniform spaces introduced by André
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Weil, and proximity spaces introduced by V. A. Efremovich. The first
monograph about syntopogeneous spaces appeared in 1960 (Ákos Császár,
[23]).

The productivity of two members of the present Hungarian school of
topology is already closed by their early deaths.

János Czipszer as a publisher’s reader of the first monograph of Ákos
Császár gave the author valuable aid in preparing this edition. Also a
basic theorem of this volume is due to J. Czipszer (Theorem 12.35, 12.37
in the second English edition). The second edition of the monograph (Ákos
Császár, [24]) contains several results of Czipszer. The author writes in the
preface of this edition:

“I have to express my warmest thanks to my collaborator J. Czipszer
who, after having lent me valuable aid in the preparing the first edition,
kindly communicated a series of his unpublished results which constitute
an essential supplement to the theory of syntopogeneous structures. The
material of Chapters 17, 18 and 19 is almost entirely due to him, and
his ideas greatly contributed also to the subjects dealt with in the other
chapters.”

Among the 12 published papers of János Czipszer there are three dealing
with topological questions. Two of them are co-authored with Ákos Császár.
In the first paper {4} the authors consider curves without ramification
points. Among others, they generalize one of Menger’s theorem as follows: If
X is a nondegenerate, connected, compact Hausdorff space which contains
no point of infinite order and at most a finite number of points of order
greater than 2, then X is the union of a finite collection of generalized arcs
no one of which contains a non-end point of another.

In the second paper {5} the authors consider generalizations of the
Stone–Weierstrass theorem. One of the main results says that to a family
of bounded real-valued functions γ defined on a set E such that γ coincides
with the set of all uniformly continuous (with respect to U) real-valued
bounded functions if and only if γ is nonempty, it is closed with respect to
uniform convergence and it satisfies the following conditions:

(a) f ∈ γ =⇒ f + α ∈ γ for each α ∈ R,

(b) f ∈ γ =⇒ αf ∈ γ for each α ≥ 0,

(c) f, g ∈ γ =⇒ min (f, g) ∈ γ and max (f, g) ∈ γ.

The third paper of J. Czipszer {3} is connected with the following
problem proposed by G. Alexits:
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Given a convergent sequence of real-valued functions defined over a
complete separable metric space R, does there exist a dense subset of R
on which the sequence converges locally uniformly?

A demonstration is given and produces an affirmative answer to the
above question. Moreover it is shown that if the continuum hypothesis is
assumed, then there exists a convergent sequence of real-valued functions
defined over the real line R which does not converge locally uniformly on
any subset of R having the power of the continuum.

Jenő Deák first published a few papers on analysis, then during the
period from 1975 to his early death more than fifty papers on general
topology, mostly devoted to the study of various topological structures.

His first papers on topology address the theory of directional structures,
initiated in 1964 by Ervin Deák; the purpose of this theory was a topological
characterization of the topological spaces homeomorphic to a subspace of
the Euclidean space Rn (n ∈ N). In order to reach this aim, let us say that a
pseudo-direction R in a topological space X is a set of ordered pairs (G,F ),
where G is open and F is closed in X, and some natural conditions are
satisfied. A pseudo-directional structure in X is a collection R of pseudo-
directions; R is compatible with X if the sets G and X \ F such that
(G,F ) ∈ R ∈ R constitute a subbase for the topology of X.

Now the main result of J. Deák in this theory is a stronger version of
a theorem of E. Deák and says that a separable metrizable space X can
be topologically embedded into Rn if and only if X admits a compatible
pseudo-directional structure R satisfying |R| ≤ n, see {8}.

E. Deák has introduced a concept of dimension equal to the minimal
cardinality of a compatible directional structure. J. Deák has presented, in
a series of papers published between 1976 and 1980, a thorough discussion
of this kind of dimension and of other similar concepts, partly introduced
by him, gave a series of counter-examples and, in particular, he proved in
{7} a generalization of a theorem of J. de Groot in dimension theory.

In {9} J. Deák develops further the investigations in which completely
regular spaces are characterized by the existence of subbases possessing
some special property. Continuing the studies of Péter Hamburger in this
subject, he has presented several increasingly stronger results.

In {10} J. Deák gives an analysis of the ideas of Riesz and, in particular,
he points out that the concept of a proximity, introduced in 1951 by V. A.
Efremovich, can be brought in fact into a near connection with the chainings
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(Verkettung) of Riesz, but the relation of the two concepts needs a careful
discussion.

Extraordinarily intensive was the research work of J. Deák in the field
of the theory of quasi-uniform spaces and bitopological spaces. As it is
well-known, quasi-uniformities constitute a non-symmetric version of uni-
formities; i.e. a quasi-uniformity on a set X is a filter U on the product set
X × X with the property that (x, x) ∈ U for x ∈ X, U ∈ U and, for a
given U ∈ U , there is a V ∈ U such that V 2 = V ◦ V ⊂ U . A bitopol-
ogy on a set X is simply an ordered pair (T1, T2) of topologies on X. The
two kinds of structures are closely related because each quasi-uniformity U
on X induces a topology U tp for which the neighbourhoods of x ∈ X are
the sets U(x) with U ∈ U so that the pair (U−tp,U tp) is a bitopology on
X (of course, U−tp denotes the topology induced by the quasi-uniformity
U−1 = {U−1 : U ∈ U}).

As to bitopological spaces, a series of three papers (see {12}) presents (as
a kind of a little monograph) a thorough discussion of separation axioms
for bitopological spaces, then develops further results of R. E. Smithson
on the relation of completely regular bitopological spaces and multifunc-
tions, finally applies (pseudo-)directional structures to the characterization
of completely regular bitopological spaces and their compactifications.

The problems belonging to the theory of extensions stand in the centre of
the investigations of J. Deák on quasi-uniformities and bitopologies. In 1990
and 1991, he published several papers on such subjects; the most important
is perhaps {11}. In these two papers the fundamental question is the
following: we are given a quasi-uniform space (X,U) inducing a bitopology
(U−tp,U tp), further a set Y ⊃ X and, on Y , a bitopology (T−1, T1) such that
T−1|X = U−tp and T1|X = U tp; is there a quasi-uniformity V on Y such
that V|(X ×X) = U (i.e. V is an extension of U) and T−1 = V−tp, T1 = Vtp

(i.e. V is compatible with the given bitopology)?

J. Deák presents a careful discussion of possible questions in connection
with this problem: necessary or sufficient conditions for the existence of a
compatible extension in general or satisfying further (e.g. cardinality) con-
ditions, constructions for obtaining such extensions, etc. He also discusses
a quite similar problem where, instead of quasi-uniformities, we consider
syntopogenous structures in the sense of Császár.

A delicate question belonging to the same group of problems is the search
for complete extensions, because the concept of completeness of a quasi-
uniform space may be defined, and was in fact defined in the literature,
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in several more or less natural ways, and it is difficult to choose which
is the most natural of them; probably the answer depends on the point
of view the author wishes to emphasize. In any case, J. Deák’s methods
are useful for simplifying the situation in this rather complicated field of
research (see {13}).

J. Deák published in 1993 a grandiose survey paper {14}. The paper
gives a collection of results on extensions both of uniformities and of quasi-
uniformities, in the latter case involving topologies or bitopologies, and
contains not only a survey of the results in the literature but also a long list
of new results and of open problems.

Still the questions related to extension problems are the subject of
J. Deák’s paper {15}; a quasi-metric on X is a function d : X × X →
[0, +∞) satisfying d(x, y) = 0 ⇔ x = y and d(x, z) ≤ d(x, y) + d(y, z).
A quasi-metric induces a quasi-uniformity U if we set Ud,ε =

{
(x, y) :

d(x, y) < ε
}

for ε > 0 and then the topology U tp. The paper investigates
the problem of the existence of a quasi-metric inducing a given topology on
X and coinciding with a given quasi-metric on a subset of X.

A long series of further papers concerns questions on special properties
of quasi-uniformities: weak symmetry properties, uniform local symmetry,
doubly uniformly strict extensions, co-regularity, Cauchy-type properties,
properties preserved by extensions, co-stability (the latter with co-author
S. Romaguera). Through all this research work, J. Deák has deserved the
rank of a leading researcher in the theory of quasi-uniform spaces.

While quasi-uniformities and topologies are particular cases of the gen-
eral concept of a syntopogenous structure in the sense of Császár, other
types of structures were considered in a further series of papers; these are
particular cases of the general concept of a merotopy in the sense of Miroslav
Katětov introduced in 1965. In an equivalent form due to Horst Herrlich,
a merotopy on a set X is a set M of covers of X with the property that a
cover c belongs to M as soon as one of its refinements belongs to M and,
if c1 and c2 belong to M then some common refinement of them also be-
longs to M; c′ is a refinement of c if C ′ ∈ c′ implies the existence of C ∈ c

satisfying C ′ ⊂ C.

Special cases of merotopies are contiguities introduced by V. M. Ivanova
and A. A. Ivanov in 1959 (sets of finite covers), Čech proximities introduced
in the monograph of Eduard Čech in 1966 (two-element covers); less simple
to explain but further special cases are filter merotopies (M. Katětov 1965)
and in particular Cauchy structures (H. Keller 1968), Čech closures (E. Čech
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1966), limitations (H. J. Kowalsky 1954). All these kinds of structures are
connected by the fact that in the series

merotopy → filter merotopy → contiguity → Čech proximity

→ Čech closure → limitation

each kind of structure induces in a natural way a structure belonging to
one of the later types in the series; we say that a richer structure induces
another one. Also if D is a structure belonging to one type of the above list,
given on a set X and A ⊂ X, there is a natural restriction D|A of D to A.

Now a very general problem that first appeared in a series of papers due
to Császár and J. Deák is the following: we are given a structure D on a
set X and subsets Xi of X (i ∈ I, where I is arbitrary, in general infinite,
but possibly I = ∅) together with richer structures Ci given on each Xi. We
look for a structure C of the same type inducing D and such that C|Xi = Ci;
this is the problem of simultaneous extension of the type (C,D).

The series of papers co-authored with Császár (see {6}) contains investi-
gations in this direction. In each case, necessary and/or sufficient conditions
are given for the existence of a simultaneous extension and it is also dis-
cussed whether there is a coarsest or finest simultaneous extension. In later
papers, J. Deák investigates other cases in the same spirit.

J. Deák also wrote a brilliant survey paper on the problem of simulta-
neous extensions (see {16}); his aim was to present the problem for mathe-
maticians in general and not only for specialists in general topology.

References
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24 M. Bognár and Á. Császár
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