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Mathematical Statistics

ENDRE CSÁKI∗

1. Introduction

The word “statistics” originated from the Latin word “status” and according
to Kendall and Stuart (The Advanced Theory of Statistics. Vol. 1. Distri-
bution Theory, Hafner Publishing Co., New York (1958)) “Statistics is the
branch of scientific method which deals with the data obtained by counting
or measuring the properties of populations”. So the main task of Statistics
is to collect data and make conclusions, usually called Statistical Inference.
Thus statistical methods have been used for a long time also in Hungary, e.g.,
in Hungarian Central Statistical Office founded in 1867 and also in other
organizations. The data are usually subject to random fluctuations and so
the theory of statistical inference should be based on rigorous mathematical
concepts treating random phenomena, i.e., on the Theory of Probability.
Mathematical Statistics is the theory of statistical methods based on rig-
orous mathematical concepts of Probability. In this way we can consider
Károly (Charles) Jordan as the founder of the probability and statistics
school in Hungary, who wrote the first book on Mathematical Statistics in
Hungary.

K. Jordan was born in 1871 in Budapest. He started his activity in
mathematics, probability and statistics in particular, around 1910. He wrote
5 books and 83 scientific papers. His book on Mathematical Statistics ap-
peared in 1927 in Hungarian and also in extended form in French (Statistique
Mathématique, Gauthier-Villars (1927)). His books “Calculus of Finite Dif-
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ferences”, appeared in 1939, and “Chapters on Classical Probability The-
ory”, appeared in 1956 in Hungarian, are very important frequently cited
works in probability and in the theory of difference equations. He had a
number of students and a great influence in developing the theory of prob-
ability and statistics in Hungary in the first half of twentieth century.

Another prominent Hungarian probabilist and statistician was Ábrahám
Wald who made significant contributions in these subjects. He was born in
Kolozsvár, Hungary in 1902. In 1938 he went to the United States where he
turned his main interest toward Statistics. Perhaps he is most well-known
as a founder of sequential analysis and also the theory of statistical decision
functions, but his basic results in other areas such as hypothesis testing,
goodness of fit tests, tolerance limits, analysis of variance, nonparametric
statistics, sampling, etc. are also very important.

One of the most distinguished mathematicians of 20th the century, János
(John von) Neumann has also contributed to statistics. We refer to Section 5
for his results which appeared in The Annals of Mathematical Statistics.

Mathematical Statistics in Hungary became a vigourous subject in the
fifties when the Mathematical Institute of the Hungarian Academy of Sci-
ences was founded, featuring also a Department of Mathematical Statistics.
First of all, the works and school in probability and statistics of Alfréd Rényi
should be mentioned. His main works are in Probability Theory and Ap-
plications (see the Probability Theory Section), but he has also important
contributions in Statistics. István Vincze, Károly Sarkadi, Lajos Takács
and their collaborators made also significant contributions. The works of
Béla Gyires in statistics at the Kossuth Lajos University, Debrecen, should
also be mentioned.

2. Early statistics in Hungary

In the first half of the 20th century the outstanding works of K. Jordan
in both theoretical and applied statistics are to be mentioned. His contri-
butions to applied statistics concern a number of subjects such as meteo-
rology, chemistry, population statistics, industry, etc. Even in his applied
works he was very careful to base his investigations on rigorous theoretical
disciplines. Since his works started well before Kolmogorov’s fundamental
works to establish rigorous mathematical probability theory, Jordan himself
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had to work on theoretical foundations of statistics, i.e., he had to develop
a rigorous probability theory needed for the application in statistics. In a
series of papers {23}, {24} etc. he gave a rigorous definition of probabil-
ity and proved some fundamental theorems. This can be considered as a
forerunner of Kolmogorov’s theory. His book {31} is based on the author’s
experience of fifty years of research and thirty years of teaching. It is writ-
ten in his lucid style and reflects his profound knowledge of the history of
probability and his significant contributions to probability theory. He con-
tributed also to other subjects in mathematics such as geometry and, first
of all, to the theory of difference equations which he also needed in his re-
search in probability and statistics. His book [78] contains 109 sections and
gives a detailed account of the theory and application of statistics, equipped
also with a number of illuminating examples. In order to give a flavour of
the content, here is a selection of section titles: Definition of mathematical
probability — Theorem of total probability — Mathematical expectation —
Theorem of Bernoulli — Poisson limit — Theorem of Tchebychef — Theory
of least squares — Elements of calculus of differences — Statistical classifi-
cations — Mean values — Standard deviation — Construction of statistical
functions — Normal distribution — Asymmetric distributions — Approxi-
mation of functions — Method of moments — Method of least squares —
Interpolations — Correlations — Independence — Correlation for nonnor-
mal distribution — Correlation ratio — Theory of sampling — Contingency
tables — Rank correlations.

In his far-reaching statistical investigations K. Jordan had to develop
certain numerical methods such as interpolation, least square methods, etc.
An outline of his contributions in this area is based on nice accounts of
Jordan’s life and works by L. Takács {48} and by B. Gyires {18}.

In {25}, {28} and {29} he formulated and proved the following result:
Let A1, . . . , An arbitrary events and put

Bj =
∑

1≤i1<···<ij≤n

P(Ai1 ∩ · · · ∩Aij ).

Then the probability Pk that exactly k events occur among them is given
by

Pk =
n∑

j=k

(−1)j−k

(
j

k

)
Bj , k = 0, 1, . . . , n.
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In {26} Jordan gave an interpolation formula

f(a + xh) =
n−1∑

m=0

Cm(x)
m+1∑

k=1

BmkIk + R2n,

where

Cm(x) = (−1)m

(
x + m− 1

2m

)

and

Bmk = (−1)k+1

(
2m + 1
k + m

)
2k − 1
2m + 1

.

Ik is obtained by linear interpolation:

Ik =
x + k − 1
2k − 1

f(a + kh) +
k − x

2k − 1
f(a− kh + h).

Moreover, R2n is a remainder for which

|R2n| ≤ h2n

∣∣∣∣
(

n− 1
2

2n

)
D2nf(a + ξh)

∣∣∣∣

with some −n + 1 < ξ < n.

A further contribution of K. Jordan concerns the following least square
problem. Let Y0, Y1, . . . , YN−1 be observations corresponding to x = 0, 1,
. . . , N − 1. Find polynomials fn(x) of degree n such that

Sn =
N−1∑

x=0

(
Yx − fn(x)

)2

is minimum. The solution of this problem given by C. Jordan in {27} is as
follows: Consider the expansion

fn(x) =
n∑

m=0

amUm(x),

where the polynomials Um(x) are orthogonal with respect to x = 0, 1, . . . ,
N − 1, i.e.,

N−1∑

x=0

Ui(x)Uj(x) = 0, i 6= j.
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The Newton expansion of Um(x) has the form

Um(x) = Cm

m∑

i=1

(−1)m+i

(
m + i

m

)(
N − i− 1

m− i

)(
x

i

)
,

where the coefficients Cm can be chosen as

Cm =
[
(m + 1)

(
N

m + 1

)]−1

.

The values of am which minimize Sn are independent of n. The Newton
expansion of fn(x) is given by

fn(x) =
n∑

m=0

m∑

i=0

CmiΘm

(
x

i

)
,

where

Cmi = (−1)m+i(2m + 1)
(

m + i

m

)(
N−i−1

m−i

)
(
N+m

m

)

and

Θm =
N−1∑

x=0

Um(x)Yx.

The mean square deviation is

σ2 =
1
N

N−1∑

x=0

(
Yx − fn(x)

)2 =
1
N

N−1∑

x=0

Y 2
x −Θ2

0 − |C10|Θ2
1 − · · · − |Cn0|Θ2

n.

In {30} he introduced the notion of surprisingness. If the events
A1, A2, . . . , Ai occur respectively k1, k2, . . . , ki times in n trials (k1 + k2 +
· · ·+ki = n), its probability being Pk1,k2,...,ki , then define the surprise index
by

S = 1− Pk1,k2,...,ki

Pm1,m2,...,mi

,

where Pm1,m2,...,mi is the probability of the most probable system m1,m2,
. . . , mi. This can be used in hypothesis testing to control the type 1 error
by constructing a critical region which contains the points of the sample
space with small probabilities, i.e., high surprise index. This approach is
used to introduce Pearson’s chi-square and other tests.
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In the mid fifties of the last century one of the main tasks of the Statis-
tics Department of the Mathematical Institute was to introduce statistical
applications in practice, industrial quality control in particular. This is well
reflected in producing the book {53} edited by I. Vincze, the head of the
department. This book is written for engineers and technicians who wish
to acquire familiarity with the theoretical foundations and with the appli-
cations of statistical quality control. An introduction into the elements of
probability theory and mathematical statistics is given; the viewpoint of
the quality control engineer is stressed and this also determines the choice
of examples. Seven authors participated in writing the book; Part I, The-
oretical foundations was written by K. Sarkadi and I. Vincze. Part II,
Chapter 1 was written by Ágnes Fontányi and Mrs. Éva Vas and deals with
statistical methods for the control of a manufacturing process. An interest-
ing method developed by Á. Fontányi, K. Sarkadi and Mrs. É. Vas which
uses order statistics, is discussed in detail. Part II, Chapter 2 (written by
Károly Kollár) treats the statistical methods of acceptance control. The
theory is adequately discussed, and sampling plans, with due references to
the American sources, are given. Part III has the title “Applications of sta-
tistical quality control”. Chapters 1 and 2 (written by Tibor Tallián) deal
with problems of organizing quality control in a plant. Chapter 3 (writ-
ten by M. Borbély) discusses specific applications in the textile industry.
A mathematical appendix to part I, a collection of statistical tables and a
bibliography conclude the book.

3. Sequential analysis

A. Wald in the mid forties of the 20th century developed a statistical
procedure called sequential method. Here the number of observed elements
are not specified in advance, in certain situations the experimentation should
be continued until there is enough evidence as to which decision should be
made. This method can be described as follows. (cf. {67} and [192]).

Let X be a random variable having a density function f(x). Consider
two hypotheses, H0 : f(x) = f0(x) and H1 : f(x) = f1(x), where f0(x)
and f1(x) are two different density functions. The sequential probability
ratio test for testing H0 against H1 is given as follows: Put

Zi = log
f1(Xi)
f0(Xi)

,
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where Xi denotes the i-th observation on X. Let log A > 0 and log B < 0
be two constants depending on error probabilities. At each stage of the
experiment, at the m-th trial consider the partial sum

Sm = Z1 + · · ·+ Zm

and continue experimentation as long as log B < Sm < log A. The first time
Sm 6∈ (log B, log A), the experimentation is terminated. Accept H1, resp.
H0 if Sm ≥ log A, resp. Sm ≤ log B. It is proved that with probability one,
this sequential probability ratio test terminates in a finite (random) number
of steps. Let ν be the number of observations required by this test. Then ν
is a random variable, for which Wald showed that

E(eSνtϕ(t)−ν) = 1

for all points t on the complex plane for which the moment generating
function ϕ(t) = E(eZt) exists and its absolute value is not less than 1. Here
E stands for expectation and Z = log

(
f1(X)/f0(X)

)
. This is a celebrated

identity, called Wald’s identity in the literature today.
In order to investigate the number of observations required by this test,

Wald shows also that

E(Sν) = E(ν)E(Z) = E(ν)E
(

log
f1(X)
f0(X)

)
.

Based on this identity, it is shown that if both the absolute value of the
expectation and the variance of Z are small, then the expectation of ν can
be approximated by

E(ν) ∼ (1− γ) log B + γ log A

E(Z)
,

where γ is the probability that H1 is accepted, i.e. Sν ≥ log A. Let Ei,
i = 1, 2 denote the expectation under Hi, and let α be the probability of an
error of the first kind (H1 is accepted when H0 is true), β be the probability
of an error of the second kind (H0 is accepted when H1 is true). Then Wald
gives the following inequalities for the expectation of ν:

E0(ν) ≥ 1
E0(Z)

(
(1− α) log

β

1− α
+ α log

1− β

α

)
,

E1(ν) ≥ 1
E1(Z)

(
β log

β

1− α
+ (1− β) log

1− β

α

)
.
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The denominators

E0(Z) =
∫

f0(x) log
f1(x)
f0(x)

dx and E1(Z) =
∫

f1(x) log
f1(x)
f0(x)

dx

are the same quantities as introduced and called I-divergence a few years
later by S. Kullback (Information Theory and Statistics, Wiley, New York
(1959)). So this can be considered as the first statistical application of infor-
mation theory (see the Information Theory section). Further investigations
on the expectation E(ν) was given by A. Wald {68} and {69}. In subse-
quent papers {47} and {72} used the sequential method also for estimation
problems.

4. Statistical decision functions

In one of his first papers in Statistics {63} he presented some of the main
concepts of decision theory developed later in his book (Statistical Decision
Functions, John Wiley and Sons, 1950). The basic idea can be described as
follows.

Assume that experimentations are carried out on a random phenomenon,
i.e., we have random observations X = (X1, X2, . . . ) on a random variable
having a distribution function F . Usually F is unknown, but it is assumed
to be known that F is a member of a given class Ω of distribution functions.
Moreover, there is a space D, called decision space, whose elements d
represent the possible decisions that can be made by the statistician in
the problem under consideration. Let W (F, d, x) be the loss when F is the
true distribution function, the decision d is made and x is the observed value
of X. A distance on the space D can be defined by

ρ(d1, d2) = sup
F,x

∣∣W (F, d1, x)−W (F, d2, x)
∣∣ .

A decision function δ(x) is a function which associates with each x a proba-
bility measure on D. Usually, this is a randomized decision function. In the
particular case, when δ(x) for each x assigns the probability one to a single
point d in D, the decision function is called nonrandomized. The aim of the
statistician is to choose d so that W is in some sense minimized. Practically
all statistical problems, including estimation, testing hypotheses, and the
design of experiments, can be formulated in this way.
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Given the sample point x and given that δ(x) is the decision function
adopted, the expected value of the loss is given by

W ∗(F, δ, x) =
∫

D
W (F, d, x) dδ(x).

The function

r(F, δ) =
∫

R
W ∗(F, δ, x) dF (x)

is called the risk when F is true and δ is adopted. Wald’s fundamental idea
consists in considering this risk as the outcome of a zero-sum two-person
game played by the statistician against nature. The main theorems refer to
conditions under which the decision problem is strictly determined or has a
Bayes and/or minimax solution.

In {11} it is shown that when Ω and D are finite and each element of
Ω is atomless, then for any decision function δ(x) there exists an equivalent
nonrandomized decision function δ∗(x), i.e. r(F, δ∗) = r(F, δ) for all F ∈ Ω.

In a series of papers Wald and his collaborators investigated the prop-
erties of statistical decision functions.

Wald and Wolfowitz (Characterization of the minimal complete class of
decision functions when the number of distributions and decisions is finite,
Proceedings of the Second Berkeley Symposium on Mathematical Statistics
and Probability, University of California Press, Berkeley and Los Angeles
(1951), 149–157) consider a statistical decision problem with the space of
distributions consisting of a finite number m of distinct probability distribu-
tions on a Euclidean space, and the space of decisions being also finite. Then
every admissible decision function is a Bayes solution with respect to some
a priori probability distribution, but the converse is not true. The concept
of a Bayes solution with respect to a sequence (ξi)

h
i=1 = (ξi1, . . . , ξim)h

i=1 of
a priori probability distributions is introduced. This is defined as follows:
When h = 1 it is a Bayes solution with respect to ξ1. When h > 1 it is
a Bayes solution with respect to ξh if one restricts oneself only to those
decision functions which are Bayes solutions with respect to the sequence
ξ1, . . . , ξh−1. The main result of the paper is the following: A decision func-
tion is admissible if and only if it is a Bayes solution with respect to a
sequence of h ≤ m a priori probability distributions ξ1, . . . , ξh such that∑h

i=1 ξij > 0 for j = 1, . . . , m. The proof involves a rather elaborate study
of the intersections of a convex body with its supporting planes.
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5. Asymptotic theory of testing and estimation

In a series of papers Wald worked out a theory on the asymptotic properties
of tests and estimations. In {64}Wald showed that, under certain regularity
conditions, the test based on maximum likelihood estimation is asymptot-
ically most powerful and gives some examples for the most powerful tests.
The connection between most powerful tests and shortest confidence inter-
vals is treated in {65}.

Wald’s asymptotic theory was developed in {66} generalizing and ex-
tending his previous works on the subject. He considered random vectors
and multidimensional parameter space. The main feature of this paper is to
reduce the general problem to the normal case and show optimum properties
for the normal distribution. The general model is as follows: Let

f(x1, x2, . . . , xr; θ1, . . . , θk)

be a density function involving k unknown parameters θ1, . . . , θk lying in
a parameter space Ω. For a subset ω of Ω denote by Hω the hypothe-
sis that the parameter point lies in ω. Consider independent observations
X1, X2, . . . , Xn, where each Xi is a vector in the r-dimensional space and
has density f . The maximum likelihood estimator (θ̂1n, . . . , θ̂kn) of the pa-
rameters is the values of θ1, . . . , θk for which

∏n
i=1 f(Xi; θ1, . . . , θk) becomes

a maximum. Wald considers asymptotic properties of tests constructed by
the help of maximum likelihood estimators. He introduced the idea of most
stringent test, which can be described briefly as follows (cf. {73}): define
the envelope power function of a family of tests as the supremum at each
parameter point of the powers of the tests and define the “shortcoming” of
a test at a parameter point as the amount by which the power of the test
falls short of the envelope power there. We may then define the maximum
shortcoming of the test as the supremum over the parameter values of its
shortcoming. A sequence of tests is asymptotically most stringent if the
maximum amount by which its maximum stringency can be reduced tends
to zero as n increases. Note that an asymptotically most powerful test is
asymptotically most stringent.

Concerning estimation problems in {70}, Wald studies the asymptotic
properties of maximum likelihood estimators in the case of stochastically
dependent observations. Let (Xi), i = 1, 2, . . . , be a sequence of random
variables. It is assumed that for any n the first n variables admit a joint
probability density function f(x1, . . . , xn; θ) involving an unknown param-
eter θ. It is shown that under certain restrictions on the joint probability
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distribution the maximum likelihood equation has at least one root which is
a consistent estimate of θ, and any root of the maximum likelihood equation
which is a consistent estimate of θ is shown to be asymptotically efficient.
Therefore the consistency of the maximum likelihood estimate implies its
asymptotic efficiency, since this estimate is always a root of the maximum
likelihood equation.

6. Randomness

It is an important problem in Statistics to test whether a sequence (X1, X2,
. . . , XN ) of variables is a random one, i.e. they are independent and iden-
tically distributed (abbreviated i.i.d.). Tests for randomness are important
in the analysis of time series, its investigations usually based on serial cor-
relation coefficient

Rh =

∑N
i=1 XiXh+i − (

∑N
i=1 Xi)

2
/N

∑N
i=1 X2

i − (
∑N

i=1 Xi)
2
/N

.

Here h is a given positive integer and for h + i > N the term Xh+i is to be
replaced by Xh+i−N .

Wald and Wolfowitz in {75} proposed the following procedure: Let ai

be the observed value of Xi, i = 1, . . . , N . Consider the subpopulation
where the set (X1, . . . , XN ) is restricted to permutations of a1, . . . , aN and
for any particular permutation assign the probability 1/N ! This determines
the probability distribution of Rh in the subpopulation. They propose a
randomness test based on this distribution. It is shown moreover that
under some mild restrictions, the limiting distribution is normal. Further
investigations for tests based on permutations of the observations is given
in {76}. They show that under some conditions the weighted sum

LN =
N∑

i=1

diXi

has normal limiting distribution. As consequences of this result, they con-
clude that a number of statistics such as rank correlation coefficient, Pit-
man’s two-sample statistics, Hotelling’s generalized T statistics, etc. are
asymptotically normal.
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Related statistics were investigated by J. von Neumann with R. H. Kent,
H. R. Bellinson and B. I. Hart (The mean square successive difference, Ann.
Math. Statist., 12 (1941), 153–162). Minimizing the effect of the trend on
dispersion they considered

δ2 =
∑N

i=1 (Xi −Xi+1)
2

N − 1

as a competitor of the sample variance

s2 =
∑N

i=1 (Xi −X)2

N
,

where

X =
∑N

i=1 Xi

N
.

It was shown that if the Xi are independent normal with mean µ and
variance σ2, then the density of δ2 is given by

p(δ2) =
1

σ2
√

3
e−2δ2/3σ2

J0

(
iδ2

3σ2

)
,

where J0 is the Bessel function of order zero.

It was also shown that the efficiency of δ2 compared to s2, the best
estimation of σ2, is 2(n− 1)/(3n− 4). The advantage of using δ2 instead of
s2, is that it is robust in the sense that it has small effect when the mean
of the observation is not constant, but can be changed in time. The ratio
η = δ2/s2 can also be used in testing randomness and this was investigated
in further papers of J. von Neumann, see {61} and {62}.

7. Nonparametric tests, order statistics

Consider a random sample

(X1, X2, . . . , Xn)

of size n, coming from a population with (theoretical) distribution func-
tion F (x) = P(X1 < x). In this context, the above random variables are
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independent and identically distributed. The order statistics are the rear-
rangement of sample elements according to their magnitude:

X∗
1 ≤ X∗

2 ≤ · · · ≤ X∗
n.

The empirical or sample distribution function is defined by

Fn(x) =
1
n

n∑

i=1

I{Xi < x} =





0, if x ≤ X∗
1 ,

k

n
, if X∗

k < x ≤ X∗
k+1,

1, if X∗
n < x.

Here I{A} stands for the indicator of the event A. Order statistics and
empirical distribution functions are widely used in statistics, nonparametric
statistics, in particular. Basic results are due to V. Glivenko {13} and F. P.
Cantelli {5}: with probability one

lim
n→∞Dn = 0,

where
Dn = sup

x∈R

∣∣Fn(x)− F (x)
∣∣ .

This theorem expresses the important fact that with probability one, the em-
pirical distribution tends uniformly to the theoretical distribution. Hence,
it can be effectively used for goodness of fit problems, i.e., to test whether
a sample comes from a population with given distribution. This test is ap-
plicable thanks to a result of A. N. Kolmogorov {32} who determined the
limiting distribution of Dn:

lim
n→∞P(

√
nDn < y) =

∞∑

k=−∞
(−1)ke−2k2y2

, y > 0,

provided F (x) is continuous. Later N. V. Smirnov {46} proved a one-sided
version:

lim
n→∞P(

√
nD+

n < y) = lim
n→∞P(

√
nD−

n < y) = 1− e−2y2
, y > 0,

where

D+
n = sup

x∈R

(
Fn(x)− F (x)

)
, D−

n = sup
x∈R

(
F (x)− Fn(x)

)
.
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Note that in the above theorems the distributions of Dn, D±
n do not

depend on the underlying distribution function F (x).

In his fundamental paper, dedicated to Kolmogorov’s fiftieth birthday,
A. Rényi {38} proposed to modify the above statistics by considering the
“relative error” of the empirical distribution. He defined the following
statistics:

R+
n (a) = sup

a≤F (x)

Fn(x)− F (x)
F (x)

and

Rn(a) = sup
a≤F (x)

∣∣Fn(x)− F (x)
∣∣

F (x)
.

Now these are called Rényi statistics in the literature. In the said paper,
Rényi determined the limiting distributions:

lim
n→∞P(

√
nR+

n (a) < y) =

√
2
π

∫ y
√

a
1−a

0
e−t2/2 dt, y > 0,(1)

lim
n→∞P(

√
nRn(a) < y) =

4
π

∞∑

k=0

(−1)k

2k + 1
e
− (1−a)π2(2k+1)2

8ay2 , y > 0.(2)

Rényi considered also the more general statistics

R+
n (a, b) = sup

a≤F (x)≤b

Fn(x)− F (x)
F (x)

and

Rn(a, b) = sup
a≤F (x)≤b

∣∣Fn(x)− F (x)
∣∣

F (x)
.

The proofs of (1) and (2) given by Rényi are based on his method
presented in the same paper. Since, as remarked above, the statistics are
distribution free, it is no loss of generality assuming that the sample comes
from exponential distribution, i.e.

(3) P (Xi < x) = 1− e−x, x > 0.

Rényi proves that in this case the variables X∗
k can be expressed in the form

(4) X∗
k =

δ1

n
+

δ2

n− 1
+ · · ·+ δk

n− k + 1
, k = 1, 2, . . . , n,
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where the variables δ1, δ2, . . . , δn are independent having exponential distri-
bution as in (3). Based on this simple fact, with some clever manipulations,
Rényi derives the above limiting distributions and also some other limit
distributions such as the asymptotic normality of the sample quantile.

{22} based on (4), present elementary and simple method to derive cer-
tain distributions and conditional distributions concerning order statistics.

Another ingenious method concerning empirical distributions was devel-
oped by Lajos Takács, based on his celebrated ballot theorem. The classical
ballot theorem due to M. J. Bertrand {3}, V. André {1} and É. Barbier {2}
says that if in a ballot one candidate scores a votes, the other candidate
scores b votes and a ≥ µb with a non-negative integer µ, then the probabil-
ity that throughout the counting the number of votes registered for the first
candidate is always greater than µ times the number of votes registered for
the second candidate is given by

P =
a− µb

a + b
.

L. Takács in a series of papers {49} and {50} etc. and in his book {51}
presented a generalization of the ballot theorem and applied it in various
problems, such as empirical distribution functions, queueing, dams, etc.

Let χ1, χ2, . . . , χn be non-negative, cyclically interchangeable random
variables and let τ1 < τ2 < · · · < τn be the order statistics of a random
sample, uniformly distributed on the interval (0, t), and assume also that
{χr} and {τr} are independent. Define

χ(u) =
∑

τr≤u

χr, 0 ≤ u ≤ t.

Then

P
(
χ(u) ≤ u, 0 ≤ u ≤ t | χ(t) = y

)
= 1− y

t
, 0 ≤ y ≤ t.

Based on this extension of the ballot theorem, Takács (An application of
a ballot theorem in order statistics, Ann. Math. Statist., 35 (1964), 1356–
1358) derives the exact distributions of the statistics

T+
n (a, b, c) = sup

a≤F (u)≤b

(
Fn(u)− cF (u)

)
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and

R+
n (a, b, c) = sup

a≤F (u)≤b

(
Fn(u)− cF (u)

F (u)

)
.

Takács (On the comparison of a theoretical and an empirical distribution
function, J. Appl. Probab., 8 (1971), 321–330) proved a ballot-type theorem
equivalent to the following: Let X1, . . . , Xn be i.i.d. random variables with
distribution P (X1 = i) = q, i = 1, . . . , n, P (X1 = n + 1) = p, where
p + nq = 1, 0 < p < 1. Let X∗

1 ≤ X∗
2 ≤ · · · ≤ X∗

n be its order statistics. For
1 ≤ l ≤ n, let A denote the event: There exist at least l distinct positive
integers k1, k2, . . . , kl for which X∗

ki
= ki (i = 1, 2, . . . , l). Then

P(A) = qln(n− 1) . . . (n− l + 1).

Based on this result, the distribution of the number of intersections of cF (x)
with Fn(x) + a/m was determined. K. Sarkadi {45} presented a simple
elegant combinatorial proof of this theorem.

In the two-sample case B. V. Gnedenko and V. S. Korolyuk {14} devel-
oped a method based on random walk models. Let

(X1, X2, . . . , Xm) and (Y1, Y2, . . . , Yn)

be two samples coming from continuous distributions. Let F (x) and G(x),
resp. be their theoretical distribution functions and let Fm(x) and Gn(x),
resp. be their empirical distribution functions. Testing the null hypothesis
H0 : F (x) = G(x), a number of statistics has been investigated and
their distributions, limiting distributions and other characteristics have been
determined in the statistical literature. The idea of Gnedenko and Korolyuk
was as follows: let

Z∗1 < Z∗2 < · · · < Z∗m+n

denote the order statistics of the union of the two samples and define

(5) θi =

{
+1 if Z∗i = Xj for some j,

−1 if Z∗i = Yj for some j

i = 1, 2, . . . , m + n. Put

S0 = 0, Si = θ1 + . . . θi, i = 1, 2, . . . , 2n.

Then (S0, S1, . . . , Sm+n) is a random walk path with Sm+n = m − n and
under H0 each of them has the same probability. This idea of Gnedenko and
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Korolyuk enables one to determine the distributions of certain statistics by
reducing the problems to combinatorial enumeration.

In a series of papers Vincze and his collaborators presented a number
of results in this subject. His first result concerns the joint distribution
of the maximum and its location in the case m = n: Let x

(n)
0 be the first

point where Fn(x)−Gn(x) takes its (one-sided) maximum for the first time.
Then, under H0, I. Vincze {54} showed that

P
(

max−∞<x<∞
(
Fn(x)−Gn(x)

)
=

k

n
,

1
2(

Fn(x
(n)
0 ) + Gn(x

(n)
0 ) =

r

2n

)

= P
(

max
1≤i≤r−1

Si < k, Sr = k, max
r+1≤i≤2n

Si ≤ k

)

=
k(k + 1)

r(2n− r + 1)

( r
r+k
2

)(2n−r+1
n− r+k

2

)
(
2n
n

) ,

k = 1, 2, . . . , n; r = k, k + 2, . . . , 2n− k.

lim
n→∞P

(√
n

2
max−∞<x<∞

(
Fn(x)−Gn(x)

)
< y,

1
2(

Fn(x
(n)
0 ) + Gn(x

(n)
0 ) < z

)

=

√
2
π

∫ y

0

∫ z

0

u2

(
v(1− v)

)3/2
exp

(
− u2

v(1− v)

)
du dv.

Similar results were given for the absolute maximum and its location.

Using his extension of the ballot theorem, L. Takács {52} gives joint
distributions of the maximum and its location for different sample sizes. In
the case when m divides n, Takács gives the joint exact distribution of the
statistics

T−(m, n) = sup
x∈R

(
Gn(x)− Fm(x)

)
= max

1≤r≤n

(
Gn(Y ∗

r )− Fm(Y ∗
r )

)
,

and of ρ−(m,n), the smallest 1 ≤ r ≤ n for which the maximum is attained.

In a subsequent paper {55} I. Vincze proposed to use generating func-
tions to determine distributions and joint distributions. He determined,
e.g., the generating function of the above joint distribution.
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Further results in this topic (in the case m = n):
Let

(X∗
1 < X∗

2 < · · · < X∗
n), (Y ∗

1 < Y ∗
2 < · · · < Y ∗

n )

denote the ordered samples. Then

γn =
n∑

i=1

I{X∗
i > Y ∗

i }

is the so-called Galton statistics. For random walk paths defined above, γn

is the number of i’s such that S2i−1 > 0, i = 1, . . . , n. K. L. Chung and
W. Feller {6} showed that γn is uniformly distributed, i.e.,

P(γn = g) =
1

n + 1
, g = 0, 1, 2, . . . , n.

The proof of Chung and Feller was based on generating function, while {40}
gave a combinatorial proof by showing that there exists a bijection between
random walk paths with γn = 0 and γn = g.

E. Csáki and I. Vincze in {8} considered the number of times the random
walk crosses zero (number of intersections):

λn =
n−1∑

i=1

I{Si = 0, Si−1Si+1 < 0}

and showed

P(λn = `− 1) =
2`

n

(
2n

n−`

)
(
2n
n

) , ` = 1, 2, . . . , n.

The joint exact and limiting distribution of (γn, λn) was also given:

P(γn = g, λn = `− 1)

=
1(
2n
n

) `2

2g(n− g)

(
2g

g − `/2

)(
2n− 2g

n− g − `/2

)

for ` even. A similar result was given for ` odd. For the limiting distribution
it was shown that

lim
n→∞P(γn ≤ zn, λn ≤ y

√
2n )

=

√
2
π

∫ y

0

∫ z

0

u2

(
v(1− v)

)3/2
exp

(
− u2

2v(1− v)

)
du dv.
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Another use of the generating function method is found in {9} where
the joint distribution of the maximum and the number of intersections was
given in the form

∞∑

n=1

(
2n

n

)
P

(
max

x

∣∣Fn(x)−Gn(x)
∣∣ =

k

n
, λn = `− 1

)
zn

= 2
(

w − wk

1− wk+1

)`

, `, k = 1, 2, . . . ,

where

w =
1−√1− 4z

1 +
√

1− 4z
, |z| < 1

4
.

Vincze’s idea in determining joint distributions was to construct tests
based on a pair of statistics (instead of one single statistic) in order to
improve the power of the tests. For details see {56}. This idea however
deserves further investigations even today.

In {37} the two-sample problem is treated for different sample sizes by
investigating

max
x

(
nFn(x)−mGm(x)

)

and related quantities.

The power of the Kolmogorov–Smirnov two-sample test is treated in
{57}. In {58} the analogues of Gnedenko–Korolyuk distribution is given
both for discontinuous random variables and for the two-dimensional case.

K. Sarkadi in {43}, by using the well-known inclusion-exclusion prin-
ciple in combinatorics, gives an alternative method of deriving the exact
distribution of the Kolmogorov–Smirnov statistics for both the one-sample
and the two-sample cases.

In the two-sample case an important contribution was made by A. Wald
and J. Wolfowitz {74}, who constructed a test based on the number of
runs. Consider two samples (X1, X2, . . . , Xm) and (Y1, Y2, . . . , Yn) as before,
and the variables θi defined by (5). A subsequence θs+1, θs+2, . . . , θs+r is
called a run, if θs+1 = θs+2 = . . . θs+r but θs 6= θs+1 when s > 0 and
θs+r 6= θs+r+1 when s + r < m + n. Let U be the number of runs in the
sequence (θ1, θ2, . . . , θm+n). The exact distribution, mean and variance of
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U under the null hypothesis F (x) = G(x) was given for continuous F and
it was shown that U is asymptotically normal with mean and variance

E(U) =
2mn

m + n
+ 1,

Var (U) =
2mn(2mn−m− n)
(m + n)2(m + n− 1)

.

Hence using either the exact (for small sample sizes) or the asymptotic
(for large sample sizes) distribution, a test can be constructed with critical
region U < u0, so that P(U < u0) = β, where β is a predetermined level
of significance. In other words the null hypothesis H0 : F (x) = G(x) is
rejected if the number of runs in the combined sample is too small. Wald and
Wolfowitz have also shown that the test is consistent against any alternatives
F (x) 6= G(x).

Z. W. Birnbaum and I. Vincze {4} proposed a test based on order
statistics, which can replace Student’s t test. Let X1, . . . , Xn be a random
sample from a population with continuous distribution function F (x). Let
X∗

1 < X∗
2 < . . . X∗

n be their order statistics. For a given 0 < q < 1 the
q-quantile is defined by

µq = inf
{

x : F (x) = q
}

and the corresponding sample quantile is defined as the order statistic X∗
k

such that ∣∣∣∣
k

n
− q

∣∣∣∣ ≤
1
2n

.

Consider the statistic

Sn,k,r,s =
X∗

k − µq

X∗
k+s −X∗

k−r

that can be used for testing the location parameter when the scale parameter
is unknown for a general distribution. Exact and limiting distributions are
derived for this statistic under some mild conditions on the distribution
function F .

B. Gyires in {20} investigated asymptotic results for linear rank statistic
defined as

S =
m∑

j=1

fj

(
x

(j)
R(Xj)

)
,
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where X1, . . . , Xn are i.i.d. continuous random variables, R(Xj) denotes the

rank of Xj , N = m + n, x
(j)
i (i = 1, . . . , N , j = 1, . . . , m) are real numbers

in (0, 1), and fj are continuous functions on [0, 1] with bounded variation.
Let

V =
m∑

j=1

fj(ηj),

where the ηj are i.i.d. uniform (0, 1) random variables. An upper bound of

∣∣∣∣ϕ(t)−Nm
m∏

j=1

(n + j)−1ϕV (t)
∣∣∣∣

is given, where ϕ(t) and ϕV (t) are the characteristic functions of S and V ,
respectively. The bound is then exploited to prove that, as n →∞ with m
remaining fixed, S converges weakly to V if and only if the discrepancy of
the sequence (x(j)

i )
n

i=1
from what is called a uniform sequence tends to zero.

Application of this result to certain two-sample rank tests are also given.

Further results on asymptotic properties for linear rank and order statis-
tics can be found in {16}, {17}, {19} and {21}. In these papers Gyires gives
a necessary and sufficient condition for linear order statistics to have a limit
distribution and he studies the case when the limit distribution is normal
in particular. Limit distributions are also given for linear order statistics in
the case when the observations are not necessarily independent. A doubly
ordered linear rank statistic is also investigated. The methods employed by
Gyires uses matrix theory, in particular Gábor Szegő’s result concerning the
eigenvalues of Toeplitz and Hankel matrices. For further comments in this
regard we refer to the Section on Probability Theory.

8. Goodness of fit tests

An important problem in Mathematical Statistics is to test whether a
random sample comes from a well-defined family of distributions. E.g., tests
for normality or other goodness of fit tests are aimed to decide whether a
sample comes from normal, or other distributions usually involving nuisance
parameters, i.e., we are faced with a composite hypothesis. The most
commonly used goodness of fit tests are Pearson’s χ2-tests. In the case
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of simple hypothesis H0 : F (x) = F0(x) with given F0 this is based on the
statistics

χ2 =
k∑

i=1

(νi −Npi)
2

Npi
,

where the range of the variable is divided into a number k of class intervals,
N is the sample size, νi stands for the number of sample elements in ith
class and pi is the probability that a sample element falls into the ith class.
H. B. Mann and A. Wald {34} investigated the problem of optimal choice
of class intervals. They show that

k = kN = 4

(
2(N − 1)2

c2

)1/5

and pi = 1/k, i = 1, . . . , k is in certain sense optimal, where c is a constant
depending on the probability of the critical region.

E. Csáki and I. Vincze in {10} proposed a modification of the Pearson’s
χ2-statistic:

χ2 =
k∑

i=1

(
X(i) −Ei

σi

)2

νi,

where Ei and σ2
i , resp. are the expectation and variance, resp. of the

observations in the ith class and X(i) are the mean value of the observations
in the ith class. It was shown that (for fixed k) the limiting distribution
of χ2 statistic is chi − square with k degrees of freedom (instead of k − 1
degrees of freedom of Pearson’s χ2).

For simple hypotheses the one-sample Kolmogorov–Smirnov type tests
discussed in Section 6 are also applicable for goodness of fit problems. In
case of composite hypotheses, i.e., when parameters are unknown, a usual
procedure is to estimate the parameters and apply a modified χ2-test. But
in some cases this has disadvantages. K. Sarkadi {39}, {41} in the case of
normality test, presented a method which reduces the problem of composite
hypothesis to a simple one. Assume first that we want to test normality
based on the sample (X1, . . . , Xn, Xn+1) in the case when the expectation
is unknown and the variance is known. Define

Y =
X −Xn+1√

n + 1
,
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where

X =
X1 + · · ·+ Xn

n
.

Put
Yi = Y + Xi −X, i = 1, . . . , n.

If X1, . . . , Xn+1 are independent random variables having normal distribu-
tion with expectation µ and variance σ2, then Y1, . . . , Yn are independent
random variables, each normally distributed with expectation zero and vari-
ance σ2. This way the normality test with unknown expectation reduces to
the normality test with expectation 0.

Similarly, if the variance is unknown and the expectation is known (as-
suming to be equal to zero without loss of generality), so that (X1, . . . , Xn+1)
are i.i.d. mean zero normal random variables with unknown variance,
Sarkadi gives the following transformation:

Yi = Xi
s′

s
, i = 1, . . . , n,

where

s =

√
X2

1 + · · ·+ X2
n

n
,

s′ = ψn

( |Xn+1|
s

)
,

and the function ψn(t) is defined by the following relation:

∫ ∞

ψ2
n

u(n−1)/2 exp (−u/2) du =
2n/2+1Γ

(
n+1

2

)
√

nπ

∫ t

−∞

(
1 +

u2

n

)−(n+1)/2

du.

It is shown that (Y1, . . . , Yn) are independent standard normal variables.
Hence testing normality in the case of composite hypothesis is reduced to
that of simple hypothesis.

Similarly, if (X1, X2, . . . , Xn+2) are independent random variables each
having normal distribution with expectation µ and variance σ2, Sarkadi
gives a transformation based on this sample, resulting in (Y1, Y2, . . . , Yn),
independent standard normal variables. The advantage of Sarkadi’s trans-
formation is that random numbers are avoided and he also shows that the
transformation is optimal in some sense.
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Sarkadi (The asymptotic distribution of certain goodness of fit test
statistics, Lecture Notes in Statistics 8, Springer, New York (1981), 245–
253) investigated goodness of fit statistics of the form

Wn =
(

∑n
i=1 ainX∗

i )
2

∑n
i=1 (Xi −X)2

,

where X∗
1 < · · · < X∗

n are order statistics, a1n, . . . , ann are appropriately
chosen constants, and X is the sample mean. Sufficient conditions are given
for Wn to have asymptotically normal distribution. It is shown that many
statistics proposed for testing goodness of fit are of the above type with
different values of ain. Asymptotic properties of these tests are discussed
and some of the tests are shown to be inconsistent for specific alternatives.

In the case when ain = min/(
∑n

j=1 m2
jn)

1/2, with min = E(X∗
i ), this is the

Shapiro–Francia test for which K. Sarkadi {44} proved consistency.
In {33} a goodness of fit test is proposed for testing uniformity. The

test statistic is

J = n2
n∑

i=1

d2
i − n

( n∑

i=1

di

)2

,

where di =
(
X∗

i − i/(n + 1)
)
/i(n − i + 1) and the X∗

i are order statistics
from a sample of size n. The Monte Carlo method is used to compare the
test with some competitors.

9. Cramér–Fréchet–Rao inequality

Let X = (X1, X2, . . . , Xn) be a sample from a distribution having (joint)
density p(x; θ) = p(x1, x2, . . . , xn; θ) with respect to a measure µ, where θ
is a parameter and we want to estimate its function g(θ). Let t(X) be an
unbiased estimator of g(θ), i.e. Eθ

(
t(X)

)
= g(θ). M. Fréchet {12}, C. R.

Rao {36} and H. Cramér {7} gave the following inequality:

Varθ

(
t(X)

) ≥
(
g′(θ)

)2

I(θ)
,

with

I(θ) =
∫ (

∂p

∂θ

)2

p(x; θ) dx.
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I. Vincze {59} and {60} for fixed θ, θ′ considered the mixture

pα = pα(x; θ, θ′) = (1− α)p(x; θ) + αp(x; θ′), 0 < α < 1

with α being a new parameter. Then

α̂ =
t(X)− g(θ)
g(θ′)− g(θ)

is an unbiased estimator of α.
It follows that

Varα(α̂) ≥ 1
Jα(θ, θ′)

,

where

Jα(θ, θ′) =
∫ (

p(x; θ′)− p(x; θ)
)2

pα(x; θ, θ′)
dµ.

Then

(1− α)Varθ

(
t(X)

)
+ α Varθ′

(
t(X)

) ≥ 1
Jα(θ, θ′)

− α(1− α)

and in the case when Varθ
(
t(x)

)
does not depend on θ, Vincze concluded

the following lower bound:

Var
(
t(X)

) ≥ sup
α

sup
θ′

α(1− α)
(
g(θ′)− g(θ)

)2
(

1
α(1− α)Jα

− 1
)

.

In certain cases this gives a reasonably good bound. This problem was
further investigated by M. L. Puri and I. Vincze {35} and Z. Govindarajulu
and I. Vincze {15}. It was shown among others that for the translation
parameter of the uniform distribution this lower bound is of order n−2,
which is attainable.
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10. Estimation problems

An interesting estimation problem is treated in {71}. Let X1, X2, . . . be an
infinite sequence of random variables, such that for each n the variables
X1, . . . , Xn admit a continuous joint probability density fn(x1, . . . , xn |
θ, ξ1, . . . , ξn), where θ, ξ1, . . . , ξn are unknown parameters, all of which are
restricted to finite intervals. Then tn(X1, . . . , Xn) is said to be a uniformly
consistent estimate of θ if P

( |tn − θ| < δ
) → 1 as n → ∞, for any

δ > 0, uniformly in θ and the ξ’s. Necessary and sufficient conditions for
the existence of a uniformly consistent estimate are given. An information
function is defined for the present case, and a sufficient condition for the
nonexistence of a uniformly consistent estimate is given in terms of the
information function. In the particular case when the Xi are independent,
the total information contained in the first n observations is equal to the
sum of the amounts of information contained in each observation separately.

Another interesting estimation problem is treated by K. Sarkadi. In
statistics the following selection procedure often occurs. Let µ1, . . . , µn be
parameters characterizing different populations. The parameters are un-
known but we know their unbiased estimators X1, X2, . . . , Xn, i.e.,
E(Xi) = µi. Given these estimators, one population is selected accord-
ing to some predetermined decision rule. Suppose, e.g., the population of
the lowest value Xi is selected, because this proves to be the highest qual-
ity among the possible choices. In this case mini Xi as the estimator of the
parameter of the corresponding population is obviously biased. This prob-
lem was treated by K. Sarkadi {42} who proved that though no unbiased
estimation with finite variance exists in general, he suggests randomized es-
timations with arbitrarily small bias. The variance of the estimator however
tends to infinity when the bias tends to zero.
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tial estimation in non-regular case, Statistical Data Analysis and Inference (Ed.
Y. Dodge), North Holland (Amsterdam, 1989), 257–268.

{16} B. Gyires, On limit distribution theorems of linear order statistics, Publ. Math.
Debrecen, 21 (1974), 95–112.

{17} B. Gyires, Linear order statistics in the case of samples with non-independent
elements, Publ. Math. Debrecen, 22 (1975), 47–63.
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{59} I. Vincze, On the Cramér–Fréchet–Rao inequality in the non–regular case, Contri-
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