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ÁKOS CSÁSZÁR and DÉNES PETZ1

The theory of real functions is a relatively young chapter of mathematical
analysis. In fact, in the 19th century, the expression “function theory” was
applied to mean the theory of complex-valued analytic functions of one or
more complex variables. The first investigations that initiated the part of
analysis called today “theory of real functions” or briefly “real analysis”
were constructions of various real-valued functions of a real variable whose
characteristic properties are very far from those of analytic functions; as a
typical example, we can mention the construction, due to Karl Weierstrass,
of a real-valued function continuous in an interval but not differentiable at
any point of this interval.

The investigations in this direction obtained a very powerful instrument
in the theory of sets discovered and developed by Georg Cantor. As the
first important results of the theory, we can mention the investigations of
Camille Jordan on properties of the functions of bounded variation, or the
theory of the area of plane point sets due to the same author. However, the
last discovery that finished the acceptance of real analysis as a well-adopted
chapter of analysis was the concept and theory of a very general kind of
integral, due to Henri Lebesgue, in the first years of the 20th century. This
acceptance was perhaps due to the fact that Lebesgue not only developed
the theory of the integral but also reached amazing applications of his
theory so that the importance of the new, general theory of the integral
convinced everybody interested in mathematical analysis. On the other
hand, Lebesgue’s integration theory catalyzed the cristallization of the ideas
of functional analysis in the setting of infinite dimensional function spaces.

1The authors are grateful to János Horváth, József Szűcs and László Zsidó for many
helpful suggestions.
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There were Hungarian mathematicians who joined the investigations on
real analysis in the earliest period of its existence, i.e., in the last decades
of the 19th century. We must first mention Gyula [Julius] Kőnig (1849–
1913) who, in his courses on analysis given at the Technical University
Budapest, presented a definition of the integral that included not only the
classical definition of the Riemannian integral but also the Stieltjes integral.
Despite the fact that he did it in about 1890, he formulated these ideas not
earlier than 1897 in a paper in Hungarian language {27} so that the priority
evidently belongs to Thomas Jean Stieltjes who published his discovery in
1894.

However, Kőnig was very probably the first researcher who constructed
a real-valued function continuous in an interval and having an extremum in
every subinterval {26}. This result certainly influenced the disciple of Kőnig,
Zoárd Geőcze (1873–1916), who constructed a continuous function that is
not rectifiable in any subinterval {10}. Many years later, it turned out that
Geőcze’s construction yields essentially more; in fact it is one of the simplest
constructions furnishing a continuous nowhere differentiable function i.e., it
presents the Weierstrass singularity (see work {21} of Sándor Kántor). On
the other hand, the same method of construction, under another choice
of the parameters, furnishes a continuous function that is increasing and
singular (i.e., its derivative is equal to 0 almost everywhere, see {8}). In
the last sentence, the expression “almost everywhere” means, of course,
“with the exception of a set of points of Lebesgue measure zero”. It is an
imperishable merit of the history of mathematics in Hungary that we had a
researcher who, a few years after its birth, not only made himself a master
of Lebesgue’s theory of measure and integral, but also added to this theory
essential contributions. This researcher is Frigyes [Frédéric] Riesz (1880–
1956).

Frédéric Riesz was definitely the first mathematician in Hungary who
understood the great importance of the new theory of integration. He was
born in Győr, a town in the midway between Budapest and Vienna. After
a two-year-study at the polytechnic in Zürich, he continued at the science
university in Budapest. From 1904 to 1912 he was a high-school teacher and
wrote fundamental papers already in this period. Although he published
very good works also in Hungarian all his life, he was clever enough to
understand that Paris was not only the capital of France but the capital of
modern analysis as well. His publications in Comptes Rendus, the journal of
the French Academy of Sciences, earned a world fame for him very early and
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he became a professor of the University of Kolozsvár (called Cluj-Napoca
now in Roumania) in 1912.

Frédéric Riesz was one of the fathers of functional analysis. Although
functional analysis in the sense of nowadays had several roots in the 19th
century, such as Fourier expansion of functions and spectral theory of some
differential equations, its genesis could be put at the beginning of 20th
century. Even at the end of 1800’s linear algebra was very finite dimensional
and dealt with n-tuples of real numbers, and Fréchet’s thesis on metric
spaces appeared in 1906. The cristallization of the ideas was catalyzed
by Lebesgue’s integration theory. Many of the basic concepts of functional
analysis were born in the setting of infinite dimensional function spaces. The
intimate relation of the Lebesgue integral and infinite dimensional functional
analysis is very transparent in the work of Frédéric Riesz.

The space L2 of square integrable functions on an interval of the real
line was the first infinite dimensional space on which functional analysis in
the modern sense was studied. The so-called Riesz–Fischer theorem (1907)
{59} claims that the space L2 is complete, that is, all Cauchy sequences are
convergent in the L2-sense. That time it was shown that if fn ∈ L2 and∫ ∣∣fn(x) − fm(x)

∣∣2
dx is arbitrarily small when n and m are large enough,

then there exists a function f ∈ L2 such that
∫ ∣∣fn(x)− f(x)

∣∣2
dx → 0 as n →∞.

This is Fischer’s version of the Riesz–Fischer theorem but Riesz was aware
of the equivalence. Riesz actually showed that given an orthogonal sequence
f1, f2, . . . of functions of unit length and a sequence c1, c2, . . . of scalars such
that

∑
i |ci|2 is finite, there exists a function f in the L2 space such that

〈fi, f〉 = ci.
Another early result of Riesz, discovered independently by Fréchet rely-

ing on an earlier paper of Riesz, tells us that any bounded linear functional
A of L2 is induced by an element g of L2 in the form of integration of the
product {55}:

(1) A(f) =
∫

f(x)g(x) dx (f ∈ L2)

for some g ∈ L2 if there exists a constant MA such that
∫ ∣∣f(x)

∣∣2
dx ≤ 1 implies

∣∣A(f)
∣∣ ≤ MA (f ∈ L2).
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It is still a pleasure to read the original works of Riesz. In 1910 he
published a paper in Hungarian (Integrálható függvények sorozatai {57}),
in which he explains his understanding of L2 and the above mentioned two
results. It is remarkable that abstract functional analysis did not exist
at that time, nevertheless he understood his own (as well as Lebesgue’s,
Fréchet’s and Fischer’s) result in a very modern and intrinsic way. For
example, he wrote that “The extension of the concept of integral due to
Lebesgue is an indispensable condition for my theorem, similarly to the
fact that validity of certain theorems of algebra or arithmetics require the
appropriate extension of the concept of numbers”. In this paper he defined
the weak topology on the space L2 and shows that a bounded sequence
contains a weakly convergent subsequence.

In our present language, (1) describes the dual of the L2 space. The dual
space was certainly a concept that should be attributed to Riesz. He defined
the dual of L2 in 1907 and in 1909 he dealt with the dual of the space of
continuous functions, Sur les opérations fonctionnelles linéaires. Let C[a, b]
denote the set of all continuous real-valued functions on the interval [a, b].
In 1903 Hadamard wanted to describe all linear functionals U : C[a, b] → R
such that Ufn → Uf whenever fn → f uniformly. He took a function F
such that

f(x) = lim
n→∞n

∫ b

a
f(t)F

(
n(t− x)

)
dt

uniformly in x ∈ [a, b], for example F (x) = exp(−x2) would do, and he
showed that

U(f) = lim
n→∞

∫ b

a
f(t)Φn(t) dt,

where Φn(t) is the value of the functional U at the function x 7→ nF
(
n(t−

x)
)
. Riesz described the continuous linear functionals of C[a, b] by means

of the Stieljes integral and removed the arbitrariness of the function F in
Hadamard’s theorem {56}. He proved that there exists a function α of
bounded variation such that

(2) U(f) =
∫ b

a
f(x) dα(x),

moreover α is unique if α(a) = 0 and the left continuity of α are required.
For any a < t < b he considered the function

ft(x) =

{
x− a, if a ≤ x ≤ t,

t− a, if t ≤ x ≤ b.
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He showed that the function A : t 7→ U(ft) is Lipschitz and took −α(t)
as one of the derived numbers of A at the point t. Then it was a standard
procedure to modify α to fulfil the additional requirements and to keep (2).

Extending his work on the space L2, Riesz devoted a fundamental paper
to Lp spaces in 1910, Untersuchungen über Systeme integrierbarer Funktio-
nen {58}. Lp is the set of all complex valued measurable functions such
that |f |p is integrable. He restricted himself to the case p > 1 and extended
the Hölder and Minkowski inequalities

∣∣∣∣
n∑

k=1

akbk

∣∣∣∣ ≤
( n∑

k=1

|ak|p
)1/p( n∑

k=1

|bk|q
)1/q

, where
1
p

+
1
q

= 1,

( n∑

k=1

|ak + bk|p
)1/p

≤
( n∑

k=1

|ak|p
)1/p

+
( n∑

k=1

|bk|p
)1/p

to measurable functions. If f ∈ Lp and g ∈ Lq, then fg is integrable and
∣∣∣∣
∫

f(x)g(x) dx

∣∣∣∣ ≤
( ∫ ∣∣f(x)

∣∣p
dx

)1/p( ∫ ∣∣g(x)
∣∣ q

dx

)1/q

.

Moreover, if f, g ∈ Lp, then f + g ∈ Lp and
( ∫ ∣∣f(x) + g(x)

∣∣p
dx

)1/p

≤
( ∫ ∣∣f(x)

∣∣p
dx

)1/p

+
( ∫ ∣∣g(x)

∣∣p
dx

)1/p

.

He extended several definitions and results from the theory of L2 spaces. He
defined strong convergence in Lp as fn → f if and only if∫ ∣∣fn(x) − f(x)

∣∣p
dx → 0. His first definition of weak convergence was

different from today’s usual one. He said that fn → f weakly if
∫ t

a
fn(x) dx →

∫ t

a
f(x) dx

for all t in the interval on which the functions are defined. He showed that
this is equivalent to

∫ (
f(x)− fn(x)

)
g(x) dx → 0 for all g ∈ Lq.

He proved the weak compactness of the unit ball of Lp and he was particu-
larly interested in the solution of the infinite system of linear equations

(3)
∫ b

a
fi(x)ξ(x) dx = ci,
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where ξ(x) is the unknown and the fi(x)’s belong to Lq. (The subscript i
can run over an arbitrary set, countable, or not.) One cannot give an easy
condition for the existence of the solution. He claimed that the condition is
the existence of a constant M such that

(4)
∣∣∣∣
∑

i∈I

µici

∣∣∣∣
q

≤ M q

∫ b

a

∣∣∣∣
∑

i∈I

µifi(x)
∣∣∣∣
q

dx

holds for all finite subsets I of the index set and for all complex numbers
µi. Riesz was aware of the importance of the case where the fi’s are all the
functions in Lq. Then (4) is exactly the roundedness of the functional L
defined as L(fi) = ci and he discovered that the dual of Lq can be identified
with Lp. He achieved the first example of what we call today reflexive
Banach space.

The system of equations (3) is related to the moment problem. This
means that given the continuous functions fi on an interval [a, b] and a
sequence ci of real numbers (i = 1, 2, . . . ), an increasing function α should
be found such that

(5) ci =
∫ b

a
fi(x) dα(x) (i = 1, 2, . . . )

(cf. (2)). In the original moment problem fi(t) = ti. A trivial necessary
condition for the existence of α is the property that

∑n
j=1 λjfj ≥ 0 should

imply
∑n

j=1 λjcj ≥ 0. If this is fulfilled then

U0

( n∑

j=1

λjfj

)
=

n∑

j=1

λjcj

defines a positive functional on the linear span of the functions fi and this
functional should be extended to all continuous functions. The representa-
tion theorem (2) could be used. The moment problem belonged to the circle
of ideas Frédéric Riesz worked on. His brother, Marcell [Marcel] Riesz
(1886–1969), considered the moment problem as the question of extension
of a positive functional. His method works in a very general setting, where
a linear functional is defined on a subspace and the positivity is determined
by a convex cone. His beautiful method is applicable not only to the power
moment problem but many related problems in function theory (see Section
II.6 in {1}).
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In 1920 Frédéric Riesz published a detailed paper dedicated to an el-
ementary presentation of Lebesgue’s integral (B4 in [156]). The method
is based on a completely elementary particular case of Lebesgue measure,
namely on the definition and simplest properties of the sets of measure zero
(briefly null sets): A set A ⊂ R is a null set if it can be covered, for an arbi-
trary ε > 0, with a sequence of intervals [an, bn] such that

∑∞
n=1(bn−an) < ε.

A statement is true a.e. if it is true everywhere with the exception of the
points of a null set.

The starting point is the, still quite elementary, definition of the integral
of simple functions, i.e., functions in [a, b] such that there is a decomposition
of [a, b] into finitely many pairwise disjoint subintervals in each of which the
function is constant. For simple functions, the (Riemann) integral can be
given by a finite sum.

Now a function f , bounded in [a, b], is said to be integrable if there
exists a bounded sequence of simple functions fn (i.e., |fn| ≤ M for some
M) such that fn → f a.e. in [a, b]. It can be shown that, under these
conditions, the integrals

∫ b
a fn(x) dx converge to a limit depending only on

f (i.e., independent of the sequence); this limit defines
∫ b
a f(x) dx.

In order to define the integral of an unbounded function, let us first
say that a (bounded or unbounded) function is measurable in [a, b] if it is
the pointwise limit of an a.e. convergent sequence of simple functions. The
integral

∫ b
a f(x) dx of a measurable function f is defined as the limit of the

sequence
∫ b
a fcn,dn(x) dx, where (cn) is an arbitrary sequence tending to −∞

and (dn) is one tending to +∞, while fcn,dn is the truncation of f : it is equal
to f(x) if cn ≤ f(x) ≤ dn, to cn if f(x) < cn, and to dn if f(x) > dn; the
function f is said to be integrable if the above limit exists, is finite and
independent of the choice of the sequences (cn) and (dn).

Based on these definitions, it is not difficult to deduce the usual prop-
erties of the integral (linearity, theorems on the integration of sequences of
functions, etc.) It can be easily shown that, for a function integrable in
the sense of Riemann, the new integral exists and is equal to the Riemann
integral.

Riesz presented his exposition of the theory of the Lebesgue integral in
his courses on analysis. A detailed exposition can be found in the monograph
[157] which was later translated into several languages.

In two papers (B5 and B6 in [156]) Riesz analyzes the role of Egoroff’s
theorem, which states that a convergent sequence of measurable functions
is uniformly convergent eliminating a subset of arbitrarily small measure
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{9}, in the theory of the Lebesgue integral. In particular, he indicates the
modifications necessary for extending the theorem for applications in the
theory of the Lebesgue–Stieltjes integral. The Stieltjes integral apparently
captured Riesz’s attention because it played a decisive role in his result
concerning the integral representation of bounded linear operations on the
function space C(a, b) of continuous functions (see (2)).

In three short papers (B7, B8 and B9 of [156]) and in his letters to
G. H. Hardy, Riesz gives simple proofs for some integral inequalities in
particular, the celebrated maximal inequality of Hardy and Littlewood; in
general, arguments are based on the use of the distribution function m(y) =
m(

{
x ∈ [a, b] : f(x) < y

}
) associated with a function f measurable in

[a, b], where m denotes Lebesgue measure. In B9, he uses the so called
Riesz lemma to furnish an elementary proof of Lebesgue’s theorem: every
monotone function is almost everywhere differentiable (see B10, B11 and
B12 in [156]). In its simplest form, i.e., for continuous functions, the Riesz
lemma is so elementary that its proof can be included here.

Riesz lemma. If f is continuous in the interval [a, b], then the set H of
points x ∈ [a, b] for which there exists some point x < x′ ≤ b such that
f(x) < f(x′) is open: H =

⋃
k(ak, bk) and f(ak) ≤ f(bk) for each k.

The set H can be empty; in this case we have nothing to prove. If
H 6= ∅, it is evidently open by the continuity of f so that the representation
H =

⋃
(ak, bk) is clearly possible. Fix a k and consider ak < x < bk. Let x0

be one of the points in the interval [x, b] where the value of f is maximal.
Then x ≤ x0 < bk is impossible since it would imply x0 ∈ H and the
existence of an x0 < x′ ≤ b satisfying f(x0) < f(x′). Thus bk ≤ x0 ≤ b
and then f(bk) ≥ f(x0) as bk /∈ H. On the other hand, f(x) ≤ f(x0) by
the choice of x0, hence f(x) ≤ f(bk) and, from the continuity of f , x → ak

yields f(ak) ≤ f(bk).

Using the Riesz lemma, the proof of Lebesgue’s theorem becomes almost
completely elementary. The Riesz lemma quite automatically provides cov-
erings of the exceptional set by systems of intervals of arbitrarily small total
length in the proof of Lebesgue’s theorem on the a.e. differentiability of a
monotone function.

Riesz himself was aware that his lemma can be used for proving further
interesting theorems of measure theory (B9 and B13 of [156]) and ergodic
theory (G5, G7 and G8 in [156]). Much later, the lemma was generalized
to several variables (cf. {5} and [166]).
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The fact that Lebesgue’s theorem on the differentiability of monotone
functions obtained an elementary proof through the Riesz lemma, suggested
to Riesz a new approach to Lebesgue’s integral theory, based on the dif-
ferentability of monotone functions. He presents his ideas in two papers
(B14 and B15 of [156]) The starting point is the following observation: Let
f ≥ 0 in the interval [a, b] and suppose that there exists a function F ,
increasing in [a, b] and satisfying F ′(x) = f(x) a.e. in (a, b). Then there ex-
ists, among these F , one for which the difference F (b)−F (a) is the smallest
possible.

After having proved this, we say that f ≥ 0 is integrable in [a, b] if
there is an F as above, and define

∫ b
a f as the minimum of F (b) − F (a).

A function f of arbitrary sign is said to be integrable if f+ = max (f, 0) and
f− = −min (f, 0) are integrable and then we define

∫ b
a f =

∫ b
a f+ − ∫ b

a f−.
From these definitions, one can deduce without any difficulty the usual
properties of the integral, e.g., the theorems on the integration of sequences
of functions.

In the years after World War II, Riesz wrote some big expository papers
on the evolution of the concept of the integral (B16, B17 in [156]) and on
the role of null sets in real analysis (B18 in [156]). It is natural that his own
ideas played a central role in all these summaries.

The original proof of the Riesz lemma due to Frédéric Riesz, was slightly
more complicated; the idea of applying the above point x0 is due to his
brother Marcell [Marcel] Riesz (1886–1969). Marcel Riesz was also an
outstanding mathematician, he lived most of his life in Sweden and had
a wide scientific interest, including functional analysis, partial differential
equations and algebra. Assume that a linear operator A is defined on a set
of measurable functions and its values are also measurable functions on a
different space. Assume that A has a finite norm C(p, q) when it is regarded
as a map from Lp to Lq (1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞). The Riesz convexity
theorem of Marcel Riesz tells us that log C(p, q) is a convex function of
the variables (p−1, q−1) ∈ [0, 1] × [0, 1]. The convexity theorem became a
starting point of abstract interpolation theorems. The spaces Lp and Lp′

are connected by a path of Banach spaces (namely the Lq spaces, when q is
between p and p′). Under some conditions a construction works for any two
Banach spaces, this is a very concise description of the interpolation theory
due Calderón, Lions and Peetrewhich has its roots in the work of Marcel
Riesz.
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A considerable part of the work of several Hungarian mathematicians in
the first part of the 20th century was devoted to an important application of
Lebesgue integral, namely to the calculation of the area of surfaces. Surface
area is only seemingly an easy two-dimensional analogue of arc length. Since
the work of Hermann Amandus Schwarz, we know that the theory of surface
area is essentially more complicated. Recall that if, say,

x = ϕ(t), y = ψ(t), z = χ(t) (a ≤ t ≤ b)

is the parametric representation of a continuous curve in R3 (i.e., ϕ, ψ, χ
are continuous in [a, b]) then the length of the curve can be defined as the
least upper bound of the lengths of polygons inscribed in the curve, namely
obtained with the help of a subdivision of [a, b] by points a = t0 < t1 <
t2 < · · · < tn = b and taking as vertices of the polygon the points of the
curve with parameters ti; the curve is rectifiable iff this least upper bound
is finite.

Schwarz discovered that the area of a surface cannot be defined in a
similar way. Even for very simple surfaces, e.g., for a circular cylinder,
it can happen that the areas of all inscribed polyhedra are unbounded
from above, and the surface can be uniformly approximated by inscribed
polyhedra so that their area tends to an arbitrary limit not less than the
usual (elementary) area of the surface.

Consider, for the sake of simplicity, a surface having an equation z =
f(x, y) where f is continuous in a rectangle R = [a, b]× [c, d]. In this case,
an idea due to Lebesgue again produces a suitable definition of the area
of the surface. Consider a subdivision of R into pairwise non-overlapping
triangles T1, . . . , Tn and a function g continuous in R and linear in each of
the triangles Ti. The equation z = g(x, y) corresponding to the piecewise
linear function g can be considered as representing a polyhedron P having
an elementary area a(P ). Let us consider a sequence of subdivisions having
the property that the functions gn converge uniformly to f and the areas
a(Pn) have a limit l; this limit may depend on the sequence (gn) and then
the smallest possible limit can be considered as the area of the surface; we
shall call it the Lebesgue area L(f) of z = f(x, y).

In the case of a good function f (e.g. if f has continuous partial deriva-
tives fx and fy in R) it is not difficult to show that the Lebesgue area can
be computed with the help of the classical formula

(6) L(f) =
∫∫ √

f2
x + f2

y + 1 dx dy;
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however, in the general case of a continuous f , the definition of L(f) does
not directly involve any method for calculating it.

This was the motivation for Zoárd Geőcze, in one of his first papers
on the theory of surfaces, presented as a Thesis to the Sorbonne in Paris in
1908 (Quadrature des surfaces courbes, Ungar. Ber., 26 (1910), 1–88.), to
introduce the following expressions:

G1(f, I) =
∫ β

α

∣∣f(x, δ)− f(x, γ)
∣∣ dx,

G2(f, I) =
∫ δ

γ

∣∣f(β, y)− f(α, y)
∣∣ dy,

G(f, I) =
(
G1(f, I)2 + G2(f, I)2 + |I|)1/2

,

where I = [α, β] × [γ, δ] is a subinterval of R and |I| denotes the area
(β − α)(δ − γ) of I. He considered further the limit that we call nowadays
the Burkill integral of the interval function G; in order to define it, let us
consider a subdivision I = {I 1, . . . , I n} of R into pairwise non-overlapping
subintervals I i, then take the sum

s(I) =
n∑

1

G(f, I i)

and the (always existing) limit H(f,R) of s(I), i.e., a (finite or infinite)
number to which

(
s(In)

)
converges whenever the subdivision In is infinitely

refining (i.e., varies such a manner that the maximum of the diameters of
the intervals belonging to In tends to 0).

Now Geőcze proposes to consider the value H(f, R) as the area of the
surface z = f(x, y). This is motivated by the result that H(f, R) = L(f)
whenever the function f satisfies a Lipschitz condition (i.e., there is a
constant M such that

∣∣f(x′, y′)−f(x, y)
∣∣ < M

( |x′−x|+ |y′−y|) whenever
(x, y), (x′, y′) ∈ R). This proposal is well-motivated because Tibor Radó
(1895–1967) proved later that the equality H(f,R) = L(f) is valid for
any continuous function f {48}. Thus Geőcze found in fact a method for
calculating the Lebesgue area of an arbitrary continuous surface defined by
an equation z = f(x, y)

(
(x, y) ∈ R

)
.

Geőcze found also a necessary and sufficient condition for the value
H(f, R) to be finite, i.e., by Radó’s theorem, for the continuous surface
z = f(x, y) to have a finite Lebesgue area. This is the following: let
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the function f be of bounded variation as a function of x in the interval
[a, b] for almost every fixed y ∈ [c, d] and as a function of y in the interval
[c, d] for almost every fixed x ∈ [a, b]; let us denote by V1(y) the total
variation of f(x, y) as a function of x over the interval [a, b] and by V2(x)
the total variation of f(x, y) as a function of y over the interval [c, d]; the
condition postulates that V1 should be (Lebesgue) integrable in [c, d] and
V2 be integrable in [a, b].

This condition due to Geőcze was rediscovered by Leonida Tonelli {66};
a function satisfying this condition is said to be of bounded variation in the
Tonelli sense. Tonelli found also a necessary and sufficient condition for
the classical formula (6) to give the Lebesgue area of the continuous surface
z = f(x, y). A function f satisfying this condition is said to be absolutely
continuous in the Tonelli sense. This theory fills Chapter V of the brilliant
monograph {63} of Stanislaw Saks, where works due to Geőcze and Radó
are often quoted.

The problem of calculation of the area of surfaces is essentially more
complicated if we consider continuous surfaces having a parametric repre-
sentation; suppose the surface S is given in the form

x = f(u, v), y = g(u, v), z = h(u, v),

where f, g, h are continuous in a rectangle R = [a, b] × [c, d] of the uv-
plane. Geőcze made a few first steps in this direction in {12} and in
the works “A rectifiabilis felületről” {14} “A felület területének Peano-féle
definitiójáról” {15} written in Hungarian. However, the thorough discussion
of this problem was mainly accomplished by Radó who not only published
a long series of papers on this subject but is also the author of a great
monograph [144] containing a deep analysis of the serious difficulties of the
problem.

Besides the Lebesgue area L(S) of the surface S, defined with the help of
sequences of polyhedra quite similarly as in the case of surfaces represented
in the form z = f(x, y), it is convenient to introduce another kind of area
a(S) playing a role similar to the expression H(f, R) in the theory of surfaces
z = f(x, y). This is done, based on ideas of Geőcze {12} by Radó in
{49, 50, 51} and in [144]. The concept of a(S) can be used in examining
the properties of the surfaces of zero area {13, 53}.

The role of the surface area a(S) in calculating the Lebesgue area L(S)
is emphasized by the fact that, in many cases, we have a(S) = L(S) and,
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at the same time, a(S) is often equal to the value of the classical integral
formula

(7)
∫∫

R
W (u, v) dudv,

where
W (u, v) =

(
J1(u, v)2 + J2(u, v)2 + J3(u, v)2

)1/2

and

J1(u, v) =
∂(g, h)
∂(u, v)

, J2(u, v) =
∂(h, f)
∂(u, v)

, J3(u, v) =
∂(f, g)
∂(u, v)

are Jacobians. Radó {52} has shown that the value of (7) is always ≤ L(S),
whenever the partial derivatives fx, fy, gx, gy, hx, hy exist a.e. in R.

In the general case, Radó has shown in {54} that, instead of the concept
of functions of bounded variation and absolutely continuous in the Tonelli
sense, it is possible to introduce the concept of a surface S of essential
bounded variation and essentially absolutely continuous, respectively, fur-
ther instead of the ordinary Jacobians Ji, essential generalized Jacobians
and, with the help of them, a generalized function We(u, v). Now if L(S)
is finite, then S is of essential bounded variation, We(u, v) exists a.e. on R
and we have the inequality

∫∫

R
We(u, v) du dv ≤ L(S).

The sign of equality holds if S is essentially absolutely continuous. Moreover,
if the partial derivatives fx, . . . , hy exist a.e. in R, then We(u, v) can be
replaced here by W (u, v). As to the equality a(S) = L(S), it holds whenever
L(S) is finite and also if a(S) = 0.

Radó’s results in the theory of surface area play, of course, an important
role in his monograph on a famous question in differential geometry [142].
He also published a monograph together with Reichelderfer [145], where the
methods developed in the theory of surface area play an essential role. In
his last papers, he combines the methods of this theory with methods of
general measure theory {52} and of three papers written in collaboration
with E. J. Mickle {31, 32, 33}.

Geőcze and Radó were decisive personalities in the theory of surface area
and their works are quoted everywhere in the literature of this important
chapter of Analysis.
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György [George] Alexits (1899–1978) became later a famous re-
searcher in the theory of orthogonal series; however, one of his early papers
{2} is an essential contribution to an important chapter of real analysis,
namely to the theory of Baire functions. A paper of Pál [Paul] Ver-
ess (1893–1945) {67} is concerned with the same theory. Both papers are
quoted in the monograph of Hans Hahn (Reelle Funktionen, Leipzig, 1932).
Veress was the author of the first textbook on real analysis in Hungarian.

At the beginnings of functional analysis integral equations enjoyed a lot
of attention. They are of the form

ϕ(s) = f(s) + λ

∫ b

a
K(s, t)f(t) dt,

where ϕ is a continuous function on [a, b], λ is some complex parameter,
K(s, t) is continuous on [a, b] × [a, b] and f(t) is the unknown function.
For example, the Dirichlet problem could be reduced to such an integral
equation. David Hilbert, in his very famous and fundamental paper of 1906,
replaced the integral equation by an older concept of an infinite system of
linear equations. Let un be a complete orthonormal sequence of continuous
functions on [a, b]. If f is a solution of the equation, then we can consider
the generalized Fourier coefficients

kij =
∫ b

a

∫ b

a
k(s, t)ui(s)uj(t) ds dt,

xi =
∫ b

a
ϕ(s)ui(s) ds and yi =

∫ b

a
f(s)ui(s) ds.

In this way we arrive at the infinite system of linear equations

yi + λ
∞∑

j=1

kijyj = xi,

where the sequences xi and yi are square summable and kij is an infinite
matrix (of a certain bilinear form). Hilbert himself worked with square
integrable sequences and introduced the important concepts of continuity
and complete continuity, mostly for symmetric bilinear forms. It is not our
aim to give more details about Hilbert’s work on integral operators, we want
to turn to the work of Riesz on completely continuous operators.

His lecture delivered in a session of the Hungarian Academy of Sci-
ences in 1916 appeared in the journal Mathematikai és Természettudományi
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Érteśıtő with the title Lineáris függvényegyenletekről in Hungarian {60} in
1917, and the German translation Über lineare Funktionalgleichungen {61}
was published in 1918. The subject of this paper is the invertibility of cer-
tain transformations and Riesz gave the definition and spectral theory of
completely continuous transformations. He works on the space of all con-
tinuous functions on an interval, but he notes that similar methods work
on other function spaces, i.e. on L2, where they are even simpler. He uses
the norm of a function f : ‖f‖, which is the maximal value of the function∣∣f(x)

∣∣ . The same concept and the same notation is standard today. He car-
ried over Hilbert’s definition of a completely continuous bilinear form (based
on the weak topology) to the new situation. He defined a linear mapping as
completely continuous if the image of a bounded sequence is compact. (In
today’s language one would replace “compact” by “precompact” or by “rel-
ative compact”.) The novelty of his paper is that he realized that Fréchet’s
concept of compactness is the proper tool to deal with completely continu-
ous operators and he uses only the axiomatic definition of norm years before
it was introduced under the name of “Banach space”. He gives in an en-
tirely geometric language what is known nowadays as the Riesz–Fredholm
theory of compact operators.

In 1918 Riesz left Kolozsvár, after the World War I the town became
part of Roumania. For two years Riesz lived in Budapest and in 1922 he
became professor of the newly founded university at Szeged.

A partially ordered real linear space L has an order structure which
is compatible with the linear structure. This means, that for any pair of
elements f and g in L satisfying f ≤ g it follows that f + h ≤ g + h
holds for all h ∈ L and af ≤ ag holds for all real numbers a ≥ 0. If, in
addition, the order structure in L is a lattice structure, then L is called
a Riesz space. In the present language Frédéric Riesz was interested in
the ordered dual of an ordered vector space and the basic example was the
space of continuous functions. His lecture at the International Mathematical
Congress at Bologna in 1928 was devoted to this subject and he returned
to it in an 1940 Annals of Mathematics paper (which was the translation
of his 1937 inaugural lecture at the Hungarian Academy of Science). Riesz
put emphasis on the following decomposition property: If f1 + f2 = g1 + g2,
then there are elements f11, f12, f21 and f22 such that f1 = f11 + f12,
f2 = f21 + f22, g1 = f11 + f21 and g2 = f12 + f22. In the space of continuous
functions one can choose f11 := min (f1, g1) and f22 = f1 +f2−max (f1, g1).

Between 1938 and 1948 Riesz dealt in eight papers with ergodic theorems.
The ergodic and quasi-ergodic hypothesis were born in statistical mechanics
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and von Neumann gave the following mathematical formulation. Let H be
a Hilbert space and T be a bounded linear transformation on H. According
to von Neumann’s mean ergodic theorem the averages

sn(f) :=
1
n

(
f + Tf + · · ·+ Tn−1f

)

converge to a T -invariant vector for every vector f ∈ H, when T is a unitary
operator. Riesz gave a very elegant proof for von Neumann’s result. Riesz
showed that the orthogonal complement of the set

{
f − sn(f) : n ∈ N, f ∈ H}

is the fixed point set of T . From this fact one can prove the convergence
of the averages and the proof requires only the hypothesis ‖Tf‖ ≤ ‖f‖ for
every f ∈ H, that is T is a contraction. The Hilbert space version of the
mean ergodic theorem corresponds to L2 spaces and Riesz considered other
Lp spaces as well. Much later ergodic theory appeared again in Hungarian
functional analysis in the context of operator algebras: István Kovács and
József Szűcs obtained the first mean ergodic theorem in von Neumann
algebras {25}.

Their result implies that if α is an automorphism of a von Neumann
algebra admitting a faithful normal invariant state, then the averages

sn :=
1
n

(
I + α + · · ·+ αn−1

)

converge to a conditional expectation onto the fixed point algebra, pointwise
in the strong operator topology.

John von Neumann was born Neumann János in 1903 in Budapest.
He was a child prodigy, a prodigious student and he left his mark not only on
pure mathematics but on theoretical physics, on meteorology, on economics,
on digital computers and on more. He was the mathematician admired by
most scholars outside of his own discipline. In its December 24 issue in
1999, The Financial Times has declared John von Neumann to be “Man of
the Century”.

In the years 1914–21 von Neumann studied in Budapest’s Lutheran
Gymnasium. In 1921 he went to become a chemical engineer first to Berlin
University and then in 1923 he took the entrance examination for the
prestigious course in the chemical engineering department of the famous
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Eidgenössische Technische Hochschule in Zürich. When Hermann Weyl was
absent from Zürich, the undergraduate chemist von Neumann took over the
teaching of some of his classes. During his university years at the ETH,
von Neumann was passing courses in Budapest University (which he never
attended) from where received his Ph.D. with highest honors in 1925.

In early autumn of 1926 von Neumann arrived in Göttingen. He imme-
diately learnt quantum theory from Heisenberg’s lectures. Von Neumann
became an axiomatizer of quantum mechanics on behalf of the so-called
Copenhagen school (which did not include Schrödinger.) To Hilbert’s de-
light, von Neumann’s mathematical exposition made much use of Hilbert’s
own concept of Hilbert space. However, it is not sure that axiomatization
of the Hilbert space and its linear operators (as a substitute for infinite ma-
trices) by the twenty-three-year-old von Neumann was to Hilbert’s delight.
Our present concept of Hilbert space, infinite dimensional complex vector
space endowed with an inner product whose metric is complete and sepa-
rable, was formulated by von Neumann. The rigorous quantum mechanics
required the use of unbounded operators defined only on a subspace of a
Hilbert space. Von Neumann developped several technicalities concerning
such operators. The role of the graph, the difference between symmetric and
selfadjoint operators, the spectral decomposition of unbounded selfadjoint
operators were discovered by him. In his excellent textbook {29} Peter
Lax makes the following historical comment: In the 1960s Friedrichs met
Heisenberg, and used the occasion to express to him the deep gratitude of the
community of mathematicians for having created quantum mechanics, which
gave birth to the beautiful theory of operators in a Hilbert space. Heisen-
berg allowed that this was so; Friedrichs then added that the mathematicians
have, in some measure, returned the favor. Heisenberg looked noncommit-
tal, so Friedrichs pointed out that it was a mathematician, von Neumann,
who clarified the difference between a selfadjoint operator and one is merely
symmetric. “What’s the difference,” said Heisenberg.

After some earlier work on single operators, von Neumann turned to
families of operators. He initiated the study of rings of operators, which are
commonly called von Neumann algebras today. The papers which constitute
the series “Rings of operators” opened a new field in mathematics and
influenced research for half a century (or even longer). In the standard
theory of modern operator algebras, many concepts and ideas have their
origin in von Neumann’s work.

A von Neumann algebra consists of bounded linear Hilbert space oper-
ators. The characteristic feature of the concept of von Neumann algebra is
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its very rich structure. A von Neumann algebra contains the spectral pro-
jections of all selfadjoint operators belonging to the algebra. In particular,
there are many orthogonal projections in the algebra itself. Roughly speak-
ing, the point in the concept of von Neumann algebra is that formation of
product and spectral diagonalization of selfadjoint elements are posssible
within the algebra. It turns out that the projections of a von Neumann
algebra form a lattice in the sense that any two of them have a least up-
per bound and a greatest lower bound with respect to an appropriate and
natural ordering. The lattice of projections is the starting point in the clas-
sification of von Neumann algebras and a ground for quantum logic. Von
Neumann algebras are classified in terms of the range of a dimension func-
tion defined on the lattice of projections. The dimension function is the
extension of the simple concept of rank (for matrices) and the peculiar-
ity of the subject begins with the observation that in nontrivial cases this
“rank” can be noninteger. Below the classification of von Neumann alge-
bras is described. Also, the influence of measure theory on early operator
algebra theory is demonstrated by a comparison of a measure-theoretic con-
struction of Alfréd Haar with the dimension function of Murray and von
Neumann. This example shows that the connection with measure theory
and ergodic theory has been very important for operator algebras since the
very beginning.

We denote by B(H) the set of all bounded operators acting on the
Hilbert space H. For a subset S ⊆ B(H), its commutant S ′ is defined as
the set of operators commuting with S:

S ′ = {
K ∈ B(H) : KS = SK for all S ∈ S}

.

Note that S ⊆ (S′)′ holds obviously for any S ⊆ B(H). A family of opera-
tors acting on a Hilbert space and containing the identity operator is called a
von Neumann algebra if it contains the adjoint, the linear combinations and
the products of its elements and forms a closed subspace of the space of all
bounded operators with respect to the topology of pointwise convergence.
A von Neumann algebra is linearly spanned by its selfadjoint elements and
the spectral resolution of the latter ones lies conveniently in the algebra.
One of the first results of von Neumann, the von Neumann’s double com-
mutant theorem, was an equivalent algebraic definition of von Neumman
algebras. Von Neumann’s double commutant theorem asserts that a family
of operators is a von Neumann algebra if and only if it contains the adjoint
of its elements and coincides with its second commutant (that is, the com-
mutant of its commutant). The remarkable point in the double commutant
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theorem is the lack of any topological requirement. In the concept of von
Neumann algebra, topology and pure algebra are in great harmony.

The selfadjoint idempotents, called (orthogonal) projections, of a von
Neumann algebra form an orthomodular, complete lattice with respect to
the lattice operations ∧, ∨, ⊥ and the partial ordering ≤. Below we de-
scribe how these operations are defined in terms of the algebaric operations.
The projections are in natural correspondence with the closed subspaces of
the underlying Hilbert space and the set theoretical inclusion of subspaces
induces a partial ordering on the projections. This ordering is equivalently
defined as

(8) p ≤ q if pq = p.

The smallest projection with respect to this ordering is 0 and the largest
one is the identity. For projections p and q, their meet (that is, greatest
lower bound) p ∧ q is the orthogonal projection onto the intersection of the
range spaces of p and q. The projection p∧ q may be obtained as the strong
limit of (pq)n as n → ∞. The projection p ∨ q is defined as the smallest
upper bound in the lattice of projections. (p ∨ q projects onto the closed
subspace spanned by the range spaces of p and q.)

The orthocomplementation ⊥ is defined as p⊥ = I − p. The ortho-
modularity of the lattice of projections means that the following so-called
orthomodularity condition is fulfilled in the lattice:

(9) q = p ∨ (p⊥ ∧ q) for p ≤ q.

This relation is a weakening of the distributivity condition and is an essential
property of the lattice of projections.

Let p and q be two projections in a von Neumann algebra M. The
projections p and q are called equivalent (with respect to M), p ∼ q in
notation, if there is an operator x in M such that p = x∗x and q = xx∗.
In terms of the underlying Hilbert space, the equivalence of p and q means
that there exists a partial isometry x in the given von Neumann algebra
which sends the range space of p isometrically onto the range of q. An
extended positive-valued function D : P(M) → [0,∞] on the set P(M) of
all projections ofM is called a dimension function if it satisfies the following
requirements:

(a) D(p) > 0 if p 6= 0 and D(0) = 0.

(b) D(p) = D(q) if p and q are equivalent projections.
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(c) D(
∑

i pi) =
∑

i D(pi) if pipj = 0 whenever i 6= j.

It is fundamental in the theory of von Neumann algebras that the dimension
function is determined up to a positive multiple if the center of the algebra
is trivial, that is, the algebra is a factor.

We sketch how the dimension function was obtained in {34}. A nonzero
projection is called finite if it is not equivalent to a smaller projection.
“Smaller” is understood here in the sense of the partial ordering (8). Murray
and von Neumann proved in {34} that if f is a finite and e is an arbitrary
projection in a factor then there exists a unique integer k such that

f = q1 + q2 + · · ·+ qk + p,

where q1, q2, . . . , qk are pairwise orthogonal projections equivalent to e, p
is a projection orthogonal to all qi and equivalent to a subprojection of f .
This integer k is denoted by

(10)
[
f

e

]

and this is the number of projections equivalent to e which may be packed
into f in a pairwise orthogonal way. (10) is an integer and is only an
approximate measure of the ratio of the subspaces corresponding to f and
e. Now we fix a finite non-zero projection e0 and a sequence en of non-zero
finite projections converging to 0. The limit

(11) lim
n→∞

[ f
en

]
[ e0
en

]
=

(
f

e0

)

forms a quantitative ratio of relative dimensionality, when the sequence en

converges to 0 strongly. (Heuristically, the projection e0 will have dimen-
sion 1, first we estimate the dimension en by comparison with e0 and then
the dimension of f is estimated by comparison with fn.)

The relative dimension was defined in {34} as

D(e) =





0 if e = 0,
(

e

e0

)
if e is finite,

+∞ if e is not finite.
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The use of the relative dimension in the classification of factors will be
discussed below. Now we make a detour and compare the construction
of the dimension function with that of the Haar measure on a locally
compact topological group. The existence of a measure on an abstract
locally compact group which is invariant under right translations was proven
in 1932 by the Hungarian mathematician Alfréd Haar {17}. Von Neumann
was in contact with Haar and knew his celebrated result before it was
published. It is instructive to trace back the dimension function of a ring
of operators to Haar’s beautiful idea for the construction of the invariant
measure.

Let G be a locally compact topological group and for a precompact
B ⊂ G and an open U ⊂ G denote by h(B; U) the number which gives
at least how many right-translates of the set U are needed to cover the
set B. This is an integer showing the size of B compared to U . h(B; U)
is translation invariant by construction. Of course, the smaller the U , the
larger the h(B; U). The latter one may increase to infinity when U runs
over the neighbourhoods of a point. We need a normalization of h(B; U).
A compact set S of nonempty interior is chosen to normalize the measure.
(S will be a set of unit measure.)

(12) lim
n

h(B;Rn)
h(S;Rn)

= µ(B)

gives the measure of a compact set B if (Rn) is the filter of neighbourhoods
of a point. The set function µ is right-translation invariant and additive
on disjoint compact sets. After the measure µ of compact sets is obtained,
measure-theoretic arguments are used to extend µ to a larger class of sets.

It is difficult to refrain from comparing Haar’s idea with the construc-
tion of dimension function of projections in a von Neumann algebra: the
similarity between the formulas (12) and (11) is striking. (12) yields the
right-translation invariant size of subsets of a group G and (11) defines an
invariant under partial isometries for projections in a von Neumann algebra.
This example demonstrates how measure-theoretic arguments can survive
in the apparently different discipline of operator algebras. Von Neumann
devoted two papers to Haar measure. In {39}, he gave another proof for
the existence and uniqueness in the compact case and in {40} he obtained
uniqueness in the general locally compact case. Von Neumann presented
several courses on measure theory and invariant measures at the Institute
for Advanced Study. His lecture notes were published in 1999 by the Amer-
ican Mathematical Society {43}. For him operator algebra theory was a
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noncommutative outgrowth of measure theory. Rosenberg’s article (in this
volume) is a complementary reading about noncommutative harmonic anal-
ysis {62}.

Now we continue the comparison of the relative dimension and Haar
measure. The objective of integration theory is to construct a linear func-
tional, called integral, from a certain measure. Murray and von Neumann
extended the relative dimension functional to arbitrary selfadjoint elements
of the given von Neumann algebra M. Let A = A∗ ∈M and let

∫
λ dE(λ)

be its spectral resolution with a projection-valued measure E on the real
line. Then by property (c) of the relative dimension, D(E) is an ordinary
measure and

(13) TrM(A) =
∫

λ dD(E)(λ)

determines a real number when the integral on the right-hand side exists.
The inconveniency of definition (13) is in the fact that for noncommuting
self-adjoint operators A and B one cannot say much about the spectral
resolution of A+B in terms of the spectral resolutions of A and B. Murray
and von Neumann expected that

TrM(A + B) = TrM(A) + TrM(B)

but this was proven in {34} only for commuting A and B. The general
case was postponed to the subsequent paper {35}. It was established there
that the abstract trace functional TrM is linear. TrM yields an analogue
of an integral. (This analogy has developed into an operator-algebraic
integration theory, including Lp spaces, measurable operators and so on. For
this Segal proposed the term “noncommutative integration” in {64} since a
commutative von Neumann algebra admits representations by functions.)

In {37} von Neumann established the structure of commutative von
Neumann algebras: The selfadjoint part of a commutative von Neumann
algebra consists of all bounded measurable functions of a certain selfadjoint
operator. The classification of nonabelian algebras was carried out in {34}.
Murray and von Neumann recognized that the center of the algebra plays
an important role in the structure problem. The center of a von Neumann
algebra M is a von Neumann algebra again and if it contains a projection z,
thenM becomes the direct sum of zM and (I−z)M. Hence to decrease the
complexity of an algebra, one may assume that its center does not contain a
nontrivial projection. A von Neumann algebra is called a factor if its center
is trivial, that is, if it contains the multiples of the identity operator only.
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On a von Neumann factor, the dimension function is unique up to a scalar
multiple. Murray and von Neumann proved that there are the following
possibilities for the range of the dimension function of projections:

(I n) {0, 1, . . . , n}, where n is a natural number.

(I∞) {0, 1, . . . , n, . . . ,∞}.

(II 1) The interval [0, 1].

(II∞) The interval [0, +∞].

(III ) The two-element set {0,+∞}.

In this classification all von Neumann factors were found to belong to the
classes type I, type II or type III. (However, it is worth mentioning that
at the time of the discovery of the classification it was not known whether
type III factors exist.)

Factors are the building blocks of von Neumann algebras, hence the un-
derstanding of their structure has primary interest. According to the range
of the dimension function of projections, a factor might be “trivial”, “regu-
lar” or “singular”. The trivial or type I is characterized by integer dimen-
sion, in the regular or type II case the dimension function has a continuous
range and the singular or type III case is free of finite nonzero projections.
To investigate the type I and type II cases Murray and von Neumann could
utilize the dimension function; however, that tool was insufficient for type
III factors. To have a feeling about the “singularity” of type III factors, one
can think of a measure space in which all nonempty measurable sets have
infinite measure. The full understanding of the type III case needed half
a century. Ergodic theory was the first source of factors. Classification of
von Neumann algebras is strongly related to conjugacy classes of transfor-
mations of measure spaces. The Tomita–Takesaki theory provided the new
tools and revolutionized operator algebras in the 1970’s. (The book {65}
by Serban Strătilă and László Zsidó is a suggested introductory reading
about von Neumann algebras.)

Factors of type I are characterized by the existence of minimal projec-
tions. If a maximal pairwise orthogonal family of minimal projections has
cardinality n, then the factor is isomorphic to B(H), where H is a Hilbert
space of dimension n. In particular, for every s ∈ N ∪ {+∞}, there exists
only one factor of type I s up to isomorphism. The existence of factors of
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type II and type III is not at all apparent, however. Murray and von Neu-
mann constructed factors of type II 1 and type II∞ by means of ergodic
theory in {34}. Below we describe a method called “group measure space
construction”. This construction yields factors of different type.

Let (X,B, µ) be a measure space and let G be a countable group
of measure-preserving transformations of X. The group measure space
construction yields a von Neumann algebra acting on the Hilbert space
L2(µ) ⊗ l2(G), which is regarded as a set of functions ξ defined on G and
with values in L2(µ). (In this identification δg ⊗ f corresponds to δg × f for
g ∈ G and f ∈ L2(µ).) For every f ∈ L∞(µ) define a bounded operator Mf

acting on L2(µ)⊗ l2(G) as

(14)
(
(Mfξ)(g)

)
(x) = f(g−1x)

(
ξ(g)(x)

) (
ξ ∈ L2(µ)⊗ l2(G), g ∈ G

)

and for every g ∈ G we define a unitary Vg by the formula

(15) Vg(ξ)(g′)(x) = ξ(g−1g′)(x)
(
ξ ∈ L2(µ)⊗ l2(G), g′ ∈ G

)
.

Let M(µ,G) be the von Neumann algebra generated by the operators
{

Mf : f ∈ L∞(µ)
} ∪ {Vg : g ∈ G}.

Then the choice of the unit circle with Lebesgue measure and (the powers of)
an irrational rotation yields a factor of type II 1. The real line with Lebesgue
measure and the rational translations give a factor of type II∞. A factor of
type III was constructed only in the third paper of the “Rings of Operators”
series {42}. Von Neumann modified the above measure theoretic procedure
by allowing measurable transformations preserving measure 0, nowadays
they are called nonsingular transformations. In this way he produced a
factor of type III from the Lebesgue measure of the real line and the
group of all rational linear transformations. (Although Murray and von
Neumann used the group measure space construction for the production of
factors, which are called Krieger factors nowadays, the difficult question
of isomorphism of factors that arose from different actions was clarified
only 40 years later {28}. Krieger proved that two ergodic nonsingular
transformations of a Lebesgue space give rise to isomorphic factors if and
only if the two transformations are orbit equivalent.)

Von Neumann believed that among all factors the case II 1 has the
strongest interest and expected that not all factors of type II 1 are iso-
morphic to each other. Von Neumann preferred the type II 1 case for two
main reasons. One of these is the nice behavior of the unbounded operators
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affiliated with a type II 1 factor. It is well-known that addition and multi-
plication of such operators are particularly troublesome. The crux of the
difficulty lies in the unrelatedness of the domain and range of such an op-
erator with the domain of another one. Much of the difficulties evaporates,
however, if one considers selfadjoint operators with spectral resolution in a
factor of type II 1. The other reason why von Neumann attributed great
importance to continuous finite factors is that he interpreted this lattice as
the proper logic of a quantum system. The lattice of projections of such a
factor is modular, that is, in addition to the orthomodularity property (9),
the stronger condition

p ∨ (p′ ∧ q) = (p ∨ p′) ∧ q for p ≤ q

holds for every p′ (and not only p′ = p⊥). (Non-modularity of the projection
lattice of an infinite dimensional factor of type I was considered by von
Neumann as a pathology of the usual Hilbert space quantum mechanics as
a non commutative probability theory.)

The paper “Rings of Operators IV” {36} has two important achieve-
ments concerning type II 1 factors. It is proved that there exist nonisomor-
phic type II 1 factors, and that there is only one hyperfinite type II 1 factor.
A von Neumann factor is called hyperfinite if it is generated by an increas-
ing sequence of finite dimensional subalgebras. (Nowadays such algebras
are preferably called approximately finite dimensional, or AFD for short.)
The hyperfinite type II 1 factor R may be produced in many different ways;
for example, the above group measure space construction yields R. The
uniqueness of R reminds us of the uniqueness of a finite, atomless separable
measure space. Factors of type II 1 did not play much role in the theory of
von Neumann algebras until recent years. After Jones founded his index
theory {19}, the study of subfactors of type II 1 factors has received much
interest. Even a concise review of index would require a lot of space (cf.
{23}) but its flavour is given below.

LetN be a von Neumann algebra acting on a Hilbert spaceH and having
commutant N ′. Assume that both N and N ′ are type II 1 factors and let
TrN and TrN ′ be the canonical normalized traces. For any vector ξ ∈ H
the projection [N ξ] onto the closure of N ξ belongs to N ′ and similarly
[N ′ξ] ∈ N . The quotient

(16) dimN (H) ≡ TrN ′
(
[N ξ]

)

TrN
(
[N ′ξ]

)
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is known to be independent of the vector ξ and is called the coupling
constant since the work of Murray and von Neumann. In a certain sense
the coupling constant is the dimension of the Hilbert space H with respect
to the von Neumann algebra N . (When N ≡ CI, the coupling constant is
the usual dimension of H, hence the notation dimN (H).) V. Jones used the
coupling constant to define the size of a subfactor of a finite factor. He was
inspired by the notion of the index of a subgroup of a group, he therefore
called this the relative size index.

Let N be a subfactor of a type II 1 von Neumann factor M possessing
a unique canonical normalized trace TrM. The index is obtained as the
quotient

(17) [M : N ] =
dimN (H)
dimM(H)

.

The number [M : N ] is not always an integer, and the possible values of
the index form the following set:

(18) {t ∈ R : t ≥ 4} ∪ {
4 cos2(π/p) : p ∈ N, p ≥ 3

}
.

This is the fundamental result of Jones which influenced a huge amount of
subsequent research and renewed the almost forgotten coupling constant.
Vaughan F. R. Jones was awarded the Fields Medal in 1992 for discovering
a surprising relationship between von Neumann algebras and geometric
topology (see {4} for a review). The index theorem was the first step towards
his discovery.

Construction of factors was the main activity in the field of operator al-
gebras after the papers “Rings of operators” for many years. It is out of the
scope of this survey to summarize the constructions that were used to get
more and more factors. Instead, we turn to the very end of the story. By
the time the paper “Rings of Operators IV” was published (year 1943) it
was known that the classes of type I n, II 1 contain a unique (up to algebraic
isomorphism) hyperfinite von Neumann factor. However, the types II∞
and III remained unclear for many years. In 1956 Lajos Pukánszky con-
structed two different factors of type III {47, 24}. After his breakthrough
infinitely many factors were constructed but the final classification was not
achieved until the discovery of new invariants. Operator algebras achieved
a revolutionary development in the late 60’s after a relative isolation of 30
years.
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Type III factors may be produced by means of infinite tensor product.
Let M2(C) be the algebra of 2-by-2 matrices. Fixing 0 < λ < 1 we can
define a state ϕ on this algebra as follows.

ϕ(A) = Tr (AD), where D =
( 1

λ+1 0
0 λ

λ+1

)
.

(The matrix D is called the density matrix inducing ϕ.) A representation
of the inductive limit of the n-fold tensor product of copies of M2(C) can
be constructed by means of tensor product states of copies of ϕ. (The so-
called Gelfand–Naimark–Segal construction is involved here, but we do not
give more details.) The generated von Neumann algebra is a hyperfinite
factor. For λ = 1, the type II 1 factor shows up, for λ = 0 we obtain a type
I∞ factor and for 0 < λ < 1 a type III λ factor Rλ appears. In fact, Rλ

is the only hyperfinite type III λ factor. Confined to hyperfinite type III λ

factors with 0 < λ < 1 the Connes spectrum is a complete invariant due
to the results of Alain Connes. He received the Fields Medal in 1983 for
his work on von Neumann algebras including the classification of type III
factors, approximately finite dimensional factors and automorphisms of the
hyperfinite type II 1 factor {3}. After the work of Connes, the uniqueness
of the hyperfinite type III 1 factor remained undecided. This question was
answered positively somewhat later by Uffe Haagerup {16}. (In the case of
type III 0, there are infinitely many nonisomorphic hyperfinite factors.)

Quantum mechanics influenced von Neumann to develop several ideas.
He was the first person who summarized quantum theory in a comprehensive
and mathematical form, his monograph [119] has been a standard reference
in mathematical physics. Operator algebras consist of bounded operators
but quantum mechanics needs unbounded ones. Von Neumann understood
the importance of maximal symmetric operators on Hilbert spaces and
introduced the entropy of statistical operators ([119] and {46}. The von
Neumann entropy got a new information theoretic interpretation recently.

Béla Szőkefalvi-Nagy was born in Kolozsvár in Transylvania on July
29, 1913. His father was also a mathematician and his mother was a high
school teacher. In his scientific papers he did not use his full name but the
abbreviation B. Sz.-Nagy. Native Hungarians have always been surprised
about the strange pronounciation of his name by foreigners. After World
War I, the family moved to Szeged (Hungary).

During his university studies Sz.-Nagy was deeply influenced by Frigyes
Riesz, Béla Kerékjártó and Alfréd Haar. Von Neumann’s book on the foun-
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dations of quantum mechanics [119] and van der Waerden’s book on group
theory and quantum mechanics were his favorite readings. This was the
time when quantum theory revolutionized both physics and mathematics.
Between 1937 and 1939 Sz.-Nagy spent some time in Leipzig, Grenoble and
Paris. From 1939 he worked for the University of Szeged; he became full
professor in 1948.

Sz.-Nagy had rather wide mathematical interests. In one of his first
papers he gave a new proof for Stone’s theorem about the spectral rep-
resentation of a strongly continuous one-parameter semigroup of unitary
Hilbert space operators. Such a semigroup U(t) is obtained in the form

U(t) =
∫ ∞

−∞
eiλt dE(λ),

by means of a projection-valued measure E on the real line. Later he
extended this result to semigroups of normal operators. He also wrote a very
concise book on spectral theory. Generations learnt the spectral theorem
from [177] published in 1942 by Springer Verlag.

Although Sz.-Nagy contributed to the theory of Fourier series and to
approximation theory, the center of his interest was the Hilbert space and
its linear operators. The basic example of a Hilbert space is the L2 space,
the space of square integrable functions over a measure space. On top
of the standard Hilbertian structure L2 has an order structure which is
determined by the cone of positive functions. In an early paper Sz.-Nagy
gave an abstract characterization of the positive cone. In other words, he
listed the requirements of a cone of an abstract Hilbert space under which
an isomorphism of the space with an L2 space exists, such that the positive
cones correspond to each other. He also proved that an invertible Hilbert
space operator whose positive and negative powers are uniformly bounded
is similar to a unitary operator.

The analysis of Hilbert space operators mostly concerns some particular
classes of operators such as self-adjoint, unitary etc. The highlight of the
scientific activity of Sz.-Nagy was the theory of contractions. It started with
the unitary dilation theorem obtained in 1953. Let H be a Hilbert space
and let T be a general bounded linear operator. Hence ‖T‖ is finite and
multiplying T by some constant we can achieve that ‖T‖ ≤ 1. (Such a T is
called a contraction.) The dilation theorem says that there exist a Hilbert
space K ⊃ H and a unitary operator U on K such that

Tnf = PUnf and (T ∗)nf = PU−nf (f ∈ H)
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for any n ∈ N, where P denotes the orthogonal projection from K onto H.
The space K could be the direct sum of infinitely many copies of H and U
can be written in the form of an infinite matrix (with operator entries) as
follows:

U =




...
...

...
...

· · · I 0 0 0 · · ·
· · · 0 D∗ T 0 · · ·
· · · 0 −T ∗ D 0 · · ·
· · · 0 0 0 I · · ·

...
...

...
...




,

where D = (I − T ∗T )1/2 and D∗ = (I − TT ∗)1/2. Since the structure of
a unitary operator is rather well-understood, the contractions could be
investigated through the dilation.

In the study of contractions Sz.-Nagy had a longstanding cooperation
with Ciprian Foiaş from 1956 to the end of his life. They wrote together 50
papers and the monograph [44]. An interesting class of operators is formed
by the completely non-unitary contractions, they do not act unitarily on any
subspace. The class C0 is formed by the completely non-unitary contractions
T for which there exists a function 0 6= w ∈ H∞ such that w(T ) = 0. An
operator T ∈ C0 has the following remarkable properties:

(1) For every vector f , Tnf → 0 and (T ∗)n → 0 as n →∞.

(2) T has a nontrivial invariant subspace.

Recall that a linear operator T of a finite dimensional space always admits
a polynomial p such that p(T ) = 0. The definition and several proper-
ties of the class C0 resemble the finite dimensional scenario. Sz.-Nagy and
Foiaş found a quasisimilarity model for the C0-contractions and a unitary
equivalence model for arbitrary completely non-unitary contractions. Their
lifting theorem is connected with the minimal isometric dilation of a con-
traction T . Let Ti be a contraction acting on a Hilbert space Hi and let
Vi be the minimal isometric dilation of Ti acting on the space Ki, i = 1, 2.
If a bounded linear operator X from the space H1 to H2 has the property
T2X = XT1, then there exist an operator Y from the space K1 to K2 such
that V2Y = Y V1. The lifting theorem of Sz.-Nagy and Foiaş extends ear-
lier results of T. Ando and D. Sarason. Many applications are known, in
particular to interpolation problems.
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[44] Foiaş, Ciprian – Sz.-Nagy, Béla, Harmonic Analysis of Operators on Hilbert Space,
North-Holland Publishing Co. (Amsterdam, 1970).
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[157] Riesz, Frigyes – Sz.-Nagy, Béla, Leçons d’Analyse Fonctionnelle, Akadémiai Kiadó
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242 Á. Császár and D. Petz
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{47} L. Pukánszky, Some examples of factors, Publ. Math. Debrecen, 4, 135–156 (1956).
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{49} Radó T., A felsźınmérés elméletéhez [On the theory of measuring surface area],
Mathematikai és Természettudományi Érteśıtő, 45 (1928), 225–244.
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{52} T. Radó, On the derivative of the Lebesgue area of continuous surfaces, Fund.
Math., 30 (1938), 34–39.
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Dénes Petz
Budapest University of Technology
and Economics
Department of Analysis
Budapest H–1111
Egry J. u. 1.
Hungary

petz@math.bme.hu


