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Stochastics:
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Information Theory has been created by Claude Shannon as a mathemat-
ical theory of communication. His fundamental paper {19} appeared in
1948. This was one of the major discoveries of the 20th century, establish-
ing theoretical foundations for communication engineering and information
technology. The key ingredients of Shannon’s work were (i) a stochastic
model of communication, (ii) the view of information as a commodity whose
amount can be measured without regard to meaning, and (iii) the emphasis
of coding as a means to enhance information storage and transmission, in
particular, to achieve reliable transmission over unreliable channels.

Today, the mathematical discipline built on these ideas is often called
Shannon theory, while the term information theory is frequently used in
a much broader sense. In the terminology we use here, information the-
ory – abbreviated as IT – is a branch of stochastic mathematics whose
characteristic tools are mathematical expressions interpreted as measures
of information. Problems relevant to information transmission and storage
that involve coding represent a central but by no means the only subject of
this theory. In fact, IT ideas turned out to be very useful in various fields of
pure and applied mathematics, such as combinatorial analysis, ergodic the-
ory, mathematical statistics, probability theory, etc. (But statistical inves-
tigations using the measure of statistical information introduced by Ronald
A. Fisher in 1925 are not considered pertaining to IT.)

Though IT was created effectively by Shannon alone, ideas of other sci-
entists did influence its birth and early development. Among these scientists
there were several Hungarians.

Shannon’s entropy, the basic measure of the amount of information, has
a close relationship to the concept of entropy in physics. The first to re-
late information and (physical) entropy was the Hungarian physicist Leo
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Szilárd (Z. Physik, Vol. 53, 1929, p. 840). A key inequality of IT known
as Kraft’s inequality is sometimes attributed also to Szilárd (e.g. in [154]),
though I could not confirm the correctness of this attribution. Of course,
Shannon did rely on the theory of communication available at the time, e.g.,
he gave special credit to Norbert Wiener for the “formulation of communi-
cation theory as a statistical problem”. A famous Hungarian contributor to
communication theory, explicitly mentioned by Shannon in {20} (on page
11) was Dénes Gábor (Nobel laureate, inventor of holography).

As a forerunner of IT, the work of Ábrahám Wald on sequential analysis
[192] deserves special emphasis, although the IT aspect of this outstanding
contribution to statistics has been recognized only later. The IT approach to
statistics is generally associated with the name of Solomon Kullback whose
book [98] systematically develops statistical applications of the information-
theoretic measure of distance of probability distributions, now called infor-
mation divergence (I-divergence), or Kullback–Leibler distance (also known
as relative entropy or information gain). It was, however, Wald who first
made essential use of I-divergence, without giving it a name. Kullback (loc.
cit., p. 2) writes: “Although Wald did not explicitly mention information in
his treatment of sequential analysis, it should be noted that his work must
be considered a major contribution to the statistical applications of infor-
mation theory.” For further details on Wald’s work in this regard we refer
to the Section on Mathematical Statistics.

Information theory in Hungary

Within Hungary, research in IT was initiated by Alfréd Rényi, in the fifties
(but the first to write about IT in Hungary was Albert Korodi, electrical
engineer, former coworker of Szilárd). Rényi wrote cca. 25 research papers
on IT and, not less importantly, started teaching IT at the Loránd Eötvös
University, Budapest; his Probability Theory textbook [152] includes an
Appendix on IT. The Eötvös University is still rather exceptional in having
IT in the curriculum of mathematics students; elsewhere, IT is mostly
pursued in electrical engineering departments. Among the mathematicians
covered in this volume, in addition to Rényi it was István Vincze who
devoted several papers to IT; these mainly address statistical applications
of IT. The extraordinarily rich life-work of Paul Erdős also contains some
papers related to IT, though this certainly was a side-issue for him. Today,
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the IT research group in Budapest established by Rényi enjoys international
reputation. Its contributions are outside the scope of this volume, but some
of them directly continuing and complementing Rényi’s work will be briefly
mentioned below.

Rényi always preferred brand new problems to already much investi-
gated ones, and also in IT he was looking for new directions as opposed
to the mainstream subject of coding theorems. His works on IT were
mostly concentrated around the following subjects: (i) amount of informa-
tion for non-discrete distributions (“dimensional entropy”) (ii) information
measures different from Shannon’s (“Rényi informations”) (iii) axiomatic
characterization of information measures (iv) asymptotic evaluation of the
amount of information provided by a statistical experiment. Rényi also ini-
tiated a systematic development of search theory that he regarded as a part
of IT.

Dimensional entropy

Rényi’s first paper on IT, joint with János Balatoni, appeared in 1956, see
the Selected Papers [151], paper [151, article 121]; also in the sequel, Rényi’s
papers will be referred to by their number in [151]. The main contribution
of the paper [151, article 121] was to clarify the relationship of Shannon’s
entropy formulas for discrete and continuous distributions, via the concept of
“dimensional entropy.” Rényi returned to this subject in several subsequent
papers, in particular, the results of the first publication were substantially
strengthened three years later [151, article 160]; they are reviewed below as
appearing there.

The entropy of a discrete random variable ξ whose distribution is
P = (p1, p2, . . .) is defined as

H(ξ) = H(P ) = −
∑

pk log2 pk,

and the entropy of a real-valued or vector-valued random variable with
density f(x) is defined as − ∫

f(x) log2 f(x) dx. While Shannon’s results
convincingly support the interpretation of discrete entropy as a measure
of information content, this interpretation does not directly carry over to
continuous entropy. Rényi gave a precise meaning to the interpretation of
continuous entropy as a “measure of information content up to an infinitely
large additive constant.”



526 I. Csiszár

Rényi defined the (information theoretic) dimension and the d-dimen-
sional entropy of a real-valued random variable ξ via the discrete approxi-
mations ξ(n) = [nξ]/n, n = 1, 2, . . . of ξ, by

d(ξ) = lim
n→∞

H(ξ(n))
log2 n

Hd(ξ) = lim
n→∞

(
H(ξ(n))− d log2 n

)

(the dimension resp. d-dimensional entropy of ξ is undefined if the corre-
sponding limit does not exist). He proved the following: Suppose that ξ(1) =
[ξ] has finite entropy. Then, if ξ is discrete, d(ξ) = 0 and H0(ξ) = H(ξ),
while if ξ has a density then d(ξ) = 1 and H1(ξ) is given by Shannon’s in-
tegral entropy formula. Moreover, if the distribution of ξ is a mixture of
a discrete and a continuous component, the latter having a density, then ξ
has dimension equal to the weight of the continuous component; the corre-
sponding d-dimensional entropy was also determined. Extensions of these
results to vector-valued random variables were also treated; the information
theoretic dimension of an Rd-valued ξ having a density equals the geometric
dimension d, and the corresponding d-dimensional entropy is given by Shan-
non’s integral formula. On the other hand, even for ξ taking values in the
unit interval, the dimension need not exist if ξ has a singular distribution.

Rényi [151, article 160] also considered discrete approximations other
than ξ(n) above. To any partition π of the range X of ξ into disjoint subsets
Xk there corresponds an approximation ξπ defined by ξπ = k if ξ ∈ Xk.
Extensions of “dimensional entropy” results to approximations of this kind
were given for the case when X was the unit interval and the Xk’s were
intervals of length ≤ ε with ε → 0. At the same time Vincze (Matema-
tikai Lapok, vol. 10, 1959, pp. 255–266) considered approximations of a
real-valued ξ corresponding to partitions into intervals “of equal interest,”
namely to partitions πn,Φ of the real line into intervals of Φ-measure 1

n ,
where Φ is a given probability measure interpreted as the distribution of
our interest. He showed (assuming regularity conditions) that

lim
n→∞ (H

(
ξπn,Φ

) − log2 n) = −
∫

log2

dF

dΦ
dF,

where F is the distribution of ξ. The integral here is the I-divergence of F
from Φ, thus Vincze’s result provided an interesting new interpretation of
I-divergence, as a measure of information relative to the distribution of our
interest.
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The concept of dimensional entropy was extended to a class of stochastic
processes by M. Rudemo {18}. Using this extension, Rényi immediately
established a maximum entropy property of Poisson processes, see [151,
article 228]: The maximal dimension of a homogeneous point process in
(0, T ) with density λ is equal to λT , and the Poisson process has the largest
λT dimensional entropy.

Let us mention some later developments, complementing Rényi’s work
on dimensional entropy. Imre Csiszár in {4} proved the following: For
a measure space (X, µ) where µ is a non-atomic σ-finite measure on X,
consider partitions πε of X into subsets of equal µ-measure ε, and let ξ be
an X-valued random variable. Then, subject to mild regularity conditions,
H

(
ξπε

) − log2
1
ε converges as ε → 0 to the generalized entropy of ξ with

respect to µ, that equals standard (continuous) entropy when X = Rd and
µ is the Lebesque measure, and equals negative I-divergence when µ is
a probability measure. József Fritz {11} proved the extension of Rényi’s
Poisson process result to point processes on arbitrary (nonatomic, separable)
measure spaces. Rényi did point out a relationship of his dimension (of
random variables) to Hausdorff dimension (of sets), see [151, article 175];
Péter Gács in {12} suggested a modified definition of information theoretic
dimension that leads to an even closer relationship of this kind.

Rényi informations

Rényi’s most widely known contribution to IT was to show that certain
quantities different from Shannon’s information measures come also into ac-
count as alternatives to the latter. These “informations of order α” are now
called Rényi informations. Rényi’s first publication about them appeared
in 1960, where he noted that “information quantities of order α were al-
ready investigated in the literature from other viewpoints,” the new results
consisted in “showing that some reasonable postulates can be satisfied only
by them and by Shannon’s entroy, and . . . how the known results on Shan-
non’s entropy generalize to information measures of order α.” Rényi’s best
known work on this subject is his Berkeley Symposium contribution [151,
article 180], one of Rényi’s most often cited papers.

Shannon’s entropy H(P ) of a probability distribution P = (p1, . . . pn),
measuring the average amount of information provided by a random ex-
periment whose possible outcomes have probabilities p1, . . . , pn, equals the
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(weighted) arithmetic mean of the individual informations Ik = log2
1
pk

as-
sociated with these outcomes.

The arithmetic mean is a special case (ϕ linear) of means of form
ϕ−1(

∑
pkϕ(Ik)), where ϕ is some strictly monotonic function. Rényi ar-

gued that means with non-linear ϕ might also be used, provided they sat-
isfy the intuitive requirement of additivity for independent experiments.
The exponential functions ϕ(x) = exp

{
(1 − α)x

}
(α 6= 1) meet that re-

quirement, and accordingly, Rényi defined his entropy of order α 6= 1 as
Hα(P ) = 1

1−α log2

∑
pα

k .
Since Hα(P ) converges to Shannon’s entropy H(P ) as α → 1, the latter

is regarded as entropy of order α = 1. Via similar considerations, Rényi
also defined I-divergence of order α (he used the term “information gain”),
of which standard I-divergence is the limit as α → 1. He also extended his
previous “dimensional entropy” results to entropy of order α.

The theory of generalized information measures initiated by Rényi’s
work has now an extensive literature. Since poorly motivated generaliza-
tions have also been published, it is important to note the Rényi did not
endorse those. He emphasized, see his 1965 survey paper [151, article 242],
that only such quantities deserve to be called information measures that
can be effectively used in solving concrete problems. Rényi was able to
find interesting problems whose solution involved entropy of order α 6= 1,
namely in the theory of random search (see the subsection on that topic).
Later, coding problems were also found that led to Rényi entropy, see Lo-
rain Campbell {2} and Csiszár {5}. The latter paper gives an operational
characterization of Rényi’s information measures (including an “order α”
analogue of Shannon’s mutual information, somewhat different from that
suggested by Rényi) within the standard Shannon theory framework.

In 1959, Yuri Linnik presented an information-theoretic proof of the cen-
tral limit theorem that intrigued Rényi. He observed that the essence of Lin-
nik’s idea was that convergence of a sequence of probability distributions Pn

to a limiting distribution P may be proved by showing that the I-divergence
of Pn from P converges to 0. Rényi hoped to simplify Linnik’s very diffi-
cult proof by using an I-divergence of order α, say with α = 2; this was
a major cause of his interest in generalized information measures. Rényi’s
hope to simplify Linnik’s proof did not come true, and it is still an open
question under what conditions does the I-divergence of the distribution of
the normalized sum of n independent random variables from the standard
normal distribution converge to 0 (only the case of identically distributed
summands comes close to be satisfactorily settled, see Andrew Barron’s pa-
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per {1}. On the other hand, Rényi showed in his Berkeley Symposium paper
[151, article 180] that the “information theoretic method” leads to a simple
proof of the convergence of n-step conditional distributions of a stationary
(finite state) Markov chain to the stationary distribution, and I-divergence
of order α and some more general expressions are equally suitable for that
purpose. The last observation motivated Csiszár {3} to introduce a general
class of information-type measures of distance of probability distributions,
corresponding to arbitrary convex functions f ; these f -divergences turned
out to have many applications in statistics, see Igor Vajda’s book [188].
Rényi’s followers to prove limit theorems for Markov chains via the infor-
mation theoretic method include David Kendall {14} and Fritz {10}; for
more recent applications of this idea, in the theory of interacting particles
systems, see Liggett’s book [110].

Axiomatic characterizations

Shannon’s main justification for his information measures was their useful-
ness in communication problems, but he also showed that his entropy was
uniquely characterized by certain postulates that a measure of amount of
information was intuitively expected to satisfy. Later, starting with Alek-
sandr Jakovlevich Khinchin (Usp. Mat. Nauk, Vol. 8, 1953, pp. 3–51) and
D. K. Fadeev (Usp. Mat. Nauk, Vol. 11, 1956, pp. 227–231), several math-
ematicians put forward axiomatic characterizations using weaker or “more
natural” postulates. Rényi also contributed to this direction of research that
he considered conceptually important for IT. An instructive exposition of
his view appears in his survey paper [151, article 242]. He says that what he
calls the axiomatic and pragmatic approaches to the problem of measuring
information “are compatible and even complement each other and therefore
both deserve attention. Both of the mentioned approaches may and should
be used as a control of the other.”

Axiomatic considerations appeared already in Rényi’s first IT paper
[151, article 121]. In [151, article 159], he pointed out that the key step in
Fadeev’s characterization (loc. cit.) was a number theoretic result that had
been previously proven by Erdős {9}, and he gave a new simple proof of that
result. It says that an additive number theoretic function must be equal to
constant times log n if it satisfies limn→∞

(
F (n+1)−F (n)

)
= 0. Actually,

the latter hypothesis may be weakened to lim infn→∞
(
F (n+1)−F (n) ≥ 0,
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a fact later also used in a characterization of Shannon entropy, see Zoltán
Daróczy and Imre Kátai, {8}.

Axiomatic characterizations play a substantial role in Rényi’s Berkeley
Symposium paper [151, article 180] on information measures of order α. The
postulates there involve (generalized) means, and information measures are
assumed to be assigned also to “incomplete distributions” (where the sum
of probabilities is less than 1). When characterizing I-divergences of order
α, the additivity postulate is shown to admit only means corresponding to
a linear or exponential function ϕ, while when characterizing entropies, the
same remains an unproven assumption. As reported in [151, article 242],
that deficiency could be removed: Daróczy in {7} showed that entropy of
order α could be satisfactorily characterized by Rényi’s postulates, even
without recourse to incomplete distributions.

The majority of the (substantial) contributions of Hungarian mathe-
maticians to axiomatic characterizations of information measures (see the
book of János Aczél and Daróczy [5]) is out of the scope of this volume. It
should be noted that today this subject is not considered of primary impor-
tance for IT but, on the other hand, research in this direction has strongly
contributed to the development of the theory of functional equations.

Random search

Search theory is a subject whose systematic development was initiated by
Rényi. He regarded it as part of IT, which is not the prevailing view today.
Still, Rényi’s work on random search certainly has an IT flavor, in particular,
it provides operational justification for Rényi entropies of order α.

Rényi had been fascinated by the guessing game called “twenty ques-
tions” in the US. In this game, consecutive questions (in the US, at most
20) answerable by yes or no are asked about an unknown object, in order
to identify it from the answers. In Rényi’s lectures, this game was a stan-
dard example to visualize the basic ideas of IT. His research about random
search was motivated by his interest in what happens if the questions are
selected not by a well designed strategy but at random. Rényi showed that
consecutive random selections from the set of all possible questions admit
identification with only slightly more questions than an optimal strategy.
This visualizes a key idea of IT, the efficiency of random coding, although
this fact was not emphasized by Rényi.
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In 1961/62, Rényi published four papers on random search, of main in-
terest is [151, article 193]. There, identification of elements of a set H of
size n via k questions, each with r possible answers, is considered. Each
question corresponds to a labeling of the elements of H by numbers ran-
domly selected from {1, . . . , r} with probabilities p1, . . . , pr, independently
of each other; the answer to this question, for any fixed x ∈ H, gives the
label assigned to x. The k questions identify x if for no other y ∈ H are all
k answers the same as for x. Problem: when r is fixed and n → ∞, how
large a k is needed in order that with a prescribed probability, either (i) a
particular x ∈ H be identified or (ii) all elements of H be identified by k
random questions as above. When P = (p1, . . . , pr) is the uniform distribu-
tion, Rényi’s result was that k ∼ log2 n

log2 r questions are needed in case (i), and

k ∼ 2 log2 n
log2 r in case (ii). When P is arbitrary, one would expect that log2 r

should be replaced by the entropy of P . The remarkable results was, how-
ever, that while this expectation is correct in case (i), it is Rényi entropy
of order 2 rather than Shannon entropy that enters in case (ii). This was
the first operational characterization of a Rényi entropy of order α, though
only for α = 2.

Later, Rényi found modified versions of the above random search prob-
lem whose solution involved entropies of other (positive integer) orders α,
see his 1965 survey paper [151, article 242]. In the same year, he introduced
a general model of random search in his Invited Address [151, article 249].
Here, the role of the previous random labellings of the set H is played by
functions f : H → {1, . . . , r} randomly selected from a given class F of such
functions, thus the labels (function values f(x)) need not be independently
chosen for each x ∈ H. Under homogeneity conditions on the function class
F , general results were obtained on the probability that k questions identify
a fixed element of H, or all elements of H. These, in particular cases, lead
to asymptotic results similar to those mentioned above.

Information theoretic methods in statistics

A basic problem in statistics is to infer an unknown distribution P from
an observed sample Xn = (X1, . . . , Xn) where X1, X2 . . . are independent
random variables of distribution P . If the unknown P is assumed to belong
to a known family of distributions, {Pθ}, where θ is a (scalar or vector
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valued) parameter ranging over a given set, one has to estimate the true
value of θ from the observed sample Xn.

Information measures relevant for this problem include Fisher’s infor-
mation and I-divergence. Still, the natural measure of the amount of infor-
mation the sample gives for the unknown parameter is Shannon’s mutual
information I(Xn, θ), provided one is willing to adopt the Bayesian approach
of assigning a prior distribution to the parameter, necessary for the defini-
tion of I(Xn, θ). The first to study the asymptotic behavior of I(Xn, θ) as
n →∞ was Rényi, in the special case when θ had a finite number of possible
values. Starting in 1964, Rényi treated this issue in 9 papers; the strongest
results appear in [151, article 288] and [151, article 328]. He related this
problem to that of the asymptotic behavior of the error probability of the
Bayesian estimator of θ (called by him the “standard decision” ∆n) and
studied both problems in parallel.

Rényi proved that I(Xn, θ) converges to the entropy of θ or – equiva-
lently – the missing information (Rényi’s term for the conditional entropy of
θ given Xn) converges to 0 exponentially fast, and so does the error proba-
bility P (∆n 6= θ), with the same exponent. When θ had two possible values
only, Rényi gave an exact asymptotic formula for P (∆n 6= θ), using large
deviations techniques. He also considered the case of (independent but) not
identically distributed observations, and gave an upper bound to the missing
information in terms of Hellinger integrals. This result is related to Kaku-
tani’s theorem that for two sequences {µn} and {νn} of probability mea-
sures, their infinite products are mutually absolutely continuous or singular
according as the infinite product of the Hellinger integrals λn =

∫ √
dµn dνn

is positive or 0.

Rényi’s work gave substantial impetus to studying the interplay of statis-
tics and IT. Bounds to error probability in terms of Shannon’s and more
general information measures are too numerous to cite here. Rényi’s asymp-
totic formula for P (∆n 6= θ) when θ has two possible values easily extends
to θ with any finite number of values, see independent work of Vajda (Proc.
Coll. Inform. Theory, Debrecen 1967, J. Bolyai Math. Society, Budapest,
1969, pp. 489–501). Rényi’s result related to Kakutani’s theorem actually
gives an information theoretic proof of one half of that theorem, namely
that Π∞n=1λn = 0 implies singularity. An information theoretic proof of the
other half was given by Tibor Nemetz {15}. Extensions of the study of
the asymptotic behavior of I(Xn, θ) to the case of a continuous parameter
θ, turned out of substantial interest for the theory of universal coding and
Bayesian statistics, see Bertrand Clarke and Barron, J. Statist. Plan. Infer-
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ence, Vol. 41, 1999, pp. 37–60. If θ is a k-dimensional parameter, I(Xn, θ)
is asymptotically equal to k

2 log2 n plus a constant that depends on the prior
distribution of θ (subject to regularity conditions); the constant is small-
est for the so-called Jeffreys prior which is thereby distinguished as “least
informative.”

Vincze also devoted several papers to the interplay of IT and statis-
tics, in particular to information-type measures of distance of probability
distributions that belong to the class of f -divergences, see the subsection
about Rényi informations. Members of this class of statistical significance
include Hellinger distance and χ2-distance, corresponding to f(t) = 1−√t
and f(t) = (t− 1)2. Puri and Vincze in {17} introduced distances denoted

by IN (P,Q) that correspond to f(t) = 1
2

|t−1|N
(t+1)N−1 , N ≥ 1. Their main re-

sult was that two sequences of probability distributions {Pn} and {Qn} are
mutually contiguous if and only if INn(Pn, Qn) → 0 for all sequences of
numbers Nn →∞.

Kafka, Ferdinand Österreicher and Vincze in {13} studied the problem
for what f -divergences was some power of them a metric, and then what
was the smallest such power. Previously, Csiszár and János Fischer in
{6} showed that for f(t) = 1 − tα, 0 < α < 1, the corresponding f -
divergence raised to the power min (α, 1−α) satisfied the triangle inequality
(but was not a metric, for lack of symmetry, except if α = 1/2, the case
of Hellinger distance). The results of Kaffka, Österreicher and Vincze

include that
(
IN (P, Q)

) 1
N is a metric, the f -divergence corresponding to

f(t) = 1+ tα− t1−α raised to the power min (α, 1−α) is a metric, and so is
the square-root of an f -divergence that gives the perimeter of the risk set
for testing P against Q, studied earlier by Österreicher {16}; in neither case
is any smaller power appropriate.
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