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Introduction. It is well known that the theory of differential equations
does not belong to the most important chapters in the history of Hungarian
mathematics. Yet, when making preparations for this paper, both of us
were astonished to realize how many prominent Hungarian scholars had
been concerned with the theory of differential equations, even if marginally,
and how much they had been aware of the relations of their primary fields
to our topic.

Summary. We give a detailed account on
• the relation between Fejér’s summation theorem and Dirichlet’s problem

on the unit disc;
• Fejér’s work in stability theory (in connection to his habilitation lecture);
• F. Riesz’ subharmonic functions;
• Haar’s inequality for partial differential equations of the first order;
• the Haar–Radó results in the calculus of variations (with a particular

emphasis on the minimal surface problem)
• what is called ‘von Neumann’s stability analysis’ and the underlying Lax

equivalence “consistency & stability ⇔ convergence”;
• Lax’s contribution to the theory of conservation laws (a field of research

he entered under the influence of Neumann’s interest in shock waves);
• M. Riesz’ theory of fractional potentials;
• the work of Pólya and Szegő on isoperimetric inequalities.
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The concluding pages are devoted to differential equations in Hungary
after the second world war. As before, the emphasis is placed on
• results providing a significant contribution to classical problems (like Bi-

hari’s 1956 inequality, the first nonlinear version of Gronwall’s Lemma);
• results which pave the way to modern theories (like the 1950–60 contri-

butions by Rényi and Barna to the emerging theory of interval maps).

In connection to some statistical data from the
• first decade of the twentieth century;
• years 1928 and 1953 (representing the period before and after the second

world war)

a couple of general remarks are also made.

At the turn of the century. At the beginning of the twentieth century
the general theory of differential equations was closer to physics, and within
this, to mechanics than it is nowadays. Let us mention here that even the
famous paper on linear inequalities by Gyula Farkas had its roots in the one-
sided constraints of mechanics. In the volumes of Mathematische Annalen
between 1900 and 1910 34 articles (among approx. 450) had Hungarian
authors. Out of them 16 are concerned with differential equations in a wider
sense, including 8 papers on physical applications, namely: 4 papers by Mór
Réthy discuss the variational principles of mechanics, 1 paper by Győző
Zemplén treats hydrodynamics, another is on electrodynamics, 1 paper
by Gyula Farkas is on shock waves and, finally, 1 paper by Lipót Fejér
is concerned with the variational principles of mechanics. The last one will
be discussed in detail later. Three papers on linear ordinary differential
equations by Lajos Schlesinger come under pure mathematics, definitely.
One paper by Károly Goldziher and 4 papers by József Kürschák, who is
known mainly as an algebraist, are on partial differential equations. E.g.
Kürschák provides a new proof to a theorem of Lie according to which, under
certain compatibility conditions, Monge–Ampère equations are transferred
into Monge–Ampère equations by contact transformations {44}.

Although the authors received their most important professional stim-
ulations from abroad, even, while staying abroad, these results could not
have been achieved without certain Hungarian scholarly antecedents. Gyula
König taught courses on differential equations regularly at the Budapest
University of Technology, so did Gyula Vályi at the University of Kolozsvár.
Their most important results obtained in the field of partial differential
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equations were highly appreciated by the international scientific commu-
nity. The studies in partial equations of second order by Vályi, König and
József Kürschák, a follower of König, belong to the theory of formal integra-
bility. Their main aims were to set up compatibility criteria on the reduction
of equations (i.e. to a system of partial equations of the first order or that of
ordinary ones). At the Budapest University of Technology Gusztáv Kondor,
who belonged to an earlier generation and had much more modest abilities
than Vályi and König, also read lectures on differential equations. Among
the predecessors, the name of József Petzval, a pioneer of photography, who
left the chair of the University of Budapest for that of Vienna University
in 1837, should also be mentioned. His two-volume work on differential
equations was highly appreciated all over the Austro–Hungarian Monarchy.

The papers mentioned, as well as the preliminaries discussed, represent
demonstratively the state of the theory of differential equations in the early
twentieth century: it had a very close relation to various branches of physics
and there was a great effort to solve equations in a closed form. Even in our
days it seems to be surprising how many of them could be solved by integral
representations and series expansions in terms of elementary and special
(higher transcendental) functions. By 1900 the development of the general
theory of linear ordinary differential equations was already at a fairly high
level. This can be exemplified, primarily, by the generalization of Galois
theory, widely known in the field of algebraic equations, to linear ordinary
differential equations (whose coefficients are meromorphic functions). On
the other hand, at that time only the germs of a general theory of nonlinear
ordinary differential equations, namely, the existence theorems of Peano
and Picard, and elements of the qualitative theory began to emerge. But
the number of known nonlinear types of equation which could be solved by
quadrature became several dozens. As far as partial differential equations
are concerned, we cannot speak about a general theory at all, except for the
equations of first order. Here emphasis was laid on the concrete solutions
of initial-boundary value problems for linear and, to a much lesser extent,
for nonlinear equations closely connected with physical applications.

Lajos Schlesinger and his work. In the history of differential equations
in Hungary Lajos Schlesinger holds a special and distinguished place for
two reasons: he was the first mathematician in Hungary whose prime field
of activity was the study of abstract differential equations, namely that of
the linear ordinary differential equations, during most of his life and who
gained an international fame and reputation for this. His major work, a
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two-volume monograph on linear ordinary differential equations {73} was
published again by the Johnson Reprint Corporation in 1968. While the
activities and lives of Gyula König and Gyula Vályi are discussed by Barna
Szénássy in his excellent book on the history of Hungarian mathematics of
early times, (i.e. before the twentieth century) in detail, the life and work of
Lajos Schlesinger are not treated at all since most of his activity took place
after 1900.

Lajos Schlesinger was born in Nagyszombat in 1864. He started study-
ing mathematics at Heidelberg, finished his studies in Berlin, and took his
doctor’s degree with Lazarus Fuchs whose daughter he married (and, thus,
he confirmed a peculiar law of genetics according to which the genes carry-
ing mathematical abilities are passed from a father–in–law to a son–in–law.
Another example of this is Aurél Wintner born and educated in Hungary,
who married Otto Hölder’s daughter). Lajos Schlesinger spent most of his
life in Germany and died as Professor of the University of Giessen in 1933.
His activities are attached closely to his father–in–law’s. Similar to the
latter, he used methods of the theory of analytic functions to a greater
extent and those of group theory to a lesser extent in the theory of ordi-
nary differential equations. Further on, he wrote a great number of papers
on Fuchsian equations and Fuchsian groups and published the correspon-
dence of Fuchs and Weierstrass. By the evidence of his references, based
on studying and processing almost 2000 professional articles, he wrote his
survey {74} on the development of the theory of linear ordinary differential
equations from 1865 on, the publication year of his father-in-law’s famous
paper. Together with Abraham Plessner he wrote a remarkable book on
Lebesgue integrals and Fourier series and took part in processing Gauss’s
unpublished manuscripts. Undoubtedly, he had a very rich career in math-
ematics. In a late paper related to the solution of the differential equation
ż = C(t)z where z ∈ CN and C is a complex-valued matrix function, he
became the forerunner of the theory of product integrals (i.e. of generaliza-
tions of Lie’s matrix formula eA+B = limn→∞ (eA/neB/n)

n
). This activity

of Schlesinger is mentioned with admiration by Felix Browder, too, in the
preface to the Mathematical Encyclopedia volume ‘J. D. Dollard & C. N.
Friedman, Product Integration with Applications to Differential Equations,
Addison–Wesley, Reading, Mass., 1979’.

Lajos Schlesinger was Professor at the University of Kolozsvár between
1897 and 1911. Among Hungarian mathematicians he stimulated Manó
Beke and his impact can be felt on a paper by Lipót Fejér. Beke inves-
tigated the irreducibility of homogeneous linear ordinary differential equa-
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tions the coefficients of which are rational functions. Also, for the equations
with such coefficients the concept of irreducibility itself was introduced by
him {3}. (An equation is irreducible if it has no solution common with a
homogeneous linear ordinary differential equation which is of a lower order
and has coefficients of the same class.) With a highly effective application
of Cauchy’s majorant method, Fejér {21} gave a new proof to Fuchs’s the-
orem on the singularities of the solutions of homogeneous linear differential
equations.

For Hungarians, Schlesinger’s reputation is indicated by the fact that he
became the subject of the well-known anecdote attached to Henri Poincaré’s
visit to Budapest. In 1905 Poincaré came to Budapest to receive the Bolyai
Prize. At his arrival his reply to the greetings of the notables who were
meeting him was as follows: ‘Thank you! But where is Fejér?’ Similar
to the legends about the lives of medieval saints, this story has become
extant in another version in which the name of Schlesinger replaces that of
Fejér’s. Indeed, it is conceivable that Poincaré wanted to meet Schlesinger
since he himself had been concerned with homogeneous linear ordinary
differential equations with rational coefficients. It was he who gave the
name of Fuchsian functions, in honour of Immanuel Lazarus Fuchs, to a
certain class of automorphic functions which played an important role in
the integration of the aforementioned equations.

Fejér summation theorem and the Dirichlet problem on the unit
disc. In the first decade of the twentieth century Lipót Fejér was concerned
with the theory of ordinary differential equations in a wider sense in several
papers. Pál Turán mentions in the Introduction to Lipót Fejér’s Collected
Works that the discovery of the famous Fejér’s summation theorem is closely
related to the Dirichlet problem on the unit disc B =

{
(x, y) ∈ R2 | x2+y2 ≤

1
}

. Given a continuous function g : ∂B → R, does there exist a continuous
function u : B → R with the properties that u is harmonic on B \ ∂B (i.e.
u is twice continuously differentiable on B \ ∂B and satisfies ∆u = 0 on
B \ ∂B) and u|∂B = g? The positive answer, together with the form of the
solution function

(1) u(r cosϕ, r sinϕ) =





a0/2 +
∞∑

k=1

(ak cos kϕ + bk sin kϕ)rk if r < 1

g(ϕ) if r = 1
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(where a0, a1, b1, a2, b2, . . . are the corresponding Fourier coefficients) had
already been guessed earlier but only H. A. Schwarz succeeded in proving
it with the help of the so-called Poisson integral representation of the series
expansion

a0/2+
∞∑

k=1

(ak cos kϕ+bk sin kϕ)rk =
1
2π

∫ 2π

0

1− r2

1− 2r cos (ϕ− ψ) + r2
g(ψ) dψ

valid for r < 1.
Fejér spent the academic year 1899/1900 in Berlin where he was in-

fluenced greatly by the lectures of H. A. Schwarz. When discussing the
Dirichlet problem on the unit disc Schwarz stated that it would be expedi-
ent to give an existence proof by the theory of series exclusively, moreover he
spoke about the unsuccessful attempts made in that direction. The problem
was that due to the possible divergence of the Fourier series of function g
the Abel summation theorem could not be applied. The way out of the situ-
ation was that — at the points of ∂B — continuity of the solution function
defined by formula (1) followed from a new summation procedure. Fejér
was given the decisive impetus to frame a new summation procedure by the
theorem of Frobenius according to which Abel’s convergence assumption on∑

ck for the existence of limr→1−
∑

ckr
k can be weakened to assuming the

convergence of
∑

sn where sn = (c0 +c1 + · · ·+cn)/(n+1), n ∈ N. All these
considerations led Fejér to prove that the arithmetic means of the partial
sums of the Fourier series of continuous 2π-periodic functions are uniformly
convergent. Compared to his revolutionary discovery the original question
posed, i.e. to prove the solvability of the Dirichlet problem on the unit disc
by the theory of series exclusively, remained entirely in the background.

In Fejér’s famous Comptes Rendus note {13} there is only one sentence
which indicates that his summation theorem is also applicable to the theory
of Poisson integrals. He worked out the details in two separate papers
published in Hungary. The first one {14} discusses the Dirichlet problem
on the unit disc. The second one {15} treats the heat equation ut = uxx

equipped with the initial condition u(0, x) = g(x) where g : R → R is a
2π-periodic continuous function. The results of these two short papers are
included in Section 3/a of an extensive paper on his summation theorem he
published in Mathematische Annalen in 1904 {16}.

The work of Fejér in mechanics and his habilitation lecture. Be-
tween 1905 and 1911 Lipót Fejér worked at the Department of Mathematics
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and Physics of the University of Kolozsvár. This must explain the fact that
he chose the topic of his “habilitation” lecture not from the theory of Fourier
series but from the stability theory of ordinary differential equations. First,
he gave an outline of the definitions of stability used in those days (strangely
enough, including the recurrence property as well): ‘The concept of stability
carries highly different contents even within the framework of mass point
systems. It is no use arguing which one of them is the best since, except for
some inherent features of it, stability as a popular concept is so indefinite
and so relative that, owing to the variety of existing relations, stability defi-
nitions highly differing from one another may be formulated without getting
into contradiction with the popular concept’. Among the definitions of sta-
bility listed by him we can find the one accepted in general nowadays but
it is considered too narrow by Fejér, joining Felix Klein’s opinion. Then, he
discusses some simpler aspects of the three-body problem and finishes his
habilitation lecture with the discussion of the Lagrange–Dirichlet theorem.

In connection with his habilitation lecture {19} Fejér published a finding
of his own in the problem of equilibrium instability {18}, {20}. (Ref. {20}
is a word–for–word German translation of the Hungarian original {18}.)
Slightly changing notations, Fejér investigated equation

(2) r̈ = gradπ(r)− ṙf
( |ṙ|)/|ṙ|, r = (x, y, z) ∈ R3

under the conditions below: The potential function π : R3 → R is analytic
in a small vicinity of the origin 0 and its Taylor series about 0 begins
with a negative definite 3-variable homogeneous polynomial of order 2n for
some integer n ≥ 1 (in particular, the potential function π has an isolated
maximum at 0), f : R → R is a continuous increasing function, f(0) = 0,
f(v) > 0 for v > 0 and

(3) lim sup
v→0+

f(v)/v < ∞.

Starting from Jacobi’s identity

d2

dt2

(
1
2
|r|2

)
= |ṙ|2 + 〈gradπ(r), r〉 − 〈ṙ, r〉f( |ṙ|)/|ṙ|

Fejér proved via elementary ad hoc inequalities that the equilibrium state
0 is unstable. He raised the question of whether the result of instability
will remain true without the condition (3), e.g. for the function f(v) = vα,
α ∈ (0, 1). The positive answer is a consequence of La Salle’s invariance
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principle elaborated more than 50 years later: A 1968 theorem of Luigi
Salvadori (see Thm. III. 5.8 as well as the accompanying discussion) in
‘N. Rouche, P. Habets & M. Laloy, Stability Theory by Liapunov’s Second
Method, Springer, Berlin, 1977’ can be directly applied.

Another paper of Fejér’s {17} published in 1906 is related to the so-
called Ostwald principle. In his work entitled ‘Lehrbuch der allgemeinen
Chemie’ published in 1893 Ostwald stated that ‘von allen möglichen En-
ergieumwandlungen wird diejenige eintreten, welche in gegebener Zeit den
grösstmöglichen Umsatz ergibt’ (from among all possible conversions of en-
ergy the one which produces the greatest increment in the given time will
happen). For a given planar potential field U(r) and starting point r0 Fejér
studied such equations of motion

r̈ = − gradU(r)

for which Case 1 U(r0) − U
(
r(t)

)
is maximal for a single and fixed t =

T0 > 0 or, alternatively, Case 2 U(r0)−U
(
r(t)

)
is maximal for all t ∈ [0, T0].

He stated that in Case 1 the initial velocity ṙ(0) has to meet some condi-
tions of compatibility and the motion itself will be brachistochronal, and in
Case 2 the orthogonal semitrajectory through r0 should be a half-line and
ṙ(0) should be parallel to the direction vector of this half-line. Otherwise,
Ostwald wanted to demonstrate the general validity of his principle by the
motions along half-lines obtained in Case 2 . In spite of the great prestige
and merits of Ostwald — he was awarded a Nobel Prize in chemistry in 1909
— this energy principle had already been highly criticized. All parties in
the debate emphasized that the original phrase ‘von allen. . . ’ provided sev-
eral opportunities for different mathematical interpretations. Most of them,
including Mór Réthy {66}, investigated which modifications and improved
versions of the Ostwald principle were in harmony with the general laws of
mechanics and other physical sciences.

On partial differential equations, more precisely on the equation of the
form

(4)
n∑

i,k=1

aik(x)uxixk
+

n∑

r=1

br(x)uxr + c(x)u = 0, aik = aki

Lipót Fejér wrote only a single article {22}. He assumed that the coefficients
were analytic functions and c(0) < 0. By using the Cauchy–Kowalevskaya
theorem he proved that (4) had a solution having a positive maximum at
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0 if and only if matrix
{

aik(0)
}n

i,k=1
is not positive semidefinite. This is a

contribution to the theory of maximum principles.

F. Riesz’ subharmonic functions. Out of the papers of Frigyes Riesz
those on subharmonic functions are related to the theory of differential
equations directly. The concept of subharmonic functions was introduced
by Riesz in a lecture in Stockholm in 1924 {68}. The definition is as
follows: Let Ω ⊂ Rn be open and connected, and f : Ω → [−∞,∞) an
upper semicontinuous function, f(x) 6= −∞ for at least one x ∈ Ω. The
function f is subharmonic if for any pair (Ω′, u), the inequality f |∂Ω′ ≤ u|∂Ω′

implies that f |Ω′ ≤ u. Here Ω′ is a bounded domain, Ω′ = cl (Ω′) ⊂ Ω, u :
Ω′ → R is a continuous function which is harmonic on Ω′. The definition
of subharmonic functions was inspired, partly, by some characteristics of
analytic functions discovered by Hardy and Landau and, partly, by Perron’s
method, which was elaborated for proving the existence of classical C(Ω)∩
C2(Ω) solutions to the Dirichlet boundary value problem ∆u = 0, u|∂Ω = g
(where g : ∂Ω → R is a given continuous function and Ω ⊂ Rn is a bounded
domain having a ‘nice’ boundary.) Prior to his lecture in Stockholm Riesz
had generalized {67} the results of Hardy and Landau, and in a joint paper
with Tibor Radó, he gave a simplification of Perron’s method {72}. The
core of Perron’s method as conceived by Riesz and Radó is the following
assertion: If Ω ⊂ Rn is a bounded domain and g : ∂Ω → R is a continuous
function, then

u(x) = sup
{

v(x) | v ∈ C(Ω), v|∂Ω ≤ g and v|Ω is subharmonic
}

defines a harmonic function on Ω. (If ∂Ω is nice e.g. if it is of class C2

or satisfies the outer sphere condition, then u ∈ C(Ω) and u|∂Ω = g.)
Connections to the celebrated Fejér–Riesz proof of Riemann’s conformal
mapping theorem (published as part of the Introduction in a paper by Radó’
(Acta Sci. Math. (Szeged), 1 (1922/23), 240–251. (reprinted as pp. 841–843
of the Appendix to Fejér’s ‘Gesammelte Arbeiten’)) are transparent.

The basic characteristics of subharmonic functions and their relation to
potential theory was clarified by Frigyes Riesz in two consecutive papers
{69}, {70}. A function f ∈ C2(Ω) is subharmonic, if and only if ∆f ≥ 0
on Ω. The main result is that any subharmonic function can be represented
as a potential plus a harmonic function. If f : Ω → [−∞,∞) is a sub-
harmonic function and, as before, Ω′ is a bounded domain with Ω′ ⊂ Ω,
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then

(5) f(x) =
∫

Ω′
Γ(x, y) dµy + h(x), x ∈ Ω′

where Γ is the fundamental solution of Laplace’s equation ∆u = 0 on Rn,
µy is a (uniquely defined) Borel measure and h : Ω′ → R is a harmonic
function. It is worth comparing (5) with Green’s classical representation
formula

w(x) =
∫

Ω′
Γ(x, y)∆w(y) dy +

∫

∂Ω′

(
w(y)

∂Γ(x, y)
∂νy

− Γ(x, y)
∂w(y)

∂ν

)
dSy,

x ∈ Ω′ for C2(Ω) functions. (Note also that the function defined by the
boundary integral is harmonic.) If f = w ∈ C2(Ω) then dµy = ∆w(y) dy.
In the book written by Tibor Radó [143] several variations of formula (5)
can be found. Some of them originate from Frigyes Riesz. (Radó reviewed
the development of the theory of subharmonic functions till 1937 but he was
not concerned with its applications to partial differential equations.)

The late period of Frigyes Riesz had little relevance to differential equa-
tions. Techniques applied in his 1938–48 series of papers on ergodic theory
belong to general functional analysis and the theory of measure and integra-
tion. However, he considers ergodic theory as part of a dynamical system
theory for measure–preserving transformations and interprets, occasionally,
his own results from this view–point. It is amazing how much the old Riesz
felt the importance of functional iterations! He asked (himself and) each
reader of Matematikai Lapok (3 (1952), Problem No. 54) to “determine the
set of those complex initial points z1 for which, given a complex parameter
a, the iteration zn+1 = (z2

n + a)/2 is converging.” The Editor of the Prob-
lem Session had waited two years for the solution in vain when he stated (5
(1954), p. 283) that Problem No. 54 was entirely open and promised to pub-
lish the solution any time it arrives. (Actually, Problem No. 54 concerns the
structure (of the complement) of Julia sets for the quadratic family, a basic
problem in fractal geometry. . . Unfortunately, Mandelbrot was apparently
unaware of the existence of Matematikai Lapok and published his results
somewhere else . . . )

The works of F. Riesz and Haar on linear integral equations. It
is important to mention that integral equations played a fundamental role
in the formulation of the papers on compact linear operators by Frigyes
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Riesz, as well as in the emergence of the whole functional analysis. Alfréd
Haar, a colleague of Frigyes Riesz at Kolozsvár and, later, at Szeged was
also concerned with integral equations. As a student in Göttingen, while
applying Hilbert’s method elaborated for the problem ∆u = 0, u|∂Ω = g in
his first paper, Haar {30} discusses the reducibility of the boundary value
problem

∆2u =
∂4u

∂x4
+ 2

∂4u

∂x2∂y2
+

∂4u

∂y4
= 0, u|∂Ω = g0,

∂u

∂ν

∣∣∣∣
∂Ω

= g1

to integral equations and proves Fredholm type alternative theorems.

Haar’s inequality for partial equations of the first order. The most
important results in differential equations of Hungarian mathematics in the
first half of the twentieth century are attached to the name of Alfréd Haar.
He made essential contributions to both the theory of general equations of
the first order and of quasilinear elliptic equations of the second order. His
results in the latter topic are related to his pioneering work in the field of the
calculus of variations, to put it more precisely, in the study of the minimal
surface problem and of the minimal surface equation

(1 + u2
y)uxx − 2uxuyuxy + (1 + u2

x)uyy = 0.

Here we sum up Alfréd Haar’s papers on partial differential equations
of the first order based on his lecture delivered in Bologna in 1928 {39}.

Consider a finite interval [x1, x2] ⊂ R. Given a parameter a > 0, define
the triangle

T =
{

(x, y) ∈ R2 | 0 ≤ y ≤ (2a)−1(x2 − x1) and x1 + ay ≤ x ≤ x2 − ay
}

.

Finally, let z : T → R be a C1 function and set M = max{∣∣z(x, 0)
∣∣ | x1 ≥

x ≥ x2}. Assume that, for some constants b > 0 and c > 0,
∣∣zy(x, y)

∣∣ ≤ a
∣∣zx(x, y)

∣∣ + b
∣∣z(x, y)

∣∣ + c whenever (x, y) ∈ T .

Then

(6)
∣∣z(x, y)

∣∣ ≤ Meby + cb−1(eby − 1) whenever (x, y) ∈ T .

Inequality (6) — just like its one-variable counterpart, the famous Gron-
wall lemma in the theory of ordinary differential equations — has far-
reaching consequences. As a preliminary, we may state that the problem
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F(uy, ux, u, x, y) = 0, u|S = h (h : S → R is a continuous function, S ⊂ ∂Ω,
Ω ⊂ R2) can be transformed to the form (7) under very general conditions.

Let g : [x1, x2] → R be a continuous function and let F : R2 × T → R
be a continuous function with the property that

∣∣F (p, z, x, y)− F (p̃, z̃, x, y)
∣∣ ≤ a|p− p̃|+ b|z − z̃|

whenever (p, z, x, y), (p̃, z̃, x, y) ∈ R2 × T . Applying inequality (6) to the
difference of two possible solutions, it is immediate that the first order
problem

(7) uy = F (ux, u, x, y) and u|[x1,x2]×{0} = g

has at most one C1 solution on T {36}. Formerly, uniqueness results
were known only for C2 solutions and proved within the framework of
the theory of characteristics. Inequality (6) has some consequences to
characteristics in return {37}. As has been mentioned by Hadamard in
his additional comment published jointly with Haar’s paper {36}, Haar’s
inequality leads not only to a result on uniqueness but also to the assertion
that the C1 solutions of equation (7) on the triangle T depend continuously
on function g.

Haar finished his lecture delivered at Bologna with the extension of
inequality (6) to systems of partial differential equations with a simple
structure. His promise to devote another paper to the topic could not
be fulfilled due to his early death. Incidentally, Alfréd Haar was already
concerned with systems of first order partial differential equations in one of
his early articles {41} the coauthor of which was Tódor Kármán, one of his
fellow students in Göttingen.

Haar’s existence and uniqueness theorem in the calculus of varia-
tions. We are going to sum up Alfréd Haar’s work on calculus of variations
based on his own lecture held in Hamburg in 1930 {40} as well as on the
monograph of Tibor Radó [142] who himself achieved fundamental results
in this field. The focus of the discussion will be placed on Alfréd Haar’s
existence and uniqueness theorem {35}. In the proof a lemma originating
from Tibor Radó {63} plays an important part which, by its external form,
is a geometric statement on saddle surfaces but in essence is an a priori esti-
mate for the gradient of solutions to quasilinear elliptic equations which will
be reviewed separately here. Naturally, the abstract existence and unique-
ness theorem has important consequences for the classical minimal surface
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problem {34} which motivates it. Finally, we are going to discuss these con-
sequences. Emphasis will be laid on the regularity properties of the solution,
more exactly, on the analytic feature of the minimal surface.

Consider a bounded domain Ω ⊂ R2 with a convex Jordan curve Γ = ∂Ω
as its boundary, a C2 function F : R2 → R, and a continuous function ϕ :
Γ → R. The variational problem

(8) I(u) =
∫ ∫

Ω
F (p, q) dx dy −→ min

u|Γ=ϕ

is called regular if the Hessian matrix of F is positive definite for all p, q ∈ R2.
Of course, p = ux and q = uy. The Euler–Lagrange equation of problem (8)
is

(9) Fppuxx + 2Fpquxy + Fqquyy = 0.

In the most important special case, i.e. in the minimal surface problem we
have F (p, q) = (1 + p2 + q2)1/2, and thus equation (9) simplifies to

(10) (1 + q2)uxx − 2pquxy + (1 + p2)uyy = 0.

Using geometrical terms equation (10) expresses that the mean curvature
of a minimal surface equals zero.

As a preliminary, observe that the functional I can be defined for all
elements of the function class

L = {u : Ω → R | u is a Lipschitz function}

and the double integral in (8) is understood in the sense of Lebesgue. The
validity of the formula

Area (u,Ω) =
∫ ∫

Ω
(1 + u2

x + u2
y)

1/2
dx dy, u ∈ L

was proven first by Zoárd Geőcze {25} where Area (u,Ω) stands for the
area of surface S = {(

x, y, u(x, y)
) ∈ R3 | (x, y) ∈ Ω} as defined by

Lebesgue for continuous surfaces in his famous doctoral thesis. Also, observe
that both (9) and (10) are quasilinear elliptic equations. The eigenvalues
of the coefficient matrix of equation (10) are λ1(p, q) = 1 + p2 + q2 and
λ2(p, q) = 1. Since the ratio λ1/λ2 is unbounded, (10) is nonuniformly
elliptic. It is well-known that the solvability of a Dirichlet boundary value
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problem for nonuniformly elliptic quasilinear equations depends crucially
on the geometric assumptions on the pair (Γ, ϕ). The crucial assumption
of Haar’s existence and uniqueness theorem is that the pair (Γ, ϕ) satisfies
Hilbert’s so-called three–point condition. In other words, it is assumed
that, for some constant K > 0, every set of three distinct points on the
curve {(

x, y, ϕ(x, y)
) ∈ R3 | (x, y) ∈ Γ} lies in a plane of slope ≤ K. The

three–point condition is the assumption which implies the property L 6= ∅.
It implies also the strict convexity of Γ.

After such preparations we are in a position to formulate Haar’s exis-
tence and uniqueness theorem {35}. Consider the variational problem (8).
Assume that (8) is regular and that the three–point condition with constant
K is satisfied. Then (8) has a unique solution in the function class L and
the Lipschitz constant of this solution is ≤ K.

T. Radó’s regularity Lemma. Uniqueness is a rather elementary con-
sequence of the regularity assumption on (8). The starting point of the
existence proof is the observation that the functional I : L → R is lower
semicontinuous (with respect to uniform convergence). The difficulty is that
minimizing sequences are not precompact. A nice geometric property of
saddle functions, which was conjectured by Haar and proved by Radó {63},
helps, instead. A continuous function u : Ω → R is a saddle function if,
given arbitrarily three constants α, β, γ ∈ R and an open set ∅ 6= Ω′ ⊂ Ω,
the maximum-minimum principle

min
(x,y)∈Ω′

(
u(x, y)− (αx + βy + γ)

)
= min

(x,y)∈∂Ω′

(
u(x, y)− (αx + βy + γ)

)
,

max
(x,y)∈Ω′

(
u(x, y)− (αx + βy + γ)

)
= max

(x,y)∈∂Ω′

(
u(x, y)− (αx + βy + γ)

)

is satisfied. Radó’s lemma concerns saddle functions u : Ω → R for which
the pair

(
Γ, u|Γ

)
is subject to the three–point condition with constant K and

states that such functions are Lipschitz continuous on Ω and the Lipschitz
constant is ≤ K.

Radó’s lemma was given a new and a much simpler proof by János Neu-
mann {51}. Both the original method of proving and the one given by Neu-
mann lead, automatically, to Lemma 12.6 in ‘D. Gilbarg & N. S. Trudinger,
Elliptic Partial Differential Equations of the Second Order, Springer, Berlin,
1983’: Let Ω be a bounded domain in R2, and let ϕ : ∂Ω → R be a continu-
ous function satisfying the three-point condition with constant K. Suppose
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u ∈ C(Ω) ∩ C2(Ω) with u|∂Ω = ϕ satisfies a quasilinear elliptic equation
of the form auxx + 2buxy + cuyy = 0 where a, b, c are continuous functions
in the variables (x, y, u, p, q). Then |ux|, |uy| ≤ K on Ω. (Besides the Lax–
Milgram lemma, which is considered ‘half-Hungarian’ due to Péter Lax, this
is the only result in the well-known book of Gilbarg and Trudinger which
originates from a Hungarian mathematician. It is worth mentioning that
Lemma 12.6 and, in relation to this, the name of Tibor Radó are mentioned
in the preface of this monograph.

Haar’s Lemma on the variation of double integrals. Applying the
existence and uniqueness theorem for the variational problem (8) in the

special case F (p, q) = (1 + p2 + q2)1/2 we obtain that there exists a u∗ ∈ L
for which

Area (u∗, Ω) < Area (u,Ω) for all u∗ 6= u ∈ L.

Actually, u∗|Ω is analytic. The argumentation leading to this will be outlined
below. The starting point is one of Alfréd Haar’s earlier results {32}, namely
the two-variable counterpart of Du Bois–Reymond’s fundamental lemma of
the calculus of variations. In order that the novelty of Haar’s result should
be emphasized, we would like to present Du Bois–Reymond’s lemma: If
f : [a, b] → R is a continuous function such that

∫ b

a
f(x)ϕ′(x) dx = 0 for each ϕ ∈ C[a, b]∩C1(a, b) with ϕ(a) = ϕ(b) = 0,

then f is a constant function.
Using the previously introduced notation, let v, w : Ω → R be continu-

ous functions and assume that

(11)
∫ ∫

Ω
(vξx + wξy) dx dy = 0

for each continuous function ξ : Ω → R satisfying ξ|Γ = 0 and for which the
partial derivatives derivatives ξx, ξy : Ω → R are continuous and bounded.
Then there exists a C1 function ω : Ω → R with the properties that

(12) v = ωy and w = −ωx on Ω.

If we assume merely that that functions v and w are measurable and
bounded, then function ω satisfies only the Lipschitz condition and (12)
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is valid almost everywhere. Now let u denote the solution of the variational
problem (8). Since

δI(u; ξ) =
∫ ∫

Ω
(Fp(ux, uy)ξx + Fq(ux, uy)ξy) dx dy = 0

for all ξ (which have the above mentioned properties), (12) goes over into
the system of equations

(13) Fp(ux, uy) = ωy and Fq(ux, uy) = −ωx.

We arrived at a system of first order partial equations which replaces the
Euler–Lagrange equation and can be used excellently for clarifying the dif-
ferentiability properties of the solutions of (8). Under adequate differentia-
bility conditions, of course, (9) can be derived from (13) easily. The hard
fact is that we cannot foresee whether these differentiability conditions will
be met by u, moreover, examples are also known when the unique solution
to (8) is not twice differentiable.

Fortunately, Lipschitz solutions of the system

(14)
ux

(1 + u2
x + u2

y)
1/2

= ωx and
uy

(1 + u2
x + u2

y)
1/2

= −ωy

— this is to what (13) is simplified in the special case F (p, q) =

(1 + p2 + q2)1/2 — are analytic functions. Eventually, the latter assertion
depends on the fact proven by Rademacher according to which Lipschitz
solutions of the Cauchy–Riemann system are analytic functions. Analytic-
ity of C1 solutions of the system (14) was shown by Tibor Radó {62} while
Haar had been working on the proof to the existence and uniqueness the-
orem. (Analyticity of C2 solutions of equation (10) had been known much
earlier.) Radó’s argumentation works for Lipschitz solutions as well. Thus,
the proof for the existence and uniqueness theorem was also a justification
for the analytic nature of function u∗|Ω, at the same time. As has been
shown by Tibor Radó, Area (u∗, Ω) ≤ Area (u,Ω) for all u ∈ C, where

C =
{

u : Ω → R | u is a continuous function and u|Γ = ϕ
}

.

From a later result of McShane it also follows that

Area (u∗,Ω) < Area (u,Ω) for all u∗ 6= u ∈ C.

The implication (11)⇒ (12) is called Haar’s Lemma in the literature. In-
cidentally, this was Haar’s first result in the field of the calculus of variations
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which he published in Hungarian in 1917 {31} and in German in 1919 {32}.
The converse of Haar’s Lemma, the implication (12)⇒ (11) is also true. The
latter was proven by Schauder (Acta Sci. Math (Szeged), 4 (1929), 38–50).
For the fulfilment of the equivalence between (11) and (12) the convexity
assumption on Ω is too restrictive. Even Haar and Schauder themselves
worked with Jordan domains. Definitely, Haar was aware of the fact that
his lemma could be generalized for multiple integrals on n-dimensional do-
mains and it was in close relation to the n-dimensional Stokes theorem but
in those directions he worked out very few or rather no details at all. His
work had been continued by others, amongst them, by Jenő Gergely {26},
Antal Sólyi {76} and Adolf Szücs {80} in Hungary. It is important to men-
tion that the concept of the adjoint variational problem was introduced also
by Alfréd Haar {38}. The pattern to that was provided by adjoint minimal
surfaces as well as by an earlier result {33} of his generalizing an observation
of Zermelo on the Du Bois–Reymond lemma in one dimension.

In the development of the minimal surface problem it turned out that
the three–point condition for the pair (Γ, ϕ) is superfluous. Keeping only
the convexity assumption on ∂Ω = Γ, Tibor Radó [142] proved that equa-
tion (10) has a solution in the function class C ∩ C2(Ω). (The proof de-
pends, essentially, upon the existence theorem for conformal mappings of
approximating polyhedra and it does not indicate at all that the three–
point condition can be omitted from the general conditions of Haar’s exis-
tence and uniqueness theorem.) This C ∩ C2(Ω) function is analytic on Ω
and constitutes the unique solution of the variational problem J : C → R,
J(u) = Area (u,Ω) −→ min as well. Extensions of the minimal surface
problem allow surfaces which cannot be parametrized globally in the form
{(

x, y, u(x, y)
) ∈ R3 | (x, y) ∈ Ω}, whose boundary is disconnected or may

be just a knotted Jordan curve, etc. If the problem is studied in this gener-
alized sense, great difficulties arise both for existence and uniqueness and,
eventually, neither of them holds true. However, the relevant methods (in
the elaboration of which Tibor Radó himself participated according to his
monograph [142]) are quite far from those in differential equations.

An early paper on billiards. There is a paper of Adolf Szücs, jointly with
Dénes König {43} which is worth to be discussed in detail. They considered
the motion of a single, dimensionless particle included in an immobile cube.
The impacts on the walls follow the laws of elastic reflection. By using
elementary geometry and elementary number theory, they classified the
orbits as closed, dense in a polyhedral surface, and dense within the whole



262 Á. Elbert and B. M. Garay

cube. The three possibilities do not depend on the initial state but only
on the three components of the initial velocity. This is one of the earliest
results in the theory of rational billiards.

Neumann’s method of stability analysis. In connection with the ar-
gumentation leading to Haar’s existence and uniqueness theorem we have
already mentioned the name of János Neumann who gave a new proof for
Radó’s lemma on saddle surfaces which was the most important part of the
aforementioned argumentation from the aspect of the general theory of par-
tial differential equations. Neumann need not be introduced here. He was
one of the ‘Martians’ who came out from the leading secondary schools of
Budapest at the turn of the XIX and XX centuries. Once Jenő Wigner was
asked how it happened that so many geniuses had been born in Budapest
a century earlier. Wigner replied that he did not understand the question
because in those days, as he had said it before, just one genius was born
and that person was called János Neumann. In the early phase of planning
this volume of studies the idea cropped up that a special chapter should
be written about Neumann, while keeping the division by the broad math-
ematical themes. Although this proposal was not realized, it demonstrates
well what a great personality Neumann was and what a prominent role he
played in the history of mathematics.

Neumann exerted a great influence on the general development of differ-
ential equations. This was not achieved by his articles but by his consulting
activities with which he kept track of the operation of the first digital com-
puter. The first genuine tasks solved by eletronic computers were as follows:
initial-boundary value problems of thermonuclear reactions, neutron diffu-
sion and transport, radiation flows, and fluid dynamics. The respective
partial differential equations were solved by numerical stepsize integration
procedures, namely, by the so-called method of finite differences. At each
point of the integration net, partial derivatives, i.e. differential quotients
were replaced by (finite) difference quotients. That procedure led to large-
scale systems of algebraic equations. The number of unknowns was the
same as that of the points of the integration net. If the original partial dif-
ferential equation was linear, then the system of approximating algebraic
equations became also linear. The computer was used for the solution of
that system of algebraic equations. Actually, in most of the cases the com-
puting task to be performed was to solve a system of linear equations, or
to put it in another way, the inversion of a large-scale matrix. Needless to
say, the original initial-boundary value problems emerged during the devel-
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opment of wartime technology. All related research results were considered
top military secrets and their publication was quite out of question. What
Neumann was allowed to publish as a ‘by-product’ of the numerical solution
of the initial-boundary value problems was only an expository article in 1947
on the numerical inversion of matrices of high order with the co–authorship
of H. H. Goldstine {27} (in today’s terminology, they established the sta-
bility of the LU and the Choleski factorizations) and a six-page paper with
R. D. Richtmyer {53} on the numerical calculation of hydrodynamic shocks
in 1950. (Some of) his earlier reports to various divisions of the National
Defence Research Committee on shocks — actually, the generals were in-
terested in detonation/blast waves — remained unpublished for nearly two
decades, see pp. 178–347 in Volume 6 of the Collected Works of John von
Neumann (and others may remain unpublished still). The fact that the dis-
cretization of partial differential equations might lead to matrices of high
order could be found out by any reader of that time, therefore it was men-
tioned in the introduction of the first paper briefly. However, it was not
mentioned at all whether partial differential equations and, mainly which
ones, had been discretized concretely, and whether their solutions had been
computed. Moreover, no mention was made of the capacity and character
of the computing devices used. (With the pride of a father and the preci-
sion of a book-keeper, however, he lists technical and finantial data of the
first high-speed ‘fully automatic electronic computing machines’ in his con-
fidential reports.) Yet, the aim was just to compute the concrete solutions
of the concrete initial-boundary value problems with the aid of the first
electronic/digital computers which had been built by the mid-forties. The
second paper with Goldstine {28}, a 1951 continuation of {27} contains a
probabilistic analysis of rounding errors.

Neumann kept track of the numerical solution of those concrete initial-
boundary value problems closely and, in particular, he was concerned with
the computational stability of the discretization methods applied. The
main difficulty was that truncation errors (which emerged from replacing
partial derivatives by the respective finite differences) could be amplified
considerably in the course of the numerical-computational procedure. Thus,
the establishment of stability criteria, the fulfilment of which would prevent
elementary errors (truncation errors, rounding errors, or (local) errors of
any kind) from becoming so amplified as to make gibberish the whole
calculation, was of vital importance. Neumann acquainted his colleagues
with his ideas on the concept of computational stability in his lectures held
at the Los Alamos laboratories and other military research institutes. The
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‘von Neumann’s method of stability analysis’ has become known since the
early l950s, primarily, owing to the paper written by G. C. O’Brien, M. A.
Hyman & S. Kaplan (J. Math. Phys., 29 (1950), 223–239) who incorporated
and presented Neumann’s heuristic techniques of stability with his consent.
(The 1947 interior report had been remained unknown for a long time.)
Now let us quote A. H. Taub’s words from his Editorial Note on page
664 of Volume 5 of the Collected Works: ‘. . . his procedure was, as he
always emphasized, at all times heuristic. It was used in various “practical”
situations for practical purposes but, as he once wrote (letter of November
10, 1950 to Werner Leutert, “as far as any evidence that is known to me
(J. v. N.) goes, . . . it has not led to false results so far”.’ Robert Richtmyer
(Difference Methods for Initial-Value Problems, Interscience, New York,
1957), a further close witness of the emergence of ‘von Neumann’s method of
stability analysis’ declares his opinion in the very same sense: ‘. . . the new
development has been based more on empiricism and intuition and less on a
mathematical basis than the classical development. One should not blame
the new development for this, if we were to wait for convergence proofs and
error estimates for the new methods, most of the computers now in use in
technology and industry would come grinding to a halt.’

For Neumann the pattern was provided by R. Courant, K. Friedrichs
H. Lewy (Math. Ann., 100 (1928), 32–74), who studied the convergence
of the solutions of the approximating system of difference equations and,
through this, proved existence theorems for partial differential equations of
various types. Courant, Friedrichs and Lewy observed for the first time that
restrictions on the permissible size of ∆t in terms of the size of the other
increment (e.g. inequality ∆t ≤ ∆x/c for the wave equation utt = c2uxx

expressing that the triangle-shaped domain of dependence on local data
cannot become larger under discretization) are necessary for the convergence
of the finite difference approximations.

However, as it is shown by the quotations above, Neumann’s interest in
analysing difference approximations was focused on error amplification and
not on convergence. The essence of his approach can be easily extracted
from his 1947/48 interim “First/Second Report on the Numerical Calcu-
lation of Flow Problems” reprinted on pages 652–750 of Volume 5 of the
Collected Works: Consider, for simplicity, the one-dimensional heat equa-
tion ut = uxx, t ≥ 0, u(0, x) = f(x), x ∈ R. The simplest discretization
procedure leads to a system of linear equations of the form

(15)
ui+1,j − ui,j

∆t
=

ui,j+1 − 2ui,j + ui,j−1

(∆x)2
i ∈ N, j ∈ Z.
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Neumann’s basic idea was to investigate how errors (existing at some initial
or intermediate time level) evolve in the course of solving system (15).
Substituting ε(t, x) = a(t) sin kx into the error formula

ε(t + ∆t, x)− ε(t, x) = µ
[
ε(t, x + ∆x)− 2ε(t, x) + ε(t, x−∆x)

]

where µ = ∆t/(∆x)2 (cf. (15) but note that ε(t, x) is different from e(t, x) =
u(t, x)− u(t, x), the difference between the computed and the exact values
of the solution), it is readily checked that the coefficient a(t) is amplified
at each integration step by a factor of 1 + 2µ(cos k∆x − 1), see p. 653. If
the interval of variability of x is from 0 to π and ut = uxx is equipped
with Dirichlet boundary conditions, then εi,j can be represented as εi,j =∑N−1

k=1 ai,k sin k(j∆x), and the amplification factor is the same, i.e.

ai,k+1 = ai,k

(
1+2µ(cos k∆x−1)

)
for k = 1, 2, . . . , N−1 with N = π/∆x,

see p. 691. Observe that
{

1 + 2µ(cos k∆x− 1) | k = 1, 2, . . . , N − 1
}

is the
set of eigenvalues of the tridiagonal error amplification matrix (cf. (15))

A = {αi,j}N−1
i,j=1, αi,j = 1−2µ if i = j and µ if |i−j| = 1 (and 0 otherwise).

Hence, for two different reasons,
∣∣1 + 2µ(cosβ − 1)

∣∣ ≤ 1 for all β ∈ (0, π) ⇔ µ ≤ 1/2

is a necessary condition for preventing error amplification. He also proved
that an implicit version of (15) is computationally stable, independently of
the fact how much the concrete value of the mesh ratio ∆t/(∆x)2 is, see
p. 707. (It is worth mentioning here that the inequality µ ≤ 1/2 ⇔ ∆t ≤
(∆x)2/2 plays no role in the Courant, Friedrichs & Lewy paper.) As for the
linear system (15) equipped with initial conditions u0j = f(j∆x) (j ∈ Z, f
sufficiently nice), they only prove that, in the special case ∆t/(∆x)2 = 1/2,
the solutions of (15) converge to the exact solution u of the original initial
value problem. In fact, they point out by a direct computation that

ui,j =
i∑

k=0

1
2i

(
i

k

)
f
(
(j + i− 2k)∆x

) −→

−→ u(t, x) =
1

(4πt)1/2

∫ ∞

−∞
exp

(
−(ξ − x)2

4t

)
f(ξ) dξ
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whenever i, j → ∞ with i∆t → t and j∆x → x for any t > 0 and x ∈ R
fixed. (Actually, they consider equation 2ut = uxx and — in order to make
the combinatorics for ui,j simpler — they take ∆t = (∆x)2 (and mention
that similar convergence results hold true for general parabolic equations
as well).) In the Courant, Friedrichs & Lewy paper the emphasis is put on
hyperbolic equations. On the other hand, though the affirmative answer
is implicitely contained in his considerations, Neumann does not seem to
pay any attention to the question if, at least in some technical sense and
for f and u sufficiently nice, inequality µ ≤ 1/2 is enough to imply that
e(t, x) → 0 as ∆t → 0.)

The model results collected in the previous paragraph illustrate how
Neumann applied his Fourier series and eigenvalue techniques to studying
the computational stability of finite difference approximations. Real-life
examples can be found in his weather forecast paper {8} and in the afore-
mentioned 1947/48 confidential reports intended for military and industrial
use. Thus, Neumann can be regarded, rightly, as the founder of the stability
theory of the numerical methods of differential equations even if he always
used the concept of stability in an empirical sense. Several applications of
the Fourier approach and the eigenvalue one initiated by him can be found
in Arieh Iserles’ remarkable textbook. With good reason, ‘A. Iserles, A First
Course in the Numerical Analysis of Differential Equations, Cambridge Uni-
versity Press, Cambridge, 1996’ criticizes that the bulk of the literature (in
particular, the older literature) terms each of these approaches as ‘von Neu-
mann’s method of stability analysis’, without any distinction and in a rather
confusing way. A more descriptive and less ambiguous terminology is pre-
ferred.

Lax equivalence theorem, the theoretical result behind. Neumann’s
‘naive’ argumentations concerning the computational stability of difference
approximations were raised to the level of an abstract theory in linear func-
tional analysis by Péter Lax in the early fifties. Together with his parents,
the 15 year old Lax left Hungary for the US in 1941. Letters of recommen-
dation from Dénes König and Rózsa Péter to Neumann accompanied him.
As a student and young researcher, he was very much influenced by Neu-
mann, Friedrichs (his PhD adviser), and Courant. Thirty years after the
death of Neumann, he remembered his mentor in an interview by saying:
‘Von Neumann, who was the central figure of the mid-century, firmly be-
lieved that computing was central not only to the numerical side of applied
mathematics but also to progress in theory. That is why he invented com-
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puters and pushed for their development. He foresaw that computations are
essential to discover basic phenomena in nonlinear systems.’

Drafted for the war, Lax ended up at Los Alamos and remained there
until May 1946. His Los Alamos stay shaped his general attitude to math-
ematics as well the choice of his research subjects considerably. He belongs
to a minority of mathematicians who consider themselves both pure and
applied.

For Banach space problems ut = Au, u(0) = u0 generating C0 operator
semigroups, e.g. for well-posed linear evolutionary partial differential equa-
tions, Lax gave a precise definition of the stability of approximating linear
procedures. The core of the definition is, on each time interval [0, T ], the
uniform boundedness of all products of the approximating small-stepsize
linear operators. Simultaneously, Lax opened up the series of equivalence
theorems

consistency & stability ⇔ convergence

which played a vital role in the theory of discretizations. For details, see
e.g. ‘R. D. Richtmyer & K. W. Morton, Difference Methods for Initial-Value
Problems, Wiley, New York, 1967’. In the background of the later equiv-
alence theorems, too, there is the Neumann idea according to which the
convergence of numerical procedures can be proven through an argumen-
tation of the following type: ‘small local errors’ plus ‘no (significant) error
amplification’ imply ‘small global error’.

The work of Lax on a single conservation law. In what follows we
give a brief description of Lax’s work on shock waves which had grown out
of his Los Alamos experiences. ‘The existing literature on this question is
unsatisfactory’ — summarized Neumann his opinion in 1943. Thanks to the
development that followed, in particular to Lax’s contribution {45}, {46},
Neumann’s statement had lost much of its validity by the time of his death in
1957. We follow the respective chapters in ‘L. C. Evans Partial Differential
Equations, AMS, Providence, R.I., 1998’ and ‘J. Smoller, Shock Waves and
Reaction-Diffusion Equations, Springer, Berlin, 1982’ very closely.

Consider the scalar conservation law in a single space variable

(16) ut +
(
f(u)

)
x

= 0, x ∈ R, t ≥ 0

with initial data u(x, 0) = u0(x), x ∈ R. Characteristics are straight
lines of the form {(f ′(u0(x0)

)
t + x0, t) | t ≥ 0}, x0 ∈ R. If x0 < x̃0

and f ′
(
u0(x0)

)
< f ′

(
u0(x̃0)

)
for some x0, x̃0 ∈ R, the characteristic lines
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through (x0, 0) and (x̃0, 0) meet at some point in t > 0. Since classical
solutions are constant along characteristics, one has either to accept that
solutions cannot be defined for all time or, alternatively, to look for a more
general concept of a solution that allows the appearance of discontinuities
(even in solutions with continuous initial data). A function u ∈ L∞(R×R+,
R) is called a weak solution of (16) with initial data u0 ∈ L∞(R,R) if

∫ ∞

0

∫ ∞

−∞

(
ϕtu + ϕxf(u)

)
dx dt +

∫ ∞

−∞
ϕ(·, 0)u0 dx = 0

for any C∞ function ϕ : R2 → R with compact support in
{

(x, t) | x ∈ R,
t ≥ 0

}
. In general, unfortunately, as it is demonstrated by the example of

Burger’s equation ut + uux = 0 (i.e. f(u) = u2/2) equipped with Riemann
initial data u0(x) = u` ∈ R if x < 0 and ur ∈ R if x > 0, there exists
an abundance of weak solutions defined for all t ≥ 0. Now equations of
the form (16) arise in the physical sciences and so one must have some
mechanism to pick out the ‘physically relavant’ one. Mathematically, the
basic question is to impose an a priori condition on weak solutions that
ensures existence and uniqueness. This a priori assumption is O. Oleinik’s
entropy condition (we present as inequality (18) below) found in 1957 (Usp.
Mat. Nauk., 12 (1957), 3–73. (in Russian) (AMS Transl. Ser. 2, 26 (1957),
95–172.). Until very recently, no such results were known for systems of
conservation laws of general type.) In the very same year, Lax {46} also
proved an existence and uniqueness theorem. He considered a subclass of
systems of conservation laws and proved existence and uniqueness within
a class of piecewise continuous functions with a finite number of certain
shock and contact discontinuities. His abstract result applies to Riemann’s
classical tube problem in gas dynamics and gives a rigorous proof for the
earlier results.

The key is to look at the Hamilton–Jacobi equation

(17) wt + f(wx) = 0 with initial data w0(x) =
∫ x

0
u0(y) dy.

(Formal differentiation shows that u can be taken for wx.) From now on,
assume that f ∈ C2, f(0) = 0, inf

{
f ′′(u) | u ∈ R}

> 0 and let L denote the
Legendre transform of f . The uniform convexity assumption on f implies
that f ′ is a C1 self-diffeomorphism of R. For later purposes, set g = (f ′)−1,
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the inverse of f ′. The Hopf–Lax formula

w(x, t) = inf
{ ∫ t

0
L

(
q̇(s)

)
ds + w0(y)

∣∣∣ q ∈ C1
(
[0, t],R

)
,

q(0) = y, q(t) = x

}

= min
{

tL

(
x− y

t

)
+ w0(y)

∣∣∣ y ∈ R
}

,

a basic result in the calculus of variation defines a weak solution to (17)
in the sense that w : R × R+ → R is Lipschitz continuous, (and hence,
by the Rademacher theorem, w is almost everywhere differentiable), it
satisfies wt(x, t) + f

(
wx(x, t)

)
= 0 for almost every (x, t) ∈ R × R+, and

w(x, 0) = w0(x) for each x ∈ R. Actually, given t > 0 arbitrarily, the
mapping x → w(t, x) is differentiable for almost every x ∈ R. In addition,
there exists for all but at most countably many values of x ∈ R a unique
y(x, t) ∈ R such that

w(x, t) = tL

(
x− y(x, t)

t

)
+ w0

(
y(x, t)

)
,

the mapping x → y(x, t) is nondecreasing, and ∂
∂xw(x, t) = g(x−y(x,t)

t ) holds
true for almost every x ∈ R. The final result is that the Lax–Oleinik formula

u(x, t) = g

(
x− y(x, t)

t

)

defines a weak solution for (16) satisfying, with some absolute constant
C = C(u0), for each t > 0, the one-sided Lipschitz estimate

(18) u(x + z, t)− u(x, t) ≤ Cz/t

for almost every (x, z) ∈ R × R+. As a reformulation of (18), the function
x → u(x, t)− Cx/t is nondecreasing for each t > 0. Thus, even though the
initial data u0 is merely an L∞(R,R) function, the Lax–Oleinik solution u
immediately becomes fairly regular in t > 0. It is a crucial result of Oleinik
that (in some technical sense) u depends continuously on u0 and — up to
a set of measure zero — no other weak solution of (16) with initial data u0

satisfies (18).
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Consider a C1 curve Γ = {(
x(t), t

)} of discontinuties in a weak solution
u and assume that u extends continuously from either side of Γ to Γ. By
choosing the test function to concentrate at the discontinuity, one arrives
easily at the Rankine–Hugoniot jump identity

(19) s(u+ − u−) = f(u+)− f(u−).

Here s = ẋ(t) is the speed of the discontinuity in
(
x(t), t

)
and u± =

u
(
x(t)±0, t

)
are the states at the jump. The motion along the discontinuity

curve is called a shock wave. In a rough analogy to the thermodynamic
principle that physical entropy cannot decrease as time goes forward, Lax
introduced the entropy condition

(20) f ′(u+) < s < f ′(u−)

required at each point of Γ. A more direct analogy for requiring (20) is
that information may vanish at the shock but may not be created at a
shock — geometrically, (20) means that characteristic lines may enter a
shock but may not leave it. Armoured with (19) and (20), it is not hard
to single out the ‘physically relevant’ solution in a great number of cases.
For conservation laws with uniformly convex f , (20) is an easy consequence
of (18).

The work of Lax on systems of conservation laws. The modern theory
of systems of conservation laws ut +

(
f(u)

)
x

= 0, (x ∈ R, t ≥ 0) started
with Lax’s fundamental paper {46}. It is there where one first encounters
the basic ideas in the subject: the shock inequalities (that replace Lax’s
entropy condition (20) for systems), the notion of genuine nonlinearity, the
one-parameter families of shock- and rarefaction-wave curves, as well as the
solution to the general Riemann problem. We do not enter the details here
but, indicating the complexity of {46}, describe the solution of Riemann’s
classical tube problem in gas dynamics instead. Consider a long, thin,
cylindrical tube containing gas separated at x = 0 by a thin membrane.
It is assumed that the gas is at rest on both sides of the membrane, but
it is of different constant pressures and densities on each side. At time
t = 0, the membrane is broken, and the problem is to determine the
ensuing motion of the gas. This leads to a system of conservation laws
with dependent variable u = (v, ρ, p) = (velocity, density, pressure) and
initial data (v`, ρ`, p`) ∈ R3 for x < 0 and (vr, ρr, pr) ∈ R3 for x > 0. Note
that v` = vr = 0 and consider the case ρ` > ρr, p` > pr. By symmetry,
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v(x, t) = α(s), ρ(xt) = β(s), p(x, t) = γ(s) for some real functions α, β,
γ where s = x/t, x ∈ R, t > 0. The solution u(x, t) can be described
as follows. The initial discontinuity breaks up into two discontinuities, the
shock wave and a contact discontinuity with constant speed s4 > 0 and
s3 ∈ (0, s4), respectively. In addition, there exist constants s1 < 0 and
s2 ∈ (s1, 0) such that

u(s) =





0
mif(s)
u0

u0

0

, ρ(s) =





ρ`

mdf(s)
ρ1

ρ2

ρr

, p(s) =





p` if s < s1

mdf(s) if s1 < s < s2

p0 if s2 < s < s3

p0 if s3 < s < s4

pr if s4 < s

(i.e. gas in original high pressure state, rarefaction wave, rarified gas, com-
pressed gas, gas in original low pressure state) where u0 > 0, p0 ∈ (pr, p`),
ρ1 ∈ (0, ρ`), ρ2 > min{ρ1, ρr} are constants and mdf and mif stand for
certain decreasing and increasing functions, respectively.

The Lax–Milgram Lemma. It is a must to discuss the Lax–Milgram
Lemma. Consider, for simplicity, the Dirichlet problem for the Laplacian

∆u = f ∈ L2(Ω), u|∂Ω = 0

on a bounded domain Ω ⊂ Rn with boundary ∂Ω nice. Function u ∈ H1
0 (Ω)

is called a weak solution if
∫

Ω
∇u · ∇v dx +

∫

Ω
fv dx = 0

for each C∞ function v with compact support in Ω. The Lax–Milgram
Lemma is an abstract result in linear functional analysis. (Actually, a
simple consequence of Riesz’ theorem on the dual space of a Hilbert space:
Given a bounded, coercive bilinear form b on a Hilbert space H with scalar
product 〈., .〉, there exists a uniquely defined linear self-homeomorphism S
of H such that b(Sf, v) + 〈f, v〉 = 0 whenever f, v ∈ H. Coercivity of the
not necessarily symmetric bilinear form b means that b(v, v) ≥ β〈v, v〉 for
some β > 0 and all v ∈ H.) The Lax–Milgram Lemma guarantees existence
and uniqueness for the weak solution. It also works in the case when the
Laplacian is replaced by a more general elliptic operator. Thus the Lax–
Milgram Lemma reduces the existence proof for a solution in H2(Ω)∩H1

0 (Ω)
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to a regularity lemma for the weak solution. Here H2(Ω) and H1
0 (Ω) are

Sobolev spaces. As it is suggested by the observation that follows (18),
note that the natural space for weak solutions of a conservation law is some
bounded variation space.

In line with the editorial principles, we do not pursue the scientific career
of Lax any further but restrict ourselves to call the attention of the reader
to [107], a survey on systems of conservation laws. The MathSciNet Full
Search option gives evidence that his name — in expressions like Lax dif-
ference operator, Lax equations, Lax–Friedrichs scheme, Lax integrability,
Lax monoids, Lax pairs, Lax–Phillips scattering theory, Lax representation,
Lax–Wendroff scheme etc. — appears in the respective titles of more than
600 mathematical research papers.

A cross-section in 1928. The state of art. Neumann must have known
the R. Courant, K. Friedrichs & H. Lewy (Math. Ann., 100 (1928), 32–74)
paper very early because an article of his own, the one in which he proved
the minimax theorem of game theory, was published in the same volume of
Mathematische Annalen. If we have started our study with mentioning how
many papers of Hungarian mathematicians were published in Mathematis-
che Annalen between 1900 and 1910, let us cite similar statistics here, based
on Volumes 98–99–100 which were issued in 1928. Out of about 100 papers
17 were written by Hungarian authors or coauthors. Since Gyula Szőkefalvi-
Nagy, János Neumann and Gábor Szegő are represented by several papers,
the number of Hungarian authors is 13. Out of them Pólya lived in Zürich,
Switzerland, Neumann, Szász and Szegő lived in Germany, and Szőkefalvi-
Nagy was a resident in Romania. Later Szőkefalvi-Nagy moved to Szeged
and the other four, threatened by the worsening of their working condi-
tions in a continental Europe under German influence and foreseeing the
dimensions of a racial persecution that culminated in the Endlösung, emi-
grated to the USA. Tibor Radó, after the failure of his 1929 application for
a professorship at Debrecen University, joined them in the self-chosen/from-
outside-enforced exile. Though supported by a commission of the four most
respected Hungarian professors who recommended him primo et unico loco,
Radó was surpassed by a protègè of a clique of local potentates with some
political support in Budapest. (Also Riesz’ and Haar’s applications were re-
fused in their days. They applied for a professorship at Budapest University
but neither of them was appointed.)

Returning to the Hungarian contribution to Volumes 98–99–100 of the
Mathematische Annalen, we note that only two of the 17 papers treat
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differential equations. These are Alfréd Haar’s aforementioned paper on
adjoint problems of the calculus of variations {38} and an additional one
by Aurél Wintner {82}. During his U.S. years Wintner did not consider
himself a Hungarian mathematician, therefore in this report, in compliance
with the editorial principles (which exclude discussing the oeuvre of Arthur
Erdélyi and that of Paul Halmos, for example) we are going to discuss only
his earliest career. The cited paper is concerned with analytic solutions
of differential equations in Hilbert spaces: Wintner provides an infinite–
dimensional generalization of the Cauchy–Kowalewskaya theorem. By the
way, in one of his papers, the coauthor of which was S. Bochner, Neumann
treats ordinary differential equations in Hilbert spaces, most precisely, with
almost periodic solutions of one type of these equations {6}. It is worth
mentioning another paper of his, written jointly with G. W. Brown {7}, in
which they give a new proof using Liapunov functions of game dynamics for
the existence of good strategies for zero–sum two-person games. Similarly
to his works on partial differential equations, here also, practical aspects
are emphasized: “The proof is ‘constructive’ in a sense that lends itself to
utilization when, actually, computing the solutions of specific games.” Our
report on the relation of Neumann’s oeuvre to the theory of differential
equations will be complete if we mention his contribution of great impact
to ergodic theory — his 1940/41 Princeton lectures on invariant measures
were published quite recently {52} — as we did in the case of Frigyes Riesz.

Methods of differential equations appeared occasionally in the works
of Károly Jordan. We restrict ourselves to quoting his monograph on
difference calculus (actually, on basic combinatorial enumeration from a
probabilist’s view but including a long chapter on linear difference equations
and a short one on linear equations of partial differences) {42}. On the
other hand, differential equation methods infiltrated the works of István
Grynaeus, whose illness and untimely death in 1936 deprived the circle of
Hungarian differential geometers of its most talented member, to a much
deeper extent, e.g. in {29} which is an application of the Ricci calculus to
a Pfaffian system.

Pólya and Szegő on isoperimetric inequalities. Several works of
György Pólya and Gábor Szegő can be considered to be about differential
equations; primarily the ones in which they proved certain isoperimetric in-
equalities with the aid of the methods of potential theory and calculus of
variations. Pólya and Szegő were led to isoperimetric inequalities, partly,
by their notorious problem-solving attitude and, partly, by their profound
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knowledge of complex function theory (and, within complex function theory,
by the fact that potential theory in dimension two is essentially equivalent to
the theory of conformal mapping). Among the antecedents it should be men-
tioned that Gábor Szegő translated Webster’s partial differential equations
textbook in the late 1920s. Since Szegő added some mathematical details to
the original text of the physicist Webster, who neglected, or elaborated only
roughly, certain parts of it, the translation became a revision and, thus, the
translator became a co-author. The German edition of the work was pub-
lished under both of their names [195]. Also, it is worth mentioning that
in the encyclopedic work of ‘P. Frank and R. von Mises Die Differential-
und Integralgleichungen der Mechanik und Physik, Vieweg, Braunschweig,
1925’ the chapter on potential theory was written by Szegő whose own first
result in that field was on a relationship between Green functions and the
transfinite diameter of plane curves. This latter concept was introduced by
Mihály Fekete in his famous work on generalizing Chebishev polynomials
(which arise in the case of a line segment) {23}. Later, Pólya joined Szegő’s
research of this type. By isoperimetric inequalities we mean statements on
extremal properties of set functions which have obvious geometric or phys-
ical interpretations. The model statement (which was due, originally, to
Pólya in 1920) can be taken from Pólya and Szegő [129, Problem IX. I. 2]:
Consider a corn hill the base of which is a unit disc in a horizontal plane.
Then V/S ≥ π/3 where V and S stand for the volume and the maximal
slope, respectively. Equality is attained for circular cones. Based on the ma-
chinery necessary to their formulation and proof, isoperimetric inequalities
can be classified as belonging to the relevant branches of mathematics.

In what follows let V1 ⊂ V ⊂ V0 denote a nested triplet of closed solids in
R3 with closed regular surface boundaries. It is assumed that ∂V1 ⊂ V \∂V
and ∂V ⊂ V0 \ ∂V0. Let u denote the uniquely defined solution to the
Dirichlet problem

(21) ∆u = 0 on V0 \ (V1 ∪ ∂V0), and u|∂V1
= 1, u|∂V0

= 0.

The capacity of the nested pair (∂V1, ∂V0) is defined as

C = − 1
4π

∫

∂V

∂u

∂ν
dS (the normal vector ν points outwards)

— the integral does not depend on the particular choice of V . The nested
pair (∂V1, ∂V0) itself is termed a condenser. The terms ‘capacity’ and ‘con-
denser’ refer to the meaning of the Dirichlet problem (21) in electrostatics.
(Of course, the function u can be interpreted as an equilibrium solution of
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the heat equation also.) The capacity of ∂V1 is defined via the Dirichlet
problem

∆u = 0 or R3 \ V1, and u|∂V1
= 1, u(∞) = 0

(that corresponds to the limiting process ∂V0 →∞).

Szegő’s main result {78} is as follows: Among all nested pairs (∂V1, ∂V0)
with volume (V1) and volume (V0) given, the capacity is minimal if and only
if V1 and V0 are concentric balls. The limiting process ∂V0 → ∞ leads
to the proof of a conjecture due to Poincaré: Of all surfaces ∂V1 with
volume (V1) given, the sphere has the smallest capacity. Similarly {78}, of
all surfaces ∂(V1) with area (V1) given, the sphere has the largest capacity.
Naturally, the abovementioned statements, the planar versions of which
had been known before, could be reformulated in the form of inequalities as
well. In his latter work {79} Szegő verified Maxwell’s conjecture C ≤ d/2,
too. Here d stands for the usual diameter and the equality holds only for
spheres. It should be mentioned that exact indications to a satisfactory
proof of Poincaré’s conjecture can be found in an earlier paper by G. Faber
(Sitzungsber. Bayr. Acad. Wiss. (1923), 169–172).

The main finding of Georg Faber’s aforesaid paper is the proof of one of
Rayleigh’s important conjectures: of all vibrating membranes, the closed
disc emits the gravest fundamental tone. The mathematical task is to
minimize λ1(D) where D is a closed regular domain in R2 with area (D)
given, say π, and λ1(D) stands for the principal eigenvalue of the negative
Laplacian equipped with the Dirichlet boundary condition u|∂D = 0. Recall
that

λ1(D) = min

{∫∫
D(u2

x + u2
y) dx dy∫∫

D u2 dx dy

∣∣∣u ∈ C1(D \ ∂D) ∩ C(D) and u|∂D = 0

}
,

the minimum is attained for the principal eigenfunction e1, the level sets
of e1 are (except for one point) simple closed curves, and e1(x, y) > 0 for
(x, y) ∈ D \ ∂D. In essence, the major observation of Faber and of Edgar
Krahn (Math. Ann., 94 (1924), 97–100) (the latter obtained the same result
nearly simultaneously but independently of the former) is that

∫ ∫

D

(
(e1)

2
x + (e1)2y

)
dx dy ≥

∫ ∫

B1

(v2
x + v2

y) dx dy
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where B1 is the closed unit disc and the function v = v(e1, D) : B1 → R+ is
(uniquely) defined by the property as follows: For any κ ∈ [0, max

{
e1(x, y) |

(x, y) ∈ D
}
],

v(x, y) = κ if and only if x2 + y2 = π−1 · area (
{

(x, y) ∈ D | e1(x, y) ≥ κ
}
).

(22)

From this the proof of Rayleigh’s conjecture can be derived easily. The name
of the procedure applied in formula (22) is symmetrization with respect to
a point. Faber remarks that the very same method leads to the proof of
Poincaré’s conjecture on minimal capacities and, that is indeed the case.

Szegő {78} followed a totally different, simpler and ad hoc way, but the
family of symmetrization methods some elements of which had already been
known by Jacob Steiner and Hermann Amandus Schwarz in the nineteenth
century proved to be much more successful in the long run. At least, a
dozen quantities in geometry and physics increase or decrease under a cer-
tain symmetrization procedure. Pólya and Szegő, jointly and individually,
proved several assertions of this type and, through them, isoperimetric in-
equalities {61}. With the help of the symmetrization methods Pólya {57}
proved de Saint-Venant’s conjecture of 1856 (which de Saint-Venant sup-
ported by convincing physical considerations and several particular cases,
but did not prove in a mathematical sense): Of all cross-sections with a
given area, the circular cross-section has the largest torsional rigidity. The
torsional rigidity or stiffness P (D) of a cross-section D (i.e. of an infinite
beam with a given plane domain D as cross-section) can be defined as

P (D) = 4 ·max

{
(

∫∫
D u dx dy)

2

∫∫
D(u2

x + u2
y) dx dy

∣∣∣u ∈ C1(D \ ∂D) ∩ C(D)

and u|∂D = 0

}
.

Note that the maximum is attained if and only if u = cv where c 6= 0 is a
real constant and v solves the boundary value problem

vxx + vyy + 2 = 0 on D \ ∂D, and v|∂D = 0.

In their 1951 book Pólya and Szegő [130] presented the ‘state of the
art’ of the questions concerning isoperimetric inequalities of that age. The
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influence of this so-called ‘smaller Pólya–Szegő’ can be felt even nowadays
and this work of theirs continues to be the source of inspirations. At least
half the book discusses Pólya and Szegő’s own results. They formulated,
improved and optimized in it the inequalities about various set functions.
They treated the cases of nearly circular and nearly spherical domains as
well as several techniques for handling parameters. After the publication of
their book the study of the topic was continued by both of them. Among
their co-authors Menahem Schiffer’s name should be mentioned: With him,
Pólya proved {59} an old conjecture of his according to which the transfinite
diameter of a convex plane curve is no less than one-eighth of the perimeter.

A special mention should be made of Pólya and Szegő’s joint paper {60}
on qualitative properties of the one-dimensional heat equation. Applying
Descartes’s generalized rule of signs and Sturm’s oscillation theorem they
state that the number of roots and/or the extrema of each individual solu-
tion is a decreasing function of time. In one of his papers {57} Pólya treats
similar questions again but the longer study intended has never been writ-
ten. If it had been written, it might have accelerated the recognition how
important a role is played by the number of sign changes in the qualitative
theory of linear and nonlinear parabolic equations of one dimension. The
1952 paper of Pólya {57} on combining finite differences with the Rayleigh–
Ritz method is frequently interpreted as a preparatory step towards the
discovery of finite element methods.

M. Riesz’ fractional potentials. Now we are going to discuss the contri-
bution to differential equations of the younger Riesz brother. Marcel Riesz
was concerned with differential equations only in a rather late period of his
career, from the early 1930’s on. His most important results were in the
field of potential theory and wave propagation. His interest was motivated,
partly, by the application to the theory of relativity. All his work on partial
differential equations until that time was summarized by Marcel Riesz him-
self in a book-size paper written in a book style, published in 1949 {71}.
We are going to discuss this monumental work below.

Marcel Riesz worked out several basic techniques in multidimensional
fractional integration and generalized the concept of the classical Riemann–
Liouville integral

(Iαf)(x) =
1

Γ(α)

∫ x

a
f(t)(x− t)α−1 dt, α > 0
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in different directions. The one associated with the m-dimensional Lapla-
cian ∆ is

(23) (Iα
∆f)(x) =

1
H∆,m(α)

∫

Rm

|x− y|α−mf(y) dy

where H∆,m(α) = πm/22αΓ(α/2)/Γ
(
(m − α)/2

)
. Case m = 3, α = 2

simplifies to the standard Newtonian potential. Patterned on the simple
identity

(Iαf)(x) =
f(a)

Γ(α + 1)
(x− a)α + (Iα+1f ′)(x) = (Iα+1f ′)(x)

valid for f ∈ C1(R) with f(a) = 0 and α > −1, Green’s formula applies
for f : Rm → R sufficiently nice, extends the operator α → (Iα

∆f) by
analytic continuation and leads to the properties ∆(Iα+2

∆ f) = −Iα
∆f and

∆(I2
∆f) = −f . If f dy is a mass distribution with a finite total mass

in Rm, then the integral in (23) makes sense for 0 < α < m and Iα
∆f

is called the fractional potential of order α of f dy. By passing to the
limit, I0

∆f = f . A further fundamental fact established by Riesz is that
Iα+β
∆ f = Iα

∆(Iβ
∆f) whenever α > 0, β > 0 and α + β < m. The very

same semigroup properties hold true if f dy is replaced by dµ(y) where µ
is a general mass distribution in Rm. In this setting (Iα

∆f) is the fractional
potential of the mass while the energy of µ with respect to the fractional
potential is defined by

∫
(Iα

∆µ)(x) dµ(x). Existence, uniqueness and basic
properties of the equilibrium distribution in a compact set F ⊂ Rm (i.e.
of a distribution having minimal energy in the class of mass distributions
supported by F and having a given total mass) were proven rigorously in
the 1935 PhD thesis of Otto Frostman, a famous disciple of Riesz. In fact,
Frostman’s very general approach and method of proving the existence of
the equilibrium measure is considered the foundation of modern general
potential theory. Riesz’ functional potentials thus generated a far reaching
development including weighted potentials as well as the Wiener theory of
Brownian motion.

The fractional integral associated with the D’Alembertian operator ¤ =
∂2

1 − ∂2
2 − · · · − ∂2

m, m ≥ 2 is

(Iα�f)(x) =
1

H�,m(α)

∫

x−C

(
r(x− y)

)α−m
f(y) dy.

Here 1/H�,m(α) is a suitable ‘Γ–factor’ — suitable to imply ¤(Iα+2
� f) =

Iα�f and ¤(I2�f) = f for f : Rm → R sufficiently nice —, r2(x − y) =
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(x1 − y1)
2 − (x2 − y2)

2 − · · · − (xm − ym)2 is the square of the Lorentzian
distance and

x− C =
{

x− y ∈ Rm | r2(y) ≥ 0 and y1 > 0
}

,

the retrograde light-cone with its vertex at x. Semigroup properties for
α, β ≥ 0 are also established. The last chapter of {71} contains a similar
theory for the wave operator in arbitrary Riemannian spaces.

A major part of {71} is devoted to the Cauchy problem for the wave
equation ¤u = f with initial data on a codimension one surface of the form
S =

{
x ∈ Rm | x1 = s(x2, . . . , xm)

}
. Riesz establishes integral represen-

tations for the solution involving certain divergent integrals which obtain a
meaning by analytic continuation methods. This is more elegant than the
parallel theory of Hadamard on ‘finite parts’ of divergent integrals because
it does not distinguish between even and odd numbers of dimensions. On
the basis of his formula, Riesz clarifies that Huygens phenomenon is a con-
sequence of the fact that, for m > 2 even, function H�,m has a simple pole
at α = 2. He gives a purely geometric interpretation of the solution for the
physically most important case, namely m = 4, with a disussion of certain
line congruences and caustics. The entire discussion is important with re-
spect to the Lorentz group. Then he applies his method to the Maxwell and
Dirac equations and analyses the Liénard-Wiechert potential of a moving
electron, too. Similar to Hadamard, Riesz also extends his solution repre-
sentation formula for the wave equation with variable coefficients and initial
data on S.

Marcel Riesz’s work {71} reflects the state of differential equations which
preceded the introduction of Schwartz distributions and Sobolev spaces.
Since that time one of his main goals, the proper interpretation of divergent
integrals, has been attained in a much larger framework through the theory
of distributions. Although he must have been rather distant from defining
the appropriate function spaces, his results in potential theory pointed
towards the introduction of fractional powers of the Laplacian. In the later
development of linear partial differential equations from among his disciples
two of them, Lars G̊arding and Lars Hörmander played a basically important
role. Apart from his work on spinors and Clifford algebras in the late period
of his life Riesz himself contributed relatively little to his earlier differential
equation results.

The work of Egerváry. The first result obtained in the post–war pe-
riod in Hungary we present is due to Jenő Egerváry and Pál Turán {11}
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and devoted to the memory of D. König and A. Szücs who did not sur-
vive the tragic days of 1944/45. Combined with hard analytic tools which
go back to H. Weyl, Egerváry and Turán used the geometric ideas of
D. König and A. Szücs {43} in proving a weak, somewhat artificial form
of the Boltzmannian Hypothesis in the kinetic theory of gases. They con-
sidered an oversimplified differential equation model (which is very care-
fully chosen but not a differential equation model any more — neverthe-
less, we feel that the differential equation chapter is the right place to dis-
cuss it) of n particles: the n particles are included in an immobile cube
C =

{
(x1, x2, x3) | 0 ≤ x1, x2, x3 ≤ π

}
, they are dimensionless, of equal

mass, no attractive or exterior forces acting, the impacts on the walls ac-
cording to the laws of elastic reflection, collisions between three or more
particles excluded, collisions between two particles according to the law of
elastic impact, the initial conditions of the n particles at time t0 = 0 are
arbitrary and, with ϑ1 = 1, ϑ2 = 21/2, ϑ3 = 31/2, the initial velocities satisfy

vi
k ∈ n2/5

(
1 +

k

n101/100

)
·
(

ϑi − 1
n10

, ϑi +
1

n10

)

i = 1, 2, 3 and k = 1, 2, . . . , n.

For simplicity, Egerváry and Turán assumed that the n particles are equidis-
tributed at time t if for any rectangular body R in C, the number of particles
N(R, t) in R at t satisfies

∣∣∣∣
N(R, t)

n
− vol (R)

π3

∣∣∣∣ ≤
1

n1/10
.

They prove that the particles are equidistributed for the time interval
0 ≤ t ≤ n1/4 except time intervals whose total length does not exceed
c0n

−1/10log4n where c0 stands for a moderate numerical constant. If n is of
the order 1023, then n1/4 is on the order of several days, and c0n

−1/10log4n
is on the order of several seconds long. Estimates which are slightly bet-
ter and work for more realistic initial velocities can be found in {12} which
is a technically improved version of {11}. In both papers, the intention of
the authors is to support the opinion that (some reasonable variant of) the
Boltzmannian hypothesis can be derived as a consequence of the basic laws
of mechanics.

Jenő Egerváry, a professor at the Budapest University of Technology,
is one of the very few Hungarian mathematicians whose entire career is
closely related to applied mathematics. Starting from his 1913 PhD Thesis
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(dedicated to a single linear Fredholm integral equation {9}) to his latest
results (including his 1956 paper on a large system of fourth–order linear
differential equations modelling suspension bridges {10}) he wrote several
articles on the convergence of the method of finite differences. He had papers
on the three–body problem, on heat conduction, and on the motion of the
electron as well.

A cross-section in 1953. The state of art. As far as the application
of mathematics is concerned, the decade preceding 1956 played a role of
special importance in Hungary. Obviously, in the age of reconstruction of
war–time damages (with the priority of rebuilding the bridges destroyed
on the Danube) and during a period of an unprecedented development of
heavy industry most of the applications were closely related to differential
equations. (Motivations of mathematicians to take part in this work were
diverse: with genuine enthusiasm some supported the efforts to establish
the new society which was called people’s democracy officially; others did
the same out of fear of the Communist Party under external and internal
pressures; there were still others who just wanted to earn money.) In the
meantime, central industrial research institutes were set up and even the Re-
search Institute of Applied Mathematics organized by Egerváry and Rényi,
which was the legal predecessor of today’s Rényi Institute (Research Insti-
tute of Mathematics of the Hungarian Academy of Sciences), there was a
Department of Chemical Industry, a Department of Mechanics and Statics
as well as a group on Electrotechnic (precisely, an Independent Group on
Electronics and Function Approximation). In compliance with the above
mentioned administrative structure of mathematical research dozens of pa-
pers of practical importance were born in the field of the application of
differential equations. From the mid- and late fifties researchers of mathe-
matical analysis in a broader sense turned to more abstract research topics.

From 1960 to 1970 the Department of Differential Equations of the
Research Institute of Mathematics — the attribute ‘Applied’ was taken
away after the fifties — was led by Károly Szilárd, the brother of Leó Szilárd.
Károly Szilárd left Hungary in 1919 and returned in 1960. He spent 14 years
in Germany (PhD in Göttingen, 1925) and 27 years in the USSR (Stalin
Prize in 1953, after several years in a ‘prison-research-institute’). A further
emblematic figure of applied mathematical analysis was Samu Borbély. He
worked in a research laboratory of the German aviation industry in the
thirties, then returned to Hungary for reasons of conscience, and fled the
Gestapo in 1944. While in a USSR ‘prison-research-institute’ after the
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war, he could conceale his expertize in aviation matters and worked for
the artillary. Being a member of the Hungarian Academy of Sciences from
1949 onward, he taught mathematics in Miskolc and, later, at the Budapest
University of Technology. Like Szilárd, he has a very limited number of
publications (in the literature with general availability).

Having discussed the data between 1900 and 1910 as well as those in
1928, let us have a look at the state of differential equations in light of
the statistical figures found in the 1953 volumes of the old Acta Scien-
tiarum Mathematicarum (Szeged) 1/32 and the recently founded new jour-
nals Acta Mathematica Hungarica (Budapest) 1/23, Publicationes Mathe-
maticae (Debrecen) 2/33 — papers only in English, French, German, and
Russian; MTA III. Osztály Közleményei (Proceedings of the Third Branch
(Mathematics and Physics) of the Hungarian Academy of Sciences) 1/21,
MTA Alkalmazott Matematika Intézetének Közleményei (Proceedings of the
Research Institute of Applied Mathematics of the Hungarian Academy of
Sciences) 10/36 — papers only in Hungarian. The name of each journal
is followed by a fraction. The denominator is the number of papers in the
journal written by Hungarian authors whereas the numerator is the num-
ber of papers that may be ranked among differential equations in a broader
sense. Since in 1953 mathematicians in Hungary could hardly think to
publish their work abroad, actually, the number of their papers in the five
periodicals mentioned were almost identical with the total number of their
publications of that year.

Bihari inequality. The 1956 paper of Imre Bihari {4} is probably the
most frequently cited ordinary differential equation paper ever written by
a Hungarian mathematician. It contains what we call today the Bihari
inequality, the first nonlinear version of the classical Gronwall lemma. Let
u, v : [a, b) → R+, ω : R+ → R+ be continuous functions. Assume that
ω is increasing and ω(u) > 0 whenever u > 0. In addition, let K be a
nonnegative constant and assume that

u(t) ≤ K +
∫ t

a
v(s)ω

(
u(s)

)
ds whenever t ∈ [a, b).

Then

u(t) ≤





Ω−1

(
Ω(K) +

∫ t

a
v(s) ds

)
if Ω(K) > −∞

0 if Ω(K) = −∞
whenever t ∈ [a, c)

(24)
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where, with some fixed positive u0,

Ω(u) =
∫ u

u0

1
ω(t)

dt, u ≥ 0,

c =





min

{
b, sup

{
t ≥ a

∣∣∣Ω(K) +
∫ t

a
v(s) ds < lim

u→∞Ω(u)
}}

if Ω(K) > −∞
b if Ω(K) = −∞

and Ω−1 stands for the inverse function of Ω. Note that

Ω(K) = −∞ if and only if K = 0 and
∫ 0

u0

1
ω(t)

dt = −∞.

(The result in the degenerate case follows from the inequality in the nonde-
generate case simply by choosing K = k−1, k = 1, 2, . . . and letting k →∞.
Bihari did not specify the domains of his functions.) Neither c (the case
c = b = ∞ is not excluded) nor the right–hand side of inequality (24) de-
pends on the particular choice of u0. If ω(u) = u for each u ≥ 0, then (24)
simplifies to

u(t) ≤ K exp
( ∫ t

a
v(s) ds

)
whenever t ∈ [a, b),

i.e. to Bellman’s version of the classical Gronwall lemma. Bihari’s inequal-
ity (24) has direct implications on questions of uniqueness and continuous
dependence. The relationship between (24) and the Alexeev–Gröbner non-
linear variation-of-constants formula is more or less the same as the re-
lationship between the classical Gronwall lemma and the standard, linear
variation-of-constants formula. Bihari {4} himself discusses the uniqueness
criteria of Osgood, Perron, and Nagumo as well as the nonuniqueness crite-
rion of Tamarkine in the light of his inequality and presents an application
to continuous dependence on initial conditions. In an accompanying paper
{5}, he applies inequality (24) to problems of stability and boundedness. In-
equality (24) has been generalized in various directions, by a great number
of authors.

In the sixties the interest of Bihari was focused on establishing a Sturm–
Liouville theory for certain types of second-order nonlinear ordinary differ-
ential equations he called half-linear. The one-dimensional p-Laplacian

(
q(x)Φ(y′)

) ′ + r(x)Φ(y) = 0
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(where q, r > 0 and Φ(s) = |s|p−2s (s ∈ R) with some p ∈ (1,∞))
provides an example. (We have to admit Bihari’s terminology was not
always consistent. One can venture to state the more an equation is subject
to Sturm–Liouville theory the more this equation is half-linear.)

The contributions of Makai. Three years after Bihari’s inequality, a pa-
per by Endre Makai {47} attracted international interest, too. He proved
that the principal eigenvalue λ1(D) in Reyleigh’s conjecture and the tor-
sional rigidity P (D) in Saint-Vernant’s conjecture (we discussed in connec-
tion with the work of Pólya and Szegő on isoperimetric inequalities) satisfy

(25) λ1(D)
area2(D)

length2(∂D)
≤ 3 and P (D)

area3(D)
length2(∂D)

≤ 1,

respectively. An important ingredient of Makai’s proof is the observa-
tion that, with D(ε) denoting the Euclidean ε-neighborhood of D in R2,
length

(
∂D(ε)

)
is an increasing function in ε. Makai proved this observa-

tion in a generality which suited his purposes — the difficulty is of course
related to the existence of the length (the exceptional ε-set in R+ where
length

(
∂D(ε)

)
does not make sense is countable) — nevertheless, in the last

version of his paper finally published he refers to the more general geometric
inequalities of Béla Szőkefalvi-Nagy {50} obtained in the meantime. The
‘method of interior parallels’ of Makai and Szőkefalvi-Nagy helped Pólya
{58} to find the sharp upper bounds π2/4 and 3/4 in (25) later — the
equalities are approached as D approaches an infinite strip.

A further interesting result of Makai {49} concerns the eigenfunctions
of the Laplacian for the Dirichlet and the Neuman problem on the m-
dimensional symplex

Sm =
{

(x1, x2, . . . , xm) | 0 ≤ x1 ≤ x2 ≤ · · · ≤ xm ≤ π
}

.

The eigenfunctions are

determinant [sinnixj ]
m
i,j=1 whenever 0 < n1 < · · · < nm, integers

and

permanent [cosnixj ]
m
i,j=1 whenever 0 ≤ n1 ≤ · · · ≤ nm, integers

with eigenvalues
∑

n2
i , respectively. Related results for the isosceles rect-

angular triangle S2 as well as for the equilateral triangle were obtained by
Makai {48} a couple of years earlier.
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The papers of Rényi and Barna on interval maps. In a 1957 paper
{65}, Alfréd Rényi elaborated a method for proving that certain interval
maps admit absolutely continuous ergodic measures. His examples include
what is called today Rényi transformation

Rβ : [0, 1] → [0, 1], x → βx (mod 1)

where β > 1 is a real parameter and the absolutely continuous ergodic
measure νβ is equivalent to the standard Lebesgue measure λ on [0, 1].
(Note that an absolutely continuous ergodic measure is necessarily unique.)
Rényi’s interest comes from number theory: If β = 10, then νβ = λ and his
result simplifies to Borel’s Normal Number Theorem stating that, for almost
every x ∈ [0, 1], the frequency of any digit in the decimal expansion of x is
1/10. He reproves the corresponding result for continued fraction expansions
and has also a similar application to an 1832 algorithm of Farkas Bolyai.

A further class of transformations with absolutely continuous ergodic
measures Rényi investigates are mappings of the form

S : [0, 1] → [0, 1], x → τ(x) (mod 1)

where τ : [0, 1] → R+ is a C1 function with τ(0) = 0, τ(1) ∈ {2, 3, . . . }, and
satisfying the expanding condition τ ′(x) > 1 for each x ∈ [0, 1] as well as a
technical condition (C). While keeping condition (C), Rényi points out that
the remaining set of assumptions can be replaced by three alternative sets
of conditions under which the existence of an absolutely continuous ergodic
measure can be established. Condition (C) itself is a so-called distortion
inequality, a uniform bound for the build-up of nonlinearities under the
iterates of S. Though condition (C) involves an infinite number of iterates
of S, it can be checked in a number of various circumstances. As it was
observed by Adler in the afterword to a posthumous paper by R. Bowen
(Comm. Math. Phys., 69 (1979), 1–17), condition (C) is automatically
satisfied if τ : [0, 1] → R+ is a C2 function with τ(0) = 0, τ(1) ∈ {2, 3, . . . },
and the expanding condition τ ′(x) > 1 for each x ∈ [0, 1]. Condition (C)
and other distortion inequalities have remained extremely useful in the later
development of the subject. The number of contributors in the sixties and
the seventies became so large that, following Adler, the collection of Rényi-
type results on the existence of absolutely continuous ergodic measures for
general Markov maps of the interval is termed usually as The Folklore
Theorem.

The theory of invariant measures for interval maps began with the 1947
result of Stanislaw Ulam & János Neumann {81} who pointed out that
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dλ/(π
(
x(1− x)

)1/2) defines an absolutely continuous ergodic measure for
the logistic map [0, 1] → [0, 1], x → 4x(1− x).

The most interesting Hungarian contribution to the early theory of
interval maps is the work of Béla Barna on divergence properties of Newton’s
method when applied for approximating real roots of real polynomials. His
results remained unnoticed for about two decades. In an 1985 survey paper,
however, S. Smale (Bull. Amer. Math. Soc., 13 (1985), 87–121) mentions
his name, together with those of Fatou and Julia, as one of the pioneers of
the iteration theory of rational functions.

The work of Barna originates in two questions of Rényi posed at the end
of his 1950 half-scientific, half-educational paper {64} on Newton’s method.
Rényi’s interest is mainly qualitative. He describes in detail the results of
Cauchy and Fourier on convergence criteria but does not mention that the
order of convergence is, in fact, quadratic. He turns his attention to “bad
initial points” instead and gives a sufficient condition for a particularly
strong form of divergence.

Let f : R → R be a C1 function. For x ∈ {
y ∈ R | f ′(y) 6= 0

}
, set

Nf (x) = x − f(x)/f ′(x). A point x0 ∈ R is convergent if the infinite orbit
sequence x0, x1 = Nf (x0), x2 = Nf (x1), . . . is (defined and) convergent (and
then, necessarily, limn→∞ xn is a zero of f). Otherwise x0 is divergent. For
an arbitrary C2 function with the properties that f ′′ is strictly increasing
and f has exactly three simple roots say A1, A2, A3, Rényi {64} proves that
the set of divergent points is countable, there exists a unique period–two
orbit x∗0, x

∗
1, x

∗
0, . . . and, last but not least, for i = 1, 2, 3, any neighborhood

of x∗0 contains a point whose orbit converges to Ai, a strikingly sensible
dependence on initial values near x∗0. Rényi asks 1.) if for real polynomials
without complex roots the set of divergent points is always countable and 2.)
if there is a real polynomial with the properties that not all roots are complex
and the set of divergent points contains an interval.

Answering the first question of Rényi in the negative, Barna {1} shows
that, given a fourth–degree real polynomial with four simple real roots, the
set of divergent points is a compact set of the form C ∪ F where C is a
Cantor set, C ∩ F = ∅, and

F = {x ∈ R | the iteration x0, x1, . . .

breaks up in a finite number of steps}
is a countable set of isolated points. Moreover, the set

S = {x ∈ C | the infinite orbit x0, x1, . . . is eventually periodic}
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is also countable and, for each k ≥ 2, contains periodic orbits with minimal
period k. The number of such periodic orbits is 2k−1(2k−1 − 1) if k 6= 2 is
a prime number and 3 if k = 2. (If k is not a prime number, Barna asserts
that the number of periodic orbits with minimal period k can be computed
via a complicated recursion but gives no details at all.) Given x0 ∈ C \ S
arbitrarily, Barna — in today’s terminology — shows that the omega–limit
set ω(x0) = ∩∞k=0 cl

({xk, xk+1, . . . }
)

is not finite.

The consecutive four papers of Barna {2a}, {2b}, {2c}, {2d} are devoted
to real polynomials of degree m, m ≥ 4. He proves that all the m = 4
cardinality and topological results on C, F , S, and the structure of the set
of divergent points remain valid under the condition that the roots of the
polynomial are real and simple say A1, A2, . . . , Am. In addition, he proves
that, given x0 ∈ C and i ∈ {1, 2, . . . ,m} arbitrarily, any neighborhood of
x0 in R contains a point whose orbit converges to Ai. He provides two
different proofs to this latter result. The first one {2a} is based on the
general, complex–variable theory of Fatou and Julia on iterating rational
functions whereas the second one {2c}, like the whole approach of Barna, is
completely elementary. No m ≥ 5 version of the “2k−1(2k−1 − 1) if k 6= 2”
combinatorial result is given. In the last paper of the series {2d}, Barna
proves that his Cantor set C is a Lebesgue null set.

The answer to Rényi’s second question is, in contrast to the conjecture
in {64}, affirmative. Barna’s example in {2b} is f(x) = 11x6 − 34x4 +
39x2 for which Nf (1) = −1, Nf (−1) = 1 and N ′

f (1) = N ′
f (−1) = 0.

Thus 1,−1, 1, . . . is an asymptotically stable period–two orbit of Nf and
sufficiently small intervals about x0 = 1 consist entirely of divergent points
(attracted by the period–two orbit 1,−1, 1, . . . ).

A further early contribution to the modern theory of dynamical systems
is due to György Szekeres, a childhood friend of Pál Erdős. He presents
a detailed study of the one-dimensional conjugacy equation H(

f(x)
)

=
µH(x), µ 6= 0, 1 in 1958 {77}. Here the real function f is strictly increasing,
defined on some finite or infinite interval [0, c) ⊂ Rn, and satisfies f(0) = 0,
f(x) < x for x 6= x0 = 0. He looks for strictly monotone solutions
H representable as limits of iterations like H(x) = η limn→∞ µ−nfn(x),
x ∈ [0, c) in the regular case f ′(0) = µ ∈ (0, 1), (f ∈ Cr, r ≥ 1; η 6= 0
is a real parameter) on some interval [0, b) or (0, b). In the singular cases
µ 6= f ′(0) = 0 or µ 6= f ′(0) = 1, the existence of such solutions is pointed out
under certain asymptotic conditions on f at the fixed point x0 = 0. Similar
results are proved for Abel’s functional equation α

(
f(x)

)
= α(x)+c (c 6= 0)

as well as for the embeddability of f = Φ(1, ·) in a local iteration group
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(i.e. in a continuous-time local dynamical system satisfying) Φ(t + τ, ·) =
Φ

(
t, Φ(τ, ·)) , t, τ ∈ R. Szekeres’ results generalize, complete, and unify

those of Koenigs and Schröder who worked with f analytic, and can be
considered as ‘variations and fugue’ on the 1959/60 Grobman–Hartman
Lemma in one dimension.

Further workers, further works. Finally, we mention the names of
several mathematicians who started their careers in the late fourties and
whose research topics were, to a lesser or greater extent, connected to the
theory of differential equations. These are György Alexits (actually, he
belonged to an earlier generation but his scientific activities could not freely
develop in the pre-war period — he worked mainly in approximation theory
but his 1924 PhD Thesis was devoted to the Laplace equation), István Fenyő
(his main area was, as it is demonstrated by the title of his major work with
H. W. Stolle {24}, the theory and praxis of linear integral equations), Géza
Freud (he is well known as an expert on orthogonal polynomials — but
published several papers on partial differential equations in the early years
of his career), Miklós Mikolás (his fractional calculus papers contain several
applications to ordinary differential equations with fractional derivatives),
and György Targonski (who combined the theory of iterations with those
of functional equations). As for representatives of the ten years younger
generation, the names of Tamás Fényes and of his blind friend, Pál Kosik,
are mentioned (a great part of their joint papers is devoted to the Mikusinski
operational calculus).

Epilogue. And this ends our report on the history of differential equations:
Hungary, the extended first half of the 20th century, a terrific place and
time.
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[143] Radó, Tibor, Subharmonic Functions, Ergebnisse der Mathematik und ihrer Gren-
zgebiete. Band 5, No. 1, Springer-Verlag (Berlin, 1937)/Chelsea (New York, 1949).
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fournir des bornes supérieures ou inférieures, C.R. Acad. Sci. Paris, 235 (1952),
995–997. (195)
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{61} G. Pólya and G. Szegő, Über den transfiniten Durchmesser (Kapazitätskonstante)
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24 (1925), 321–327.
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