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Extremal Properties of Polynomials

TAMÁS ERDÉLYI

This article focuses on those problems about extremal properties of polyno-
mials that were considered by the Hungarian mathematicians Lipót Fejér,
Mihály Fekete, Marcel Riesz, Alfréd Rényi, György Pólya, Gábor Szegő, Pál
Erdős, Pál Turán, Géza Freud, Gábor Somorjai, and their associates, who
lived and died mostly in the twentieth century. It reflects my personal taste
and is far from complete even within the subdomains we focus on most,
namely inequalities for polynomials with constraints, Müntz polynomials,
and the geometry of polynomials. There are separate chapters of this book
devoted to orthogonal polynomials, interpolation, and function series, so
here we touch these issues only marginally.

1. Markov- and Bernstein-Type Inequalities

Let ‖f‖A denote the supremum norm of a function f on A. The Markov
inequality asserts that

‖p′‖[−1,1] ≤ n2‖p‖[−1,1]

holds for every polynomial p of degree at most n with complex coefficients.
The inequality ∣∣p′(y)

∣∣ ≤ n√
1− y2

‖p‖[−1,1]

holds for every polynomial p of degree at most n with complex coefficients
and for every y ∈ (−1, 1), and is known as Bernstein inequality. Various
analogues of the above two inequalities are known in which the underlying
intervals, the maximum norms, and the family of functions are replaced
by more general sets, norms, and families of functions, respectively. These
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inequalities are called Markov- and Bernstein-type inequalities. If the norms
are the same on both sides, the inequality is called Markov-type, otherwise
it is called Bernstein-type (this distinction is not completely standard).
Markov- and Bernstein-type inequalities are known on various regions of the
complex plane and n-dimensional Euclidean space, for various norms such
as weighted Lp norms, and for many classes of functions such as polynomials
with various constraints and exponential sums of n terms, just to mention
a couple. Markov- and Bernstein-type inequalities have their own intrinsic
interest. In addition, they play a fundamental role in approximation theory.

The inequality

‖p(m)‖
[−1,1]

≤ T (m)
n (1) · ‖p‖[−1,1]

for every (algebraic) polynomial p of degree at most n with complex coeffi-
cients was first proved by V.A. Markov in 1892. Here, and in the sequel Tn

denotes the Čebyshov polynomial of degree n defined by

Tn(x) :=
1
2

(
(x +

√
x2 − 1 )

n + (x−
√

x2 − 1 )
n
)

(equivalently, Tn(cos θ) := cos (nθ), θ ∈ R). V. A. Markov was the brother
of the more famous A. A. Markov who proved the above inequality for m = 1
in 1889 by answering a question raised by the prominent Russian chemist,
D. I. Mendeleev. Sergei N. Bernstein presented a shorter variational proof
of V. A. Markov’s inequality in 1938. The simplest known proof of Markov’s
inequality for higher derivatives is due to Duffin and Schaeffer {15}, who
gave various extensions as well.

Let T := R (mod 2π). The inequality

‖t′‖T ≤ n‖t‖T
for all (real or complex) trigonometric polynomials of order n is also called
the Bernstein inequality. It was proved by Bernstein in 1912 with 2n in
place of n. See also {41}. The sharp inequality appears first in a paper
of Fekete in 1916 who attributes the proof to Fejér. Bernstein attributes
the proof to Edmund Landau. A clever proof based on zero-counting may
be found in many books dealing with approximation theory. In books
Markov’s inequality for the first derivative is then deduced as a combination
of Bernstein’s inequality and an inequality due to Issai Schur:

‖p‖[−1,1] ≤ (n + 1) max
x∈[−1,1]

|p(x)
√

1− x2|



Extremal Properties of Polynomials 121

for every polynomial p of degree at most n with real coefficients.

Bernstein used his inequality to prove inverse theorems of approxima-
tion. Bernstein’s method is presented in the proof of the next theorem,
which is one of the simplest cases. However, several other inverse theorems
of approximation can be proved by straightforward modifications of the
proof of this result. That is why Bernstein- and Markov-type inequalities
play a significant role in approximation theory. Direct and inverse theo-
rems of approximation and related matters may be found in many books on
approximation theory, including [111], {14}, and {56}.

Let Tn be the collection of all trigonometric polynomials of order at
most n with real coefficients. Let Lipα, α ∈ (0, 1], denote the family of all
real-valued functions g defined on T satisfying

sup

{∣∣g(x)− g(y)
∣∣

|x− y|α : x 6= y ∈ T
}

< ∞.

For f ∈ C(T), let

En(f) := inf
{‖t− f‖T : t ∈ Tn

}
.

An example for a direct theorem of approximation is the following. Suppose
f is m times differentiable on T and f (m) ∈ Lipα for some α ∈ (0, 1]. Then
there is a constant C depending only on f so that

En(f) ≤ Cn−(m+α), n = 1, 2, . . . .

A proof may be found in [111], for example. The inverse theorem of the
above result can be formulated as follows. Suppose m ≥ 1 is an integer,
α ∈ (0, 1), and f ∈ C(T). Suppose there is a constant C > 0 depending
only on f such that

En(f) ≤ Cn−(m+α), n = 1, 2, . . . .

Then f is m times continuously differentiable on T and f (m) ∈ Lipα.

We outline the proof of the above inverse theorem. We show only that
f is m times continuously differentiable on T. The rest can be proved
similarly, but its proof requires more technical details. See, for example,
George G. Lorentz’s book [111]. For each k ∈ N, let Q2k ∈ T2k be chosen so
that

‖Q2k − f‖T ≤ C 2−k(m+α).
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Then
‖Q2k+1 −Q2k‖T ≤ 2C 2−k(m+α).

Now

f(θ) = Q20(θ) +
∞∑

k=1

(Q2k+1 −Q2k)(θ), θ ∈ T,

and by Bernstein’s inequality

|Q(j)
20 (θ)|+

∞∑

k=0

|(Q2k+1 −Q2k)(j)(θ)|

≤ ‖Q1‖T +
∞∑

k=0

(
2k+1

) j∥∥Q2k+1 −Q2k

∥∥T

≤ ‖Q1‖T +
∞∑

k=0

(
2k+1

) j2C 2−k(m+α)

≤ ‖Q1‖T + 2j+1C
∞∑

k=0

(2j−m−α)k
< ∞

for every θ ∈ T and j = 0, 1, . . . , m, since α > 0. Now we can conclude that
f (j)(θ) exists and

f (j)(θ) = Q
(j)
1 (θ) +

∞∑

k=0

(Q2k+1 −Q2k)(j)(θ)

for every θ ∈ T and j = 0, 1, . . . , m. The fact that f (m) ∈ C(T) can be seen
by the Weierstrass M -test. This finishes the proof.

For Erdős, Markov- and Bernstein-type inequalities had their own in-
trinsic interest and he explored what happens when the polynomials are
restricted in certain ways. It had been observed by Bernstein that Markov’s
inequality for monotone polynomials is not essentially better than for arbi-
trary polynomials. Bernstein proved that if n is odd, then

sup
p

‖p′‖[−1,1]

‖p‖[−1,1]

=
(

n + 1
2

)2

,

where the supremum is taken over all polynomials p of degree at most n with
real coefficients which are monotone on [−1, 1]. This is surprising, since one
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would expect that if a polynomial is this far away from the “equioscillating”
property of the Čebyshov polynomial Tn, then there should be a more
significant improvement in the Markov inequality. In the short paper {20},
Erdős gave a class of restricted polynomials for which the Markov factor n2

improves to cn. He proved that there is an absolute constant c such that

∣∣p′(y)
∣∣ ≤ min

{
c
√

n

(1− y2)2
,

en

2

}
‖p‖[−1,1], y ∈ (−1, 1),

for every polynomial of degree at most n that has all its zeros in R\ (−1, 1).
This result motivated several people to study Markov- and Bernstein-type
inequalities for polynomials with restricted zeros and under some other con-
straints. Generalizations of the above Markov- and Bernstein-type inequal-
ity of Erdős have been extended in many directions by many people includ-
ing G. G. Lorentz, John T. Scheick, József Szabados, Arun Kumar Varma,
Attila Máté, Quazi Ibadur Rahman, and Narendra K. Govil. Many of these
results are contained in the following essentially sharp result, due to Peter
Borwein and Tamás Erdélyi {7}: there is an absolute constant c such that

∣∣p′(y)
∣∣ ≤ c min

{√
n(k + 1)
1− y2

, n(k + 1)

}
‖p‖[−1,1], y ∈ (−1, 1),

for every polynomial p of degree at most n with real coefficients that has at
most k zeros in the open unit disk.

Let Kα be the open diamond of the complex plane with diagonals [−1, 1]
and [−ia, ia] such that the angle between [ia, 1] and [1,−ia] is απ. A
challenging question of Erdős, that Gábor Halász {45} answered in 1996,
is: how large can the quantity

‖p′‖[−1,1]

‖p‖[−1,1]

be, assuming that p is a polynomial of degree at most n which has no zeros
in a diamond Kα, α ∈ [0, 2)? He proved that if α ∈ [0, 1) then there are
constants c1 > 0 and c2 > 0 depending only on α such that

c1n
2−α ≤ sup

p

∣∣p′(1)
∣∣

‖p‖[−1,1]

≤ sup
p

‖p′‖[−1,1]

‖p‖[−1,1]

≤ c2n
2−α,
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where the supremum is taken for all polynomials p of degree at most n (with
either real or complex coefficients) having no zeros in Kα. He also showed
that there is an absolute constant c2 > 0 such that

‖p′‖[−1,1] ≤ c2n log n‖p‖[−1,1]

holds for all polynomials p of degree at most n with complex coefficients
having no zeros in K1, while for every α ∈ (1, 2) there is a constant c2

depending on α such that

‖p′‖[−1,1] ≤ c2n‖p‖[−1,1]

for all polynomials p of degree at most n with complex coefficients having
no zeros in Kα.

Halász reduced the proof to the following result of Szegő {82}: the
inequality ∣∣p′(0)

∣∣ ≤ cαn2α‖p‖Dα

holds for every polynomial p of degree at most n with complex coefficients,
where cα is a constant depending only on α, and

Dα := {z ∈ C : |z| ≤ 1,
∣∣arg (z)

∣∣ ≤ π(1− α)}, α ∈ (0, 1].

The identity

t′(θ) =
2n∑

ν=1

(−1)ν+1λνt(θ + θν)

with

λν :=
1
n

1

(2 sin (1
2θν))

2 , θν :=
2ν − 1

2n
π, ν = 1, 2, . . . , 2n,

for all trigonometric polynomials t of order at most n was established by
M. Riesz {70} and it is called as the Riesz Interpolation Formula. Here,
choosing t(θ) := sin (nθ) and the point θ = 0, we obtain that

∑2n
ν=1 λν = n.

The above identity can be used to prove not only Bernstein’s inequality,
but an Lp version of it for all p ≥ 1. Namely, combining the triangle
inequality and Hölder’s inequality in the Riesz Interpolation Formula, and
then integrating both sides, we obtain

∫ 2π

0

∣∣ t′(θ)∣∣p
dθ ≤ np

∫ 2π

0

∣∣ t(θ)∣∣p
dθ



Extremal Properties of Polynomials 125

for all trigonometric polynomials t of order at most n. It is interesting
to note that the sharp Lp version of Bernstein’s inequality with Bernstein
factor n for all 0 < p < 1 was established only much later, in 1981, by Vitali
V. Arestov {1}. It followed the paper {61} by Máté and Nevai, where the
111/pn Bernstein factor was proved. A short and elegant proof of Arestov’s
result due to Manfred Golitschek and G. G. Lorenz is presented in {14,
pages 104–109}.

For real trigonometric polynomials t the inequality

t′(θ)2 + n2t(θ)2 ≤ n2‖t‖2
R, θ ∈ R,

holds and is known as the Bernstein–Szegő inequality. Various extensions
and generalizations of this have been established throughout the century.

There is a Bernstein inequality on the unit circle ∂D of the complex
plane. It states that

‖p′‖∂D ≤ n ‖p‖∂D

for all polynomial p of degree at most n with complex coefficients.
It was conjectured by Erdős and proved by Péter Lax {53} in 1944 that

‖p′‖∂D ≤ n

2
‖p‖∂D

for every polynomial p of degree at most n with complex coefficients having
no zeros in D.

The question about the right Bernstein factor on the unit circle (between
n/2 and n) is unsettled in the case when we know that there are k zeros
inside the open unit disk and n− k zeros are outside it.

A technical detail related to the proof of the Bernstein–Szegő inequality
is known as the Riesz Lemma after Marcel Riesz, see {8}, for instance. It
states that if t is a real trigonometric polynomial of order n and for an α ∈ R
t(α) = ‖t‖R = 1, then

t(θ) ≥ cos
(
n(θ − α)

)
, θ ∈

[
α− π

2n
, α +

π

2n

]
.

In particular t does not vanish in (α− π
2n , α + π

2n).
Géza Freud paid serious attention to Markov–Bernstein-type inequalities

on the real line associated with wα(x) := exp
( − |x|α)

, α > 0 in Lp norm.
After Freud the name Freud weight has become common to refer to the
weights wα and their generalizations. Freud handled the Hermite weight,
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case α = 2, coupled with the assumption 1 ≤ p ≤ ∞. However, it was
his student, Paul Nevai, together with Eli Levin, Doron S. Lubinsky, and
Vilmos Totik who put the right pieces together to obtain

‖Q′wα‖p ≤ Cn1−1/α‖Qwα‖p, α > 1,

‖Q′wα‖p ≤ C log n‖Qwα‖p, α = 1,

and ‖Q′wα‖p ≤ C‖Qwα‖p, 0 < α < 1,

for every polynomial Q of degree at most n with real coefficients and for
every 0 < p ≤ ∞, where C = C(α, p) is a constant depending only on α
and p, and

‖f‖p
p :=

∫

R

∣∣f(t)
∣∣p

dt and ‖f‖∞ := ‖f‖R.

In their proof the idea of an infinite-finite range inequality played a signifi-
cant role. This also goes back to Freud who observed that

∥∥Q(x) exp(−x2)
∥∥R ≤ Cn1/2

∥∥Q(x) exp(−x2)
∥∥

In

for every polynomial Q of degree at most n with real coefficients, where

In :=
[ − (3/2)n1/2, (3/2)n1/2

]
,

and C is an absolute constant.
There is an elementary paper of Szegő {84} dealing with weighted

Markov- and Bernstein-type inequalities on [0,∞) with respect to the La-
guerre weight e−x on [0,∞), which proves

∥∥p′(x)e−x
∥∥

[0,∞)
≤ (8n + 2)

∥∥p(x)e−x
∥∥

[0,∞)

for every polynomial p of degree at most n with real coefficients. A sharp L2

version of the above inequality was the topic of Turán’s paper {87}. Turán
has also found the extremal polynomials in this L2 case.

An interesting inequality of Turán {86}) states that

‖p′‖[−1,1]

‖p‖[−1,1]

>
1
6
√

n
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for every polynomial p of degree n having all its zeros in [−1, 1]. He also
showed that

‖p′‖D ≥ n

2
‖p‖D

if p has each of its zeros in the closed unit disk D of the complex plane.

Turán posed some problems about bounding the derivative of a polyno-
mial if its modulus is bounded by a certain curve. One of his problems asked
for the right upper bound for ‖p′‖[−1,1] for polynomials p of degree at most

n with real coefficients satisfying
∣∣p(x)

∣∣ ≤ (1− x2)1/2 for every x ∈ [−1, 1].
This problem has been solved by Q. I. Rahman {69} who established the
inequality ‖p′‖[−1,1] ≤ 2(n− 1) for all such polynomials.

2. Müntz Polynomials and Exponential Sums

James A. Clarkson and Erdős wrote a seminal paper on the density of Müntz
polynomials. C. Herman Müntz’s classical theorem characterizes sequences
Λ := (λj)

∞
j=0 with

(1) 0 = λ0 < λ1 < λ2 < · · ·

for which the Müntz space M(Λ) := span {xλ0 , xλ1 , . . .} is dense in C[0, 1].
Here the span denotes the collection of all finite linear combinations of the
functions xλ0 , xλ1 , . . . with real coefficients, and C(A) is the space of all real-
valued continuous functions on A ⊂ [0,∞) equipped with the uniform norm.
If A := [a, b] is a finite closed interval, then the notation C[a, b] := C

(
[a, b]

)
is used.

Müntz’s Theorem. Suppose Λ := (λj)
∞
i=0 is a sequence satisfying (1).

Then M(Λ) is dense in C[0, 1] if and only if
∑∞

j=1 1/λj = ∞.

The original Müntz Theorem proved by C. Müntz {63} in 1914, by Ottó
Szász {76} in 1916, and anticipated by Bernstein was only for sequences of
exponents tending to infinity. Szász proved more than Müntz. He did not
assume (1). He assumed only that the numbers λk are arbitrary complex
with λ0 = 1, Reλk > 0, k = 1, 2, . . . , and the exponents λk are distinct. He
gave a necessary and sufficient conditions which characterize denseness in
the case when Reλk ≥ c > 0, k = 1, 2, . . . .
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The point 0 is special in the study of Müntz spaces. Even replacing
[0, 1] by an interval [a, b] ⊂ [0,∞) in Müntz’s Theorem is a non-trivial issue.
Such an extension is, in large measure, due to James A. Clarkson and Erdős
{13} and Laurent Schwartz [164]. In {13}, Clarkson and Erdős showed that
Müntz’s Theorem holds on any interval [a, b] with a ≥ 0. That is, for any
increasing positive sequence Λ := (λj)

∞
j=0 and any 0 < a < b, M(Λ) is dense

in C[a, b] if and only if
∑∞

j=1 1/λj = ∞. Moreover, they showed that under
the assumptions

∑∞
j=1 1/λj < ∞ and

inf {λj+1 − λj : j = 0, 1, 2, . . .} > 0

every function f ∈ C[a, b] from the uniform closure of M(Λ) on [a, b] is of
the form

(2) f(x) =
∞∑

j=0

ajx
λj , x ∈ [a, b).

In particular, f can be extended analytically throughout the open disk
centered at 0 with radius b, cut by (−∞, 0].

Erdős considered this result his best contribution to complex analysis.
Later, by different methods, L. Schwartz extended some of the Clarkson–
Erdős results to the case when the exponents λi are arbitrary distinct
positive real numbers. For example, in that case, under the assumption∑∞

j=1 1/λj < ∞ every function f ∈ C[a, b] from the uniform closure of
M(Λ) on [a, b] can still be extended analytically throughout the region

{
z ∈ C \ (−∞, 0] : |z| < b

}
,

although such an analytic extension does not necessarily have a represen-
tation given by (2). The Clarkson–Erdős results were further extended by
P. Borwein and T. Erdélyi {10} from the interval [0, 1] to compact subsets
of [0,∞) with positive Lebesgue measure. That is, if Λ := (λj)

∞
j=0 is an

increasing sequence of positive real numbers with λ0 = 0 and A ⊂ [0,∞) is
a compact set with positive Lebesgue measure, then M(Λ) is dense in C(A)
if and only if

∑∞
j=1 1/λj = ∞. This result had been expected by Erdős and

others for a long time.
Somorjai {74} and Joseph Bak and Donald J. Newman {2} proved that

R(Λ) :=
{

p/q : p, q ∈ M(Λ)
}

is always dense in C[0, 1]. This surprising result says that while the set
M(Λ) of Müntz polynomials may be far from dense, the set R(Λ) of Müntz
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rationals is always dense in C[0, 1] no matter what the underlying sequence
Λ is. Newman was truly impressed by Somorjai’s result. In the light of
Somorjai’s theorem, Newman, in 1978 [123, p. 50] raises “the very sane, if
very prosaic question”: are the functions

k∏

j=1

( nj∑

i=0

ai,jx
i2

)
, ai,j ∈ R, nj ∈ N,

dense in C[0, 1] for some fixed k ≥ 2? In other words does the “extra mul-
tiplication” have the same power that the “extra division” has in the Bak–
Newman–Somorjai result? Newman speculated that it did not. P. Borwein
and T. Erdélyi proved this conjecture in {10} in a generalized form.

Müntz–Jackson type theorems via interpolation have been considered in
{60} by László Márki, Somorjai, and Szabados.

The main results of {8, Section 4.2} and {16} are the following.

Full Müntz Theorem in C[0, 1]. Suppose (λj)
∞
j=1 is a sequence of distinct

real numbers greater than 0. Then span {1, xλ1 , xλ2 , . . .} is dense in C[0, 1]
if and only if

∞∑

j=1

λj

λ2
j + 1

= ∞.

Moreover, if
∞∑

j=1

λj

λ2
j + 1

< ∞,

then every function from the C[0, 1] closure of span {1, xλ1 , xλ2 , . . .} is in-
finitely many times differentiable on (0, 1).

Full Müntz Theorem in Lp(A). Let A ⊂ [0, 1] be a compact set with
positive lower density at 0. Let p ∈ (0,∞). Suppose (λj)

∞
j=1 is a sequence

of distinct real numbers greater than −(1/p). Then span {xλ1 , xλ2 , . . .} is
dense in Lp(A) if and only if

∞∑

j=1

λj + (1/p)(
λj + (1/p)

)2 + 1
= ∞.

Moreover, if
∞∑

j=1

λj + (1/p)(
λj + (1/p)

)2 + 1
< ∞,
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then every function from the Lp(A) closure of span {xλ1 , xλ2 , . . .} can be
represented as an analytic function on

{
z ∈ C \ (−∞, 0] : |z| < rA

}
restricted to A ∩ (0, rA), where

rA := sup{y ∈ R : m
(
A ∩ [y,∞)

)
> 0}

(m(·) denotes the one-dimensional Lebesgue measure).

These improve and extend earlier results of Müntz {63}, Szász {76},
and Clarkson and Erdős {13}. Related issues about the denseness of
span {xλ1 , xλ2 , . . .} are also considered.

Based on the work of Edmond Laguerre {52} and Pólya {66} the fol-
lowing is known.

Let A1 denote the class of entire functions f of the form

f(z) = Czme−c2z2+az
∞∏

k=1

(1 + αkz)e−αkz, z ∈ C,

where C, c, a, αk ∈ R, m is a nonnegative integer, and
∑∞

k=1 α2
k < ∞. Then

A1 is the collection of the analytic extensions of those functions defined on
R which may be obtained as the uniform limit, on every compact subset of
R, of polynomials having only real zeros.

Let A2 denote the class of entire functions f of the form

f(z) = Czme−az
∞∏

k=1

(1− αkz), z ∈ C,

where C ∈ R, a > 0, m is a nonnegative integer, αk ≥ 0, and
∑∞

k=1 αk < ∞.
ThenA2 is the collection of the analytic extensions of those functions defined
on R which may be obtained as the uniform limit, on every compact subset
of R, of polynomials having only positive zeros.

The functions of the classes A1 and A2 are sometimes called the Pólya–
Laguerre functions.

In {68} Pólya posed the question: for which sequences 0 < β1 < β2 < · · ·
are the linear combinations of the functions

cos (βkt), sin (βkt), k = 1, 2, . . . ,

complete in C[0, 2π]? Pólya himself conjectured that

lim sup
k→∞

βk

k
< 1
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is sufficient. Szász {77} proved Pólya’s conjecture.
The following pretty results of Fejér may be found in {8} (see also {40}):

Let

p(z) :=
n∑

k=0

akz
λk , ak ∈ C, a0a1 6= 0.

Then p has at least one zero z0 ∈ C so that

|z0| ≤
(

λ2λ3 · · ·λn

(λ2 − λ1)(λ3 − λ1) · · · (λn − λ1)

)1/λ1
∣∣∣∣
a0

a1

∣∣∣∣
1/λ1

.

From the above result the following beautiful consequence follows easily:
Suppose

f(z) =
∞∑

k=0

akz
λk , ak ∈ C

is an entire function so that
∑∞

k=1 1/λk < ∞, that is, the entire function f
satisfies the Fejér gap condition. Then there is a z0 ∈ C so that f(z0) = 0.
Hence for every a ∈ C there is a z0 such that f(z0) = a, that is f has no
Picard exceptional value.

Important results of Turán are based on the following observations: Let

g(ν) :=
n∑

j=1

bjz
ν
j , bj , zj ∈ C.

Suppose
min

1≤j≤n
|zj | ≥ 1, j = 1, 2, . . . , n.

Then

max
ν=m+1,...,m+n

∣∣g(ν)
∣∣ ≥

(
n

2e(m + n)

)n

|b1 + b2 + · · ·+ bn|

for every positive integer m.

A consequence of the preceding is the famous Turán Lemma: if

f(t) :=
n∑

j=1

bje
λjt, bj , λj ∈ C.

and
min

1≤j≤n
Re (λj) ≥ 0,
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then
∣∣f(0)

∣∣ ≤
(

2e(a + d)
d

)n

‖f‖[a,a+d]

for every a > 0 and d > 0.

Another consequence of this is the fact that if

p(z) :=
n∑

j=1

bjz
λj , bj ∈ C, λj ∈ R, z = eiθ,

then

max
|z|=1

∣∣p(z)
∣∣ ≤

(
4eπ

δ

)n

max
|z|=1

α≤arg (z)≤α+δ

∣∣p(z)
∣∣

for every 0 ≤ α < α + δ ≤ 2π.

Turán’s inequalities above and their variants play a central role in the
book of Turán {88}, where many applications are also presented. The main
point in these inequalities is that the exponent on the right-hand side is
only the number of terms n, and so it is independent of the numbers λj . An
inequality of type

max
|z|=1

∣∣p(z)
∣∣ ≤ c(δ)λn max

|z|=1
α≤arg (z)≤α+δ

∣∣p(z)
∣∣ ,

where 0 ≤ λ1 < λ2 < · · · < λn are integers and c(δ) depends only on δ,
could be obtained by a simple direct argument, but it is much less useful
than Turán’s inequality. Fedor Nazarov has a paper {64} devoted to Turán-
type inequalities for exponential sums, and their applications to various
uniqueness theorems in harmonic analysis of the uncertainty principle type.
The author derives an estimate for the maximum modulus of an exponential
sum

n∑

k=1

cke
λkt, ck, λk ∈ C,

on an interval I ⊂ R in terms of its maximum modulus on a measurable set
E ⊂ I of positive Lebesgue measure:

sup
t∈I

∣∣p(t)
∣∣ ≤ emax |Re λk|m(I)

(
Am(I)
m(E)

)n−1

sup
t∈E

∣∣p(t)
∣∣ .
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In {9} a subtle Bernstein-type extremal problem related to Turán’s
result is solved by establishing the equality

sup
06=f∈ eE2n

∣∣f ′(0)
∣∣

‖f‖[−1,1]

= 2n− 1,

where

Ẽ2n :=
{

f : f(t) = a0 +
n∑

j=1

(
aje

λjt + bje
−λjt

)
, aj , bj , λj ∈ R

}
.

This settles a conjecture of G. G. Lorentz and others and it is surprising to
be able to provide a sharp solution. It follows fairly simply from the above
that

1
e− 1

n− 1
min {y − a, b− y} ≤ sup

06=f∈En

∣∣f ′(y)
∣∣

‖f‖[a,b]

≤ 2n− 1
min {y − a, b− y}

for every y ∈ (a, b), where

En :=
{

f : f(t) = a0 +
n∑

j=1

aje
λjt, aj , λj ∈ R

}
.

3. Geometric Properties of Polynomials

There are a number of contributions by Hungarian mathematicians explor-
ing the relation between the coefficients of a polynomial and the number
of its zeros in certain regions of the complex domain. I find the follow-
ing result of Erdős and Turán {38} especially attractive. It states that if
p(z) =

∑n
j=0 ajz

j has m positive real zeros, then

m2 ≤ 2n log

(
|a0|+ |a1|+ · · ·+ |an|√

|a0an|

)
.

This result was originally due to I. Schur. Erdős and Turán rediscovered it
with a short proof that we outline now:
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Step 1. We utilize the following observation due to Szász, see page 173 of
{8}. Let γ, λ0, λ1, . . . , λn be distinct real numbers greater than −1/2. Then
the L2[0, 1] distance dn from xγ to span {xλ0 , xλ1 , . . . , xλn} is given by

dn =
1√

2γ + 1

n∏

j=0

∣∣∣∣
γ − λj

γ + λj + 1

∣∣∣∣ .

Step 2. Let

p(z) = an

n∏

k=1

(z − rke
iθk)

and

q(z) :=
n∏

k=1

(z − eiθk).

Note that for |z| = 1,
|z − reiθ|2

r
≥ |z − eiθ|2.

Use this to deduce that

∣∣q(z)
∣∣2 ≤

∣∣p(z)
∣∣2

|a0an| ≤
(
|a0|+ |a1|+ · · ·+ |an|√

|a0an|

)2

whenever |z| = 1.

Step 3. Let ∂D be the unit circle of the complex plane. Since p has
m positive real roots, q has m roots at 1. Use the change of variables
x := z + z−1 applied to znq(z−1)q(z) to show that

‖q‖2
∂D ≥ min

{bk}

∥∥(z − 1)m(zn−m + bn−m−1z
n−m−1 + · · ·+ b1z + b0)

∥∥2

∂D

≥ min
{ck}

∥∥xm(xn−m + cn−m−1x
n−m−1 + · · ·+ c1x + c0)

∥∥
[0,4]

= 4n min
{dk}

∥∥xm(xn−m + dn−m−1x
n−m−1 + · · ·+ d1x + d0)

∥∥
[0,1]

≥ 4n

√
2n + 1

(
2n

n+m

) ,

where the last inequality follows from Step 1.
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Step 4. Now one can easily show that

log

(
4n

√
2n + 1

(
2n

n+m

)
)
≥ m2/n

for 1 < m < n, and the proof of Erdős and Turán is finished.
Another beautiful result of Erdős and Turán {38} states that if the zeros

of p(z) =
∑n

j=0 ajz
j are denoted by

zk = rke
iϕk , k = 1, 2, . . . , n,

then for every 0 < α < β ≤ 2π we have
∣∣∣∣

∑

k∈I(α,β)

1− β − α

2π
n

∣∣∣∣ ≤ 16
√

n log R,

where

R :=
|a0|+ |a1|+ · · ·+ |an|√

|a0an|
and

I(α, β) :=
{

k ∈ {1, 2, . . . , n} : ϕk ∈ [α, β]
}

.

André Bloch and Pólya {68} proved that the average number of real
zeros of a polynomial from

Fn :=
{

p : p(z) =
n∑

k=0

akz
k, ak ∈ {−1, 0, 1}

}
.

is at most c
√

n. They also proved that a polynomial from Fn cannot have
more than

cn log log n

log n

real zeros. This quite weak result appears to be the first on this subject.
Schur {73} and by different methods Szegő {83} and Erdős and Turán {38}
improve this to c

√
n log n (see also {8}). Their results are more general,

but in this specialization not sharp. In {12} the right upper bound c
√

n is
found for the number of real zeros of polynomials from a much larger class,
the class of all polynomials of the form

p(x) =
n∑

j=0

ajx
j , |aj | ≤ 1, |a0| = |an| = 1, aj ∈ C.
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In fact our method is able to give c
√

n as an upper bound for the number
of zeros of a polynomial p of degree at most n with |a0| = 1, |aj | ≤ 1, inside
any polygon with vertices on the unit circle (of course, c depends on the
polygon). This is discussed in {11}.

Bloch and Pólya {4} also prove that there are polynomials p ∈ Fn with

cn1/4

√
log n

distinct real zeros of odd multiplicity. (Schur {73} claims they do it for
polynomials with coefficients only from {−1, 1}, but this appears to be
incorrect.)

A surprising theorem of Szegő {80} states that if

f(x) :=
n∑

k=0

ak

(
n

k

)
xk, an 6= 0,

g(x) :=
n∑

k=0

bk

(
n

k

)
xk, bn 6= 0,

and

h(x) :=
n∑

k=0

akbk

(
n

k

)
xk,

f has all its zeros in a closed disk D, and g has zeros β1, . . . , βn, then
all the zeros of h are of the form −βjγj with γj ∈ D. An interesting
consequence of this is the fact that if a polynomial p of degree n has all
its zeros in D1 :=

{
z ∈ C : |z| ≤ 1

}
, then the polynomial q defined by

q(x) :=
∫ x
0 p(t) dt has all its zeros in D2 : =

{
z ∈ C : |z| ≤ 2

}
.

In {18}, Erdős proved that the arc length from 0 to 2π of a real trigono-
metric polynomial f of order at most n satisfying ‖f‖R ≤ 1 is maximal for
cosnθ. An interesting question he posed quite often is the following: Let
0 < a < b < 2π. Is it still true that the variation and arc-length of a real
trigonometric polynomial with ‖f‖R ≤ 1 in [a, b] is maximal for cos(nθ +α)
for a suitable α? The following related conjecture of Erdős was open for
quite a long time: Is it true that the arc length from −1 to 1 of a real al-
gebraic polynomial p of degree at most n with ‖p‖[−1,1] is maximal for the
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Čebyshov polynomial Tn? This was proved independently by Gundorph
K. Kristiansen {51} and by Borislav Bojanov {5}.

A well-known theorem of Piotr L. Čebyshov states that if p is a real
algebraic polynomial of degree at most n and z0 ∈ R\[−1, 1], then

∣∣p(z0)
∣∣ ≤∣∣Tn(z0)

∣∣ · ‖p‖[−1,1], where Tn is the Čebyshov polynomial of degree n. The
standard proof of this is based on zero counting which can no longer be
applied if z0 is not real. By letting z0 ∈ C tend to a point in (−1, 1), it is
fairly obvious that this result cannot be extended to all z0 ∈ C. However,
a surprising result of Erdős {23} shows that Čebyshov’s inequality can be
extended to all z0 ∈ C outside the open unit disk.

Erdős and Turán were probably the first to discover the power and
applicability of an almost forgotten result of Evgenii Ja. Remez. The so-
called Remez inequality is not only attractive and interesting in its own
right, but it also plays a fundamental role in proving various other things
about polynomials. Let Pn be the set of all algebraic polynomials of degree
at most n with real coefficients. For a fixed s ∈ (0, 2), let

Pn(s) :=
{

p ∈ Pn : m
(
{x ∈ [−1, 1] :

∣∣p(x)
∣∣ ≤ 1}

)
≥ 2− s

}
,

where m(·) denotes linear Lebesgue measure. The Remez inequality con-
cerns the problem of bounding the uniform norm of a polynomial p of degree
n on [−1, 1] given that its modulus is bounded by 1 on a subset of [−1, 1]
of Lebesgue measure at least 2 − s. That is, how large can ‖p‖[−1,1] (the
uniform norm of p on [−1, 1]) be if p ∈ Pn(s)? The answer is given in terms
of the Čebyshov polynomials Tn. We have

‖p‖[−1,1] ≤ Tn

(
2− s

2 + s

)

for all p ∈ Pn(s), and the extremal polynomials for the above problem are
the Čebyshov polynomials ±Tn

(
h(x)

)
, where h is a linear function which

maps [−1, 1− s] or [−1 + s, 1] onto [−1, 1]. See page 228 of {8}.
One of the applications of the Remez inequality by Erdős and Turán {37}

deals with orthogonal polynomials. Let w be an integrable weight function
on [−1, 1] that is strictly positive almost everywhere. Denote the sequence of
the associated orthonormal polynomials by (pn)∞n=0. The leading coefficient
of pn is denoted by γn > 0. Then a theorem of Erdős and Turán {37} states
that

lim
n→∞

[
pn(z)

]1/n = z +
√

z2 − 1
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holds uniformly on every closed subset of C \ [−1, 1].

Erdős and Turán {35} established a number of results on the spacing of
zeros of orthogonal polynomials. One of these is the following. Let w be an
integrable weight function on [−1, 1] with

∫ 1
−1

(
w(x)

)−1
dx =: M < ∞, and

let

(1 >) x1,n > x2,n > · · · > xn,n (> −1)

be the zeros of the associated orthonormal polynomials pn in decreasing
order. Let

xν,n = cos θν,n, 0 < θν,n < π, ν = 1, 2, . . . , n.

Let θ0,n := 0 and θn+1,n := π. Then there is a constant K depending only
on M such that

θν+1,n − θν,n <
K log n

n
, ν = 0, 1, . . . , n.

Pólya {67} proved that if

p(x) =
n∑

k=0

akx
k,

then

|an| ≤ 1
2

(
4

m(E)

)n

sup
x∈E

∣∣p(x)
∣∣

for every measurable set E ⊂ R, 0 < m(E) < ∞. Equality holds if and
only if E is an interval [a, a + λ] and P (x) = ATn

(
2(x − a)/λ − 1

)
, where

a,A ∈ R and λ > 0. Here, as before, Tn denotes the Čebyshov polynomial
of degree n.

Let H ⊂ C be a compact set. Let

µn = inf
(

max
z∈H

∣∣p(z)
∣∣
)
,

where the infimum is taken for all monic polynomials p of degree n with
complex coefficients. Let

µ̃n = inf
(

max
z∈H

∣∣p(z)
∣∣
)
,
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where the infimum is taken for all monic polynomials p of degree n with
complex coefficients and with all zeros in H. The numbers

µ := µ(H) = lim
n→∞µ1/n

n and µ̃ := µ̃(H) = lim
n→∞ µ̃1/n

n

exist and are called the Čebyshov constant and modified Čebyshov constant,
respectively.

Let
d(z1, z2, . . . , zn) =

∏

1≤k<j≤n

|zk − zj |

and
dn := sup

(
d(z1, z2, . . . , zn)

) 2
n(n−1) ,

where the supremum is taken for all z1, z2, . . . , zn ∈ H. The points
z1, z2, . . . , zn for which the above supremum is achieved are called nth Fekete
points. Then the value

d(H) := lim
n→∞ dn

exists and is called the transfinite diameter (Fekete constant) of H.
The logarithmic energy I(µ) of a µ ∈M(H) is defined as

I(µ) :=
∫

H

∫

H
log

1
|z − t| dµ(z) dµ(t),

and the energy V of H by

V := inf
{

I(µ) : µ ∈M(H)
}

,

where M(H) is the collection of all positive Borel measures with µ(H) = 1
and with support in H. Then V turns out to be finite or +∞ and in the
finite case there is a unique measure µ = µH ∈M(H) for which the infimum
defining V is attained. This µH is called the equilibrium distribution or
measure of a compact set H. The quantity cap (H) := e−V is called the
logarithmic capacity of H.

Fekete {42} and Szegő {81} proved that the the Čebyshov constants, the
transfinite diameter and the logarithmic capacity of a compact set H ⊂ C
are equal, that is,

µ(H) = µ̃(H) = d(H) = cap (H)

for every compact subset H of the complex plane.



140 T. Erdélyi

Tamás Kövári has two papers, {48} (written jointly with Pommerenke)
and {47}, on the distribution of Fekete points.

Approximation of functions f ∈ C(H) by polynomials with integer
coefficients on a compact set H ⊂ C has been considered by Fekete. Several
papers appeared on the subject, the two most important of them are {42}
and {44}. His typical results include that a function f ∈ C[a, b], b− a ≥ 4,
is approximable from the collection of polynomials with integer coefficients
if and only if f is a polynomial with integer coefficients. Also, a function
f ∈ C[0, 1] is approximable from the collection of polynomials with integer
coefficients if and only if f(0) and f(1) are both integers.

Another important result of Fekete {42} is an extension of a sre-
sult of David Hilbert related to the so-called Integer Chebyshev Prob-
lem. An integer Chebyshev polynomial Qn for a compact subset E ⊂ C
is a polynomial Qn of degree at most n with integer coefficients such that
‖Qn‖E = infPn ‖Pn‖E , where the infimum is taken for all not identically
zero polynomials Pn of degree at most n with integer coefficients (it is easy
to see that at least one such Qn exists). The integer Chebyshev constant
for a compact subset E ⊂ C is defined by tZ(E) := limn→∞ ‖Qn‖1/n

E (it is
a routine argument to show that the limit exists). In the above notation
Fekete’s result simply reads as

tZ(E) ≤
√

cap (E),

and contains Hilbert’s result as a special case when the set E is a closed
interval of the real line. The Integer Chebyshev Problem has continued
to attract a large number of well known mathematicians later in the cen-
tury. Yet, there are many unanswered questions about it posed in papers
appearing in general mathematics journals in the XXI-st century.

For a prime p, the polynomials

fp(z) :=
p−1∑

k=1

(
k

p

)
zk

are named after Fekete and have a variety of remarkable properties (the
coefficients are Legendre symbols).

Erdős and Freud {30} worked together on orthogonal polynomials with
regularly distributed zeros. Let α be a positive measure on (−∞,∞) for
which all the moments

µm :=
∫ ∞

−∞
xm dα(x), m = 0, 1, . . . ,
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exist and are finite. Denote the sequence of the associated orthonormal
polynomials by (pn)∞n=0. Let x1,n > x2,n > · · · > xn,n be the zeros of of pn

in decreasing order. Let Nn(α, t) denote the number of positive integers k
for which

xk,n − xn,n ≥ t(x1,n − xn,n).

The distribution function β of the zeros is defined, when it exists, as

β(t) = lim
n→∞n−1Nn(α, t), 0 ≤ t ≤ 1.

Let
β0(t) =

1
2
− 1

π
arcsin(2t− 1).

A positive measure α for which the array xk,n has the distribution function
β0(t) is called an arc-sine measure. If dα(x) = w(x) dx is absolutely contin-
uous and α is an arc-sine measure, then w is called an arc-sine weight. One
of the theorems of Erdős and Freud {30} states that the condition

lim sup
n→∞

(γn−1)
1/(n−1)(x1,n − xn,n) ≤ 4

implies that α is arc-sine and

(3) lim
n→∞ (γn−1)

1/(n−1)(x1,n − xn,n) = 4,

where, as before, γn−1 is the leading coefficient of pn−1.

They also show that the weights wα(x) := exp
( − |x|α)

, α > 0, are not
arc-sine. It is further proved by a counter-example that even the stronger
sufficient condition (3) in the above-quoted result is not necessary in general
to characterize arc-sine measures. As the next result of their paper shows,
the case is different if w has compact support. Namely they show that a
weight w, the support of which is contained in [−1, 1], is arc-sine on [−1, 1]
if and only if

lim sup
n→∞

(γn)1/n ≤ 2.

A set A ⊂ [−1, 1] is called a determining set if all weights w with support
contained in [−1, 1], the restricted support

{
x : w(x) > 0

}
of which contain

A, are arc-sine on [−1, 1]. A set A ⊂ [−1, 1] is said to have minimal capacity
c if for every ε > 0 there exists a δ(ε) > 0 such that for every B ⊂ [−1, 1]
having Lebesgue measure less than δ(ε) we have cap (A\B) > c−ε. Another
remarkable result of this paper by Erdős and Freud is that a measurable set
A ⊂ [−1, 1] is a determining set if and only if it has minimal capacity 1/2.
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Erdős’ paper {32} with Fritz Herzog and George Piranian on the ge-
ometry of polynomials is seminal. In this paper, they proved a number of
interesting results and raised many challenging questions. Although quite a
few of these have been solved by Christian Pommerenke and others, many
of them are still open. Erdős liked this paper very much. In his talks about
polynomials, he often revisited these topics and mentioned the unsolved
problems again and again. A taste of this paper is given by the following
results and still unsolved problems from it. As before, associated with a
monic polynomial

(4) f(z) =
n∏

j=1

(z − zj), zj ∈ C,

let
E = E(f) = En(f) := {z ∈ C :

∣∣f(z)
∣∣ ≤ 1}.

One of the results of Erdős, Herzog, and Piranian tells us that the infimum
of m

(
E(f)

)
is 0, where the infimum is taken over all polynomials f of the

form (4) with all their zeros in the closed unit disk (n varies and m denotes
the two-dimensional Lebesgue measure). Another result is the following.
Let F be a closed set of transfinite diameter less than 1. Then there exists
a positive number ρ(F ) such that, for every polynomial of the form (4)
whose zeros lie in F , the set E(f) contains a disk of radius ρ(F ). There
are results on the number of components of E, the sum of the diameters
of the components of E, some implications of the connectedness of E,
some necessary assumptions that imply the convexity of E. An interesting
conjecture of Erdős states that the length of the boundary of En(f) for
a polynomial f of the form (4) is 2n + O(1). This problem seems almost
impossible to settle. The best result in this direction is O(n) by P. Borwein
{6} that improves an earlier upper bound 74n2 given by Pommerenke.

One of the papers where Erdős revisits this topic is {33} written jointly
with Elisha Netanyahu. The result of this paper states that if the zeros
zj ∈ C are in a bounded, closed, and connected set whose transfinite
diameter is 1 − c (0 < c < 1), then E(f) contains a disk of positive radius
ρ depending only on c.

I have a postcard from Erdős asking for a proof of the fact that the
diameter of E(f) is always at least 2 for monic polynomials f (of the form
(4)). “This ought to be trivial, but I do not have a proof” is commented by
Erdős on the card. Based on a result of Pommerenke, a proof is presented
in {8, p. 354}.
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János Erőd {39} attributes the following interesting result to Erdős and
Turán and presents its proof in his paper. If

(5) f(x) = ±
n∏

j=1

(x− xj), −1 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ 1,

and f is convex between xk−1 and xk for an index k, then

xk − xk−1 ≤ 16√
n

.

It is not clear to me whether or not Erdős and Turán published this result.
In any case, Erőd proves more, namely he shows that in the Erdős–Turán
inequality the constant 16 can be replaced by

cn = 2
√

n

2n− 3
if n is even, and cn =

2n

n− 1

√
n− 2
2n− 3

if n is odd

(so limn→∞ cn =
√

2 in both cases).
An elementary paper of Erdős and Tibor Grünwald (Gallai) {31} deals

with some geometric properties of polynomials with only real zeros. One of
their results states that if f is a polynomial of the form (5), then

∫ xk+1

xk

∣∣f(x)
∣∣ dx ≤ 2

3
(xk+1 − xk) max

x∈[xk,xk+1]

∣∣f(x)
∣∣ .

Some extensions of the above are proved in {19}. In this paper Erdős
raised a number of questions. For example, he conjectured that if t is a real
trigonometric polynomial with only real zeros and with ‖t‖R ≤ 1, then

∫ 2π

0

∣∣ t(θ)∣∣ dθ ≤ 4.

Concerning polynomials p of degree at most n with all their zeros in (−1, 1)
and with ‖p‖[−1,1] = 1, Erdős conjectured that if xk < xk+1 are two
consecutive zeros of p, then

∫ xk+1

xk

∣∣p(x)
∣∣ dx ≤ dn(xk+1 − xk),

where

dn :=
1

yk+1 − yk

∫ yk+1

yk

∣∣Tn(y)
∣∣ dy,
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Tn is the usual Čebyshov polynomial of degree n, and yk < yk+1 are
two consecutive zeros of Tn. (Note that dn is independent of k and that
limn→∞ dn = 2/π.) These conjectures and more have all been proved in
1974, see Edward B. Saff and T. Sheil-Small {71} and Kristiansen {49}.
{49} contains an error. This was corrected in {50}. See also {75}.

In {36} Erdős and Turán proved the following. Let {ζ
(n)
ν } be a trian-

gular sequence of numbers such that

1 ≥ ζ
(n)
1 > ζ

(n)
2 > · · · > ζ(n)

n ≥ −1.

Let

ζ(n)
ν = cosφ(n)

ν , 0 ≤ φ(n)
ν ≤ π, and ωn(ζ) =

n∏

ν=1

(ζ − ζ(n)
ν ).

For (α, β) ⊂ (0, π), let Nn(α, β) denote the number of φ
(n)
ν in (α, β). Sup-

pose
∣∣ωn(ζ)

∣∣ < 2−nA(n) on (−1, 1) for every n. Then for every subinterval
(α, β) of (0, π) one has

∣∣∣∣Nn(α, β)− β − α

π
n

∣∣∣∣ <
8

log 3
(
n log A(n)

)1/2
.

Extending the results of his paper {36} with Turán, Erdős {21} proved
that if there are absolute constants c1, c2 > 0 and a function f such that

c2f(n)
2n

≤ max
ζ
(n)
ν+1≤ζ≤ζ

(n)
ν

∣∣ωn(ζ)
∣∣ ≤ c1f(n)

2n
, ν = 0, 1, . . . , n,

then for (α, β) ⊂ (0, π),

Nn(α, β) =
β − α

π
n + O((log n)

(
log f(n)

)
).

This result has been extended by various people in many directions. See,
for example, Totik {85}.

Erdős {28} gives an extension of some results of Bernstein and An-
toni Zygmund. Bernstein had asked the question whether one can deduce
boundedness of

∣∣Pn(x)
∣∣ on [−1, 1] for polynomials pn of degree at most n

if one knows that
∣∣Pn(x)

∣∣ ≤ 1 for m > (1 + c)n values of x with some

c > 0. His answer was affirmative. He showed that if |Pn(x
(m)
i )| ≤ 1 for
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all zeros x
(m)
i of the mth Čebyshov polynomial Tm with m > (1 + c)n, then∣∣Pn(x)

∣∣ ≤ A(c) for all x ∈ [−1, 1], with A(c) depending only on c. Zyg-
mund had shown that the same conclusion is valid if Tm is replaced by the
mth Legendre polynomial Lm. Erdős established a necessary and sufficient
condition to characterize the system of nodes

−1 ≤ x
(m)
1 < x

(m)
2 < · · · < x(m)

n ≤ 1

for which

|Pn(x
(m)
i )| ≤ 1, i = 1, 2, . . . , m, m > (1 + c)n,

imply
∣∣Pn(x)

∣∣ ≤ A(c) for all polynomials Pn of degree at most n and for all
x ∈ [−1, 1], with A(c) depending only on c. His result contains both that of
Bernstein and of Zygmund as special cases. Note that such an implication
is impossible if m ≤ n + 1, by a well-known result of Georg Faber.

Erdős wrote a paper {22} on the coefficients of the cyclotomic polyno-
mials. The cyclotomic polynomial Fn is defined as the monic polynomial
whose zeros are the primitive nth roots of unity. It is well known that

Fn(x) =
∏

d|n
(xn/d − 1)

µ(d)
,

where µ is the Möbius function. For n < 105, all coefficients of Fn are ±1 or
0. For n = 105, the coefficient 2 occurs for the first time. Denote by An the
maximum over the absolute values of the coefficients of Fn. Schur proved
that lim supAn = ∞. Emma Lehmer proved that An > cn1/3 for infinitely
many n. In his paper {22}, Erdős proved that for every k, An > nk for
infinitely many n. This is implied by his even sharper theorem saying that

An > exp
[
c (log n)4/3]

for n = 2 · 3 · 5 · · · · · pk with k sufficiently large, where pk denotes the
kth prime number. Recent improvements and generalizations of this can be
explored in {57}, {58}, and {59}.

Erdős {25} has a note on the number of terms in the square of a
polynomial. Let

fk(x) = a0 + a1x
n1 + · · ·+ ak−1x

nk−1 , 0 6= ai ∈ R,

be a polynomial with k terms. Denote by Q(fk) the number of terms of f2
k .

Let Qk := minQ(fk), where the minimum is taken over all fk of the above
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form. László Rédei posed the problem whether Qk < k is possible. Rényi,
László Kalmár, and Rédei proved that, in fact, lim infk→∞Qk/k = 0, and
also that Q(29) ≤ 28. Rényi further proved that

lim
n→∞

1
n

n∑

k=1

Qk

k
= 0.

He also conjectured that limk→∞Qk/k = 0. In his short note {25}, Erdős
proves this conjecture. In fact, he shows that there are absolute constants
c1 > 0 and 0 < c2 < 1 such that Qk < c2k

1−c1 . Rényi conjectured that
limk→∞Qk = ∞. He also asked whether or not Qk remains the same if the
coefficients are complex. These questions remained open at the time of the
writing of this paper.

Erdős {27} proved a significant result related to his conjecture about
polynomials with ±1 coefficients. He showed that if

fn(θ) :=
n∑

k=1

(ak cos kθ + bk sin kθ)

is a trigonometric polynomial with real coefficients,

max
1≤k≤n

{max
{ |ak|, |bk|

}} = 1 and
n∑

k=1

(a2
k + b2

k) = An,

then there exists a c = c(A) > 0 depending only on A for which limA→0 c(A)
= 0 and

max
0≤θ≤2π

∣∣fn(θ)
∣∣ ≥ 1 + c(A)√

2

( n∑

k=1

(a2
k + b2

k)
)1/2

.

Closely related to this is a problem for which Erdős offered $100 and
which has become one of my favorite Erdős problems (see also Problem
22 in {26}): Is there an absolute constant ε > 0 such that the maximum
modulus on the unit circle of any polynomial p(x) =

∑n
j=0 ajx

j with each
aj ∈ {−1, 1} is at least (1 + ε)

√
n? Erdős conjectured that there is such

an ε > 0. Even the weaker version of the above, with (1 + ε)
√

n replaced
by

√
n + ε with an absolute constant ε > 0, looks really difficult. (The

lower bound
√

n + 1 is obvious by the Parseval formula.) These problems
are unsettled to this date.
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Let D be the open unit disk of the complex plane. Let ∂D be the unit
circle of the complex plane. Let

Kn :=
{

p : p(z) =
n∑

k=0

akz
k, ak ∈ C, |ak| = 1

}
.

The class Kn is often called the collection of all (complex) unimodular
polynomials of degree n. Given a sequence (εnk

) of strictly positive numbers
tending to 0, we say that a sequence (Pnk

) of polynomials Pnk
∈ Knk

is
(εnk

)-ultraflat if

(1− εnk
)
√

nk + 1 ≤ ∣∣Pnk
(z)

∣∣ ≤ (1 + εnk
)
√

nk + 1, z ∈ ∂D,

or equivalently

max
z∈∂D

|∣∣Pnk
(z)

∣∣ −√nk + 1| ≤ εnk

√
nk + 1.

The existence of an ultraflat sequence of unimodular polynomials (for
some sequence (εnk

) of positive real numbers tending to 0) seemed very
unlikely, in view of an extended version of the above mentioned Erdős
conjecture to polynomials P ∈ Kn with n ≥ 1.

Yet, refining a method of Thomas W. Körner, Jean-Pierre Kahane {46}
proved that there exists a sequence (Pn) with Pn ∈ Kn which is (εn)-
ultraflat, where

εn = O(n−1/17
√

log n ).

Thus this extended version of the above mentioned Erdős conjecture was
disproved for the classes Kn.

The structure of ultraflat sequences of unimodular polynomials is beau-
tiful. The following uniform distribution theorem for the angular speed,
conjectured by Saffari {72}, is proved in {17}. Suppose (Pn) is an ultraflat
sequence of unimodular polynomials Pn ∈ Kn. We write

Pn(eit) = Rn(t)eiαn(t), Rn(t) =
∣∣Pn(eit)

∣∣ , t ∈ R.

It is a simple exercise to show that αn can be chosen so that it is dif-
ferentiable in t on R. Then in the interval [0, 2π], the distribution of the
normalized angular speed α′n(t)/n converges to the uniform distribution as
n →∞. That is, we have

m(
{

t ∈ [0, 2π] : 0 ≤ α′n(t) ≤ nx
}
) = 2πx + γn(x)
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for every x ∈ [0, 1], where limn→∞ γn(x) = 0 for every x ∈ [0, 1]. As a
consequence,

∣∣P ′
n(eit)

∣∣/n3/2 also converges to the uniform distribution as
n →∞. That is, we have

m
(
{t ∈ [0, 2π] : 0 ≤ ∣∣P ′

n(eit)
∣∣ ≤ n3/2x}

)
= 2πx + γn(x)

for every x ∈ [0, 1], where limn→∞ γn(x) = 0 for every x ∈ [0, 1] (m(·)
denotes the one-dimensional Lebesgue measure). In both statements the
convergence of γn(x) is uniform on [0, 1].

For higher derivatives, the following result is proved in {17}. Suppose
(Pn) is an ultraflat sequence of unimodular polynomials Pn ∈ Kn. Then

(|P (m)
n (eit)|
nm+1/2

)1/m

converges to the uniform distribution as n →∞. More precisely, we have

m
(
{t ∈ [0, 2π] : 0 ≤ |P (m)

n (eit)| ≤ nm+1/2xm}
)

= 2πx + γm,n(x)

for every x ∈ [0, 1], where limn→∞ γm,n(x) = 0 for every fixed m = 1, 2, . . .
and x ∈ [0, 1]. For every fixed m = 1, 2, . . . , the convergence of γn,m(x) is
uniform on [0, 1].

Several topics from Erdős’s problem paper {29} have already been dis-
cussed before. Here is one more interesting group of problems. Let (zk)

∞
k=1

be a sequence of complex numbers of modulus 1. Let

An := max
|z|=1

n∏

k=1

|z − zk|.

What can one say about the growth of An? Erdős conjectured that
lim supAn = ∞. In my copy of {29} that Erdős gave me, there are
some handwritten notes (in Hungarian) saying the following. “Wagner
proved that lim supAn = ∞. It is still open whether or not An > nc or∑n

k=1 Ak > n1+c happens for infinitely many n (with an absolute constant
c > 0). These are probably difficult to answer.” See {89}.

Erdős was famous for anticipating the “right” results. “This is obviously
true; only a proof is needed” he used to say quite often. Most of the
times, his conjectures turned out to be true. Some of his conjectures
failed for the more or less trivial reason that he was not always completely
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precise with the formulation of the problem. However, it happened only
very rarely that he was essentially wrong with his conjectures. If someone
proved something that was in contrast with Erdős’ anticipation, he or she
could really boast to have proved a really surprising result. Erdős was
always honest with his conjectures. If he did not have a sense about
which way to go, he formulated the problem “prove or disprove”. Erdős
turned even his “ill fated” conjectures into challenging open problems. The
following quotation is a typical example of how Erdős treated the rare
cases when a conjecture of his was disproved. It is from his problem paper
{29} entitled “Extremal problems on polynomials”. For this quotation, we
need to recall the following notation. Associated with a monic polynomial
f(z) =

∏n
j=1 (z − zj), where zj are complex numbers, let En(f) := {z ∈ C :∣∣f(z)

∣∣ ≤ 1}. In his problem paper Erdős writes (in terms of the notation
employed here): “In [7] we made the ill fated conjecture that the number of
components of En(f) with diameter greater than 1 + c (c > 0) is less than
δc, δc bounded. Pommerenke [14] showed that nothing could be farther
from the truth, in fact he showed that for every ε > 0 and k ∈ N, there
is an En(f) which has more than k components of diameter greater than
4 − ε. Our conjecture can probably be saved as follows: Denote by Φn(c)
the largest number of components of diameter greater than 1 + c (c > 0)
which En(f) can have. Surely, for every c > 0, Φn(c) = o(n), and hopefully
Φn(c) = o(nε) for every ε > 0. I have no guess about a lower bound for
Φn(c), also I am not sure whether the growth of Φn(c), (1 < c < 4) depends
on c very much.”

If p(x) =
∑n

j=0 ajx
j , then we introduce l1(p) :=

∑n
j=0 |aj |. An inter-

esting problem of Erdős and György Szekeres is to minimize l1(p) over all
polynomials

p(x) =
N∏

k=1

(1− xαk),

where N is a fixed positive integer, while the positive integers α1, α2, . . . , αN

vary. Let E∗
N := min l1(p), where the minimum is taken for all p of the

above form. It is conjectured by Erdős and Szekeres that E∗
N ≥ NK for

any fixed K and sufficiently large N . Erdős and Szekeres {34} proved a
sub-exponential upper bound for E∗

N . The best known upper bound for E∗
N

today is exp
(
O(log n)4

)
given by A. S. Belov and Sergei V. Konyagin {3},

that improves weaker bounds given earlier by Andrew Odlyzko and Mihail
N. Kolountzakis.
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For a fixed z ∈ C and a Borel measure µ on [−π, π) the Christoffel
function ωn(µ, z) is defined to be the minimum of

1
2π

∫ π

−π

∣∣p(eiθ)
∣∣2

dµ(θ)

taken over all polynomials p of degree less than n with p(z) = 1. Szegő
{78} studied ωn(µ, 0) for absolutely continuous measures µ in 1915. Later,
in 1922, Szegő {79} showed that

lim
n→∞nωn(µ, eit) = µ′(t), t ∈ (−π, π),

assuming that µ is absolutely continuous and µ′ > 0 is twice continuously
differentiable. This result is very important for applications in orthogonal
polynomials, probability theory, and statistics (linear prediction), and other
areas. It gives a useful and numerically adaptable method of computing the
weight function for orthogonal polynomials. In their paper {62}, Máté,
Nevai, and Totik show that

lim
n→∞nωn(µ, eit) = µ′(t)

holds almost everywhere on every interval I ⊂ [−π, π) for which
∫

I
log µ′(θ) dθ > −∞.

In an earlier paper {61} Máté and Nevai showed that
∫ π

−π
log µ′(θ) dθ > −∞

implies

2e−1µ′(t) ≤ lim inf
n→∞ nωn(µ, eit) ≤ lim sup

n→∞
nωn(µ, eit) = µ′(t)

for almost every real t.
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{20} P. Erdős, On extremal properties of the derivatives of polynomials, Ann. of
Math. (2), 41 (1940), 310–313.
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Amer. Math. Soc., 50 (1944), 509–513.

{54} A. L. Levin and D. S. Lubinsky, Canonical products and weights exp (−|x|α), α > 1,
with applications, J. Approx. Theory (2), 49 (1987), 149–169.



154 T. Erdélyi
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{89} G. Wagner, On a problem of Erdős in Diophantine approximation, Bull. London
Math. Soc., 12 (1980), 81–88.



156 T. Erdélyi
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