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Game theory, when defined in the broadest sense, is a collection of mathe-
matical models formulated to study situations of conflict and cooperation.
It is mainly concerned with finding the best actions for the individual deci-
sion makers in these situations and/or recognizing stable outcomes. Game
theory attempts to provide a normative guide to rational behavior for in-
dividuals pursuing more or less different goals and make predictions about
the outcomes thus realized.

The mathematical complexity of the models poses a real challenge to
mathematicians who, if they want to be really successful, must possess not
only the technical skills but have a deep understanding of the problems in a
very wide variety of applications ranging from biology and human behavior
to economics and warfare. János (John) von Neumann and János (John)
Harsányi have left irremovable marks by their contributions to the very
foundation of cooperative and noncooperative game theory. Jenő Szép, as
an educator and textbook writer has helped generations of economists and
decision scientists to keep abreast of the latest developments in this rapidly
growing field. Their most important results, together with the context in
which they are interpreted are briefly outlined below.

János (John) von Neumann, the last renaissance scientist of our
time, was not only a brilliant mathematician but he also took interest
in other sciences as well. His model of economic equilibrium has been a
subject of study and a source of inspiration for generations of economists.
While classical and neoclassical economic equilibrium models work with
economic agents (producers, consumers) whose individual contribution in
forming prices and producing goods is assumed to be negligible, there are
several industries where concentration of capital creates situations in which
a few major players decide on production volumes and/or prices. Strategic
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aspects of interaction on the market became an issue and raised questions
that classical economic theory could not answer. So the need for a theory
to study strategic behavior of participants in a conflict situation and the
presence of the open mind of a genius came together in the thirties and
forties of the 20th century to give birth to a brand new body of knowledge
commonly known as game theory.

Von Neumann did not publish too much in game theory as far as the
number of papers and books is concerned. His two major works, however,
are landmarks in game theory. One is a paper in which the first, complete
minimax theorem is stated and proved, the other is a book [117] in which
the theoretical foundation of cooperative game theory is laid down. For
the latter he found an economist, Oskar Morgenstern to help him reinforce
the economic relevance of the model and make the monumental work the
starting point of any research in cooperative game theory.

Though Emile Borel (1924) was the first who defined pure and mixed
strategies for symmetric two-person games, he was unable to prove the
existence of equilibrium in mixed strategies. In fact, he was in doubt about
the validity of the minimax theorem, an equivalent to the existence theorem
in case of two-person zero-sum games. It was von Neumann (1928) who first
gave a complete proof of a minimax theorem which covers the special case
of the mixed extension of finite, two-person zero-sum games.

Theorem 1 (von Neumann). Let C and U be unit simplexes of finite
dimensional Euclidean spaces, and f be a jointly continuous real valued
function defined on X×Y . Suppose that f is quasiconcave on X, that is to
say, for all y ∈ Y the upper level sets of f are convex, and f is quasiconvex
on Y , that is to say, for all x ∈ X the lower level sets of f are convex. Then

min
Y

max
X

f = max
X

min
Y

f.

This result was later extended by von Neumann (1937) himself by re-
placing unit simplexes with nonempty compact, convex subsets of Euclidean
spaces. In both cases, von Neumann used topological and fixed-point argu-
ments. It turned out later on that fixed-point theorems are not necessary
for the proof, convex analysis, in particular linear separation is enough to
prove even more general results where the continuity of f is replaced by par-
tial upper and lower semicontinuity in the respective variables, Sion (1958).
Theorem 1 has opened a whole avenue of research about minimax theorems
and their various generalizations and has been applied in many fields inside
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and outside of mathematics. For a good overview of minimax theorems we
recommend Simons (1995).

Von Neumann was not only concerned with the existence of equilibria
for two-person zero-sum games but also proposed a unique method for
computing one in the case of symmetric matrix games.

The mixed extension of a finite, two-person zero-sum game can be
completely defined by a matrix A of m rows and n columns with general
element ai,j which represents the payoff player 1 gets from player 2 if
player 1 plays his ith and player 2 his jth pure strategy. The players are
allowed to mix their pure strategies by choosing probability vectors x and
y, respectively, and are concerned with expected payoffs xAy player 1 gets
on the average from player 2. It is easily seen that Theorem 1 ensures the
existence of an equilibrium pair of strategies x∗, y∗ to satisfy

xA y∗ ≤ x∗A y∗ ≤ x∗A y

for all probability vectors x and y of dimension m and n, respectively. We
will briefly refer to the mixed extension of a finite two-person zero-sum game
as a matrix game and define it by its payoff matrix A.

A matrix game is said to be symmetric if A = −AT . The value (i.e., the
payoff at equilibrium) of symmetric games is 0 and both players have the
same equilibrium strategies. Von Neumann proposed the following method
to find an equilibrium strategy of player 2 (which is also an equilibrium
strategy of player 1).

Player 2’s strategy y(t) is assumed to be a function of a continuous
parameter t (time) and we suppose t ≥ 0. Define the following functions:

ui : Rn → R, ui(y) = eiAy, (i = 1, . . . , n)

φ : R→ R, φ(a) = max {0, a},

Φ : Rn → R, Φ(y) =
∑

φ
(
ui(y)

)

where ei denotes the ith unit vector.

Let y0 be any strategy of player 2. Consider the following system of
differential equations:

y′j(t) = φ(uj

(
y(t)

)
)− Φ

(
y(t)

)
yj(t)

yj(0) = y0
j

(j = 1, . . . , n).
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Since the right-hand side of the above system is continuous, it has at least
one solution. Let y(t) be a solution and t1, t2, . . . be a positive monotone
increasing sequence tending to ∞. Von Neumann’s proved the following
theorem:

Theorem 2. Any limit point of the sequence
{
y(tk)

}
, (k = 1, 2, . . . )

is an equilibrium strategy of player 2 in the symmetric matrix game A.
Furthermore, there exists a constant C, such that

eiAy(tk) ≤
√

n/(C + tk), (i = 1, . . . , n).

Numerically solving the differential equation system provides a good
approximation of an equilibrium strategy of either player.

Using linear programming is a more efficient way of solving matrix
games, but von Neumann’s method remains an elegant, alternative approach
which has also been an inspirational source for various kinds of learning
processes.

Von Neumann’s minimax theorem in the two-person zero-sum case was
the precursor to the equilibrium concept developed by John Nash in 1951
for general-sum, n-person noncooperative games. A game G in normal
(strategic) form is given as the 2n-tuple

G = {S1, . . . , Sn; f1, . . . , fn},

where for each i = 1, . . . , n, Si is the strategy set of player i and fi :
S1×· · ·×Sn → R is his payoff function. Given the (n−1)-tuple of strategies
(s1, . . . , si−1, si+1, . . . , sn) of all players but i, a strategy t ∈ Si is said to be
a best reply (to the strategy profile of the rest of the players), if

fi(s1, . . . , si−1, t, si+1, . . . , sn) ≥ fi(s1, . . . , si−1, u, si+1, . . . , sn)

holds for all u ∈ Si.
A strategy profile s∗ = (s∗1, . . . , s

∗
n) is called a Nash equilibrium point of

game G if

fi(s∗1, . . . , s
∗
n) ≥ fi(s∗1, . . . , s

∗
i−1, si, s

∗
i+1, . . . , s

∗
n)

holds for all si ∈ Si and i = 1, . . . , n, or equivalently, s∗i is a best reply to
(s∗1, . . . , s

∗
i−1, s

∗
i+1, . . . , s

∗
n).

Not only noncooperative game theory received the initiating impetus
from von Neumann but the cooperative theory as well. In the seminal book
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written together with Oskar Morgenstern [117] he sets up the model of
a cooperative game most commonly used for analysis ever since. Given a
finite set of players, N = {1, . . . , n}, a pair G = (N, v) is defined an n-person
cooperative game in characteristic function form (with side payments) where
v is a real valued function defined on the subsets (coalitions) of N . The
function v assigns a real number v(S) to every coalition, with the convention
v(∅) = 0. The value v(S) represents the transferable utility coalition S
can achieve on its own when its members fully cooperate. The theory
is mostly concerned with how the utility v(N) achievable by the grand
coalition N can be distributed taking into account the power, as expressed
by the characteristic function, the coalitions have. Von Neumann and
Morgenstern consider only essential, constant-sum games in their book.
A game G = (N, v) is essential if

∑

i∈N

v
({i}) < v(N)

and it is constant-sum if

v(S) + v(N − S) = v(N)

holds for any coalition S. We call the game G = (N, v) superadditive if

v(S) + v(T ) ≤ v(S ∪ T )

for all disjoint coalitions S, T .
For a given game G = (N, v), let S be a coalition and x = (x1, . . . , xn)

a real n-vector.
Define

x(S) =
∑

i∈S

xi.

An n-vector x = (x1, . . . , xn) is called an imputation if it is individually
rational, i.e.,

xi ≥ v
({i}) for all i ∈ N

and Pareto optimal or efficient, i.e.,

x(N) = v(N).

An imputation represents a distribution of v(N) among players in such
a way that no player will get less than his own value v

({i}) . We say
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that imputation x dominates imputation y, written x domy, if there is a
coalition S such that xi > yi for all i ∈ S and x(S) ≤ v(S). If x domy,
then coalition S can block the imputation y since it can give more to its
members and also has the power to achieve this.

Von Neumann and Morgenstern define a “solution” to a game G =
(N, v) as a subset V of the set all imputations which is both internally and
externally stable, i.e.

(i) there is no x,y ∈ V such that x domy,
(ii) if y /∈ V , then there is an x ∈ V such that xdomy.

To distinguish from other solution concepts that have emerged since the
ground breaking work of von Neumann and Morgenstern the above “solu-
tion” is usually referred to as stable set or von Neumann–Morgenstern solu-
tion. Von Neumann and Morgenstern interpreted stable sets as a standard
of behavior within a society. Distribution of the commonly gained wealth
is accepted and can be maintained if it belongs to a stable set. Within
this set no distribution is both favorable and achievable by any segment of
the society while any distribution outside of this set can be prevented from
becoming socially acceptable by certain social groups which have both the
motivation and power to do so. Von Neumann and Morgenstern left open
the question of which imputation in a stable set V will actually realize. This
is assumed to be determined by the bargaining ability of the players, out-
side forces, chance etc. They were not disturbed at all by the fact that in
many games there is a multitude of different stable sets. They considered
each as a standard of behavior and did not consider part of their model
which one of these will realize. They were, however, deeply concerned with
the existence of stable sets. They could prove in their book the following
theorem.

Theorem 3 [117]. Every superadditive, essential, three-person game has
at least one stable set.

Although some special classes of games were shown by von Neumann
and Morgenstern to have stable sets, they were unable to prove a general
existence theorem. To settle the existence of stable sets has proved to be a
hard problem over the years. Lucas constructed a 10-person, nonconstant-
sum game in 1969 which has no stable sets and Bondareva et al. (1974)
proved that all 4-person games have stable sets. The question of existence
for general games is unsettled for 5 to 9-persons. No one has proved or
disproved the original conjecture of von Neumann and Morgenstern that
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every constant-sum game has at least one stable set. It is also conjectured
that games with no solutions are “rare”, known examples are unstable in the
sense that minor changes in the characteristic function value causes them
to have stable sets.

Stable sets have a surprisingly rich mathematical structure and give rise
to extremely difficult problems. An excellent overview of the developments
from von Neumann and Morgenstern to the early nineties is given by Lucas
(1992).

One of the basic assumptions of classical game theory is complete infor-
mation and common knowledge: rules of the game, the available strategies,
the payoff functions are assumed to be known by each player together with
the infinite hierarchy: “all players know it, each one knows that everyone
knows it, and so on”. If we want to come closer to reality, we have to
find ways for analyzing conflict situations where players have only partial
information about certain constituents of the game.

János (John) Harsányi, the Economics Nobel Laureate of 1994, was
the first to provide a consistent model for games with incomplete informa-
tion which became the most commonly applied approach to treat informa-
tional disparities of agents not only in game theory but in the new, rapidly
developing field of Economics of Information as well. The very heart of
the concept is usually referred to as the Harsányi Doctrine or The Common
Prior Assumption: If C denotes the possible states of the world with generic
element c which is a specification of all parameters that may be the object of
uncertainty in a game G, then all the players share the same prior probabil-
ity distribution on C which is common knowledge among them. This does
not imply that all players have the same subjective probabilities since they
may have different information about the true state of nature. The sub-
jective probability of a player is his posterior (in the Bayesian sense) given
his information. Posteriors may well be different but differences in proba-
bility estimates of distinct individuals should be explained by differences in
information and experience.

We will demonstrate the power of the Harsányi Doctrine by a brief
outline of his original model published in a series of articles in 1967. When
asked, he himself thought that these articles had brought him the Nobel
prize. It took thirty years for the scientific community to really appreciate
the contribution of the original model and the underlying idea (The Harsányi
Doctrine) to help better understand strategic behavior in conflicts with
incomplete information.
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Following Harsányi we will call a game of incomplete information in
normal (strategic) form an I-game which is given as

G := {S1, . . . , Sn; C1, . . . , Cn; R1, . . . , Rn; V1, . . . , Vn}

where for player i, Si is his strategy set, Ci is the (finite) set of the informa-
tion vectors available to him, Ri is a function that assigns to every informa-
tion vector ci ∈ Ci a (subjective) probability vector Ri(c−i | ci) over the set
C−i = C1 × · · · × Ci−1 × Ci+1 × · · · × Cn, c−i = (c1, . . . , ci−1, ci+1, . . . , cn),
Vi is his expected payoff function which assigns a real number (utility) to
any n-tuple of strategies and information vectors using the probability dis-
tribution Ri. We can view the information vector ci as representing certain
physical, social, and psychological attributes of player i himself, in that it
summarizes some crucial parameters of player i’s own payoff function, as
well as the main parameters of his beliefs about his social and physical en-
vironment including his beliefs about the beliefs of the other players. From
this point of view, vector ci may be called player i’s attribute vector or type.
Ri is player i’s subjective probability distribution over the types of the other
players conditioned on his own type.

Applying the Harsányi Doctrine, we assume that there is an objec-
tive probability distribution R∗ over the product of the information sets
(types) whose conditional probabilities coincide with the subjective condi-
tional probabilities of the players, that is

Ri(c−i | ci) = R∗(c−i | ci)

holds for all attribute vectors and all i = 1, . . . , n. Then the I-game with
the common prior R∗ is called the Bayesian game associated with G and is
denoted by

G∗ = {S1, . . . , Sn; C1, . . . , Cn; R∗; V1, . . . , Vn}.

With the help of the distribution R∗, we can now define the normal form
N(G∗) of an I-game G (and G∗) as

N(G∗) = {S∗1, . . . , S
∗
n; W1, . . . , Wn}.

The strategy sets in N(G∗) are the sets of the so-called normalized strate-
gies which are functions from the range set of the information sets to the
original strategy sets. In other words, a normalized strategy s∗i ∈ S∗i tells
player i what strategy to use from Si for each possible value of his own
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information vector ci. The payoff functions, W1, . . . ,Wn, are expected pay-
offs with respect to the information vector c using the objective probability
distribution R∗. Notice that N(G∗) does not include the c′is and R∗ any
more.

If in the same game, instead of the distribution R∗, we use the condi-
tional subjective distribution functions Ri(c−i | ci) when defining the payoff
functions, then we get the semi-normal form SN(G∗) of G∗ as

SN(G∗) = {S∗1, . . . , S
∗
n; C1, . . . , Cn; R∗; Z1, . . . , Zn}

where the Zi’s are conditional expected payoffs obtained by using the con-
ditional probabilities R∗(c−i | ci) which are equal to Ri(c−i | ci) by the
Harsányi doctrine.

A strategy profile s∗ = (s∗1, . . . , s
∗
n) of game SN(G∗) is said to be a

Bayesian equilibrium point of the I-game G, if, for all i = 1, . . . , n, s∗i is a
best reply to the strategy profile (s∗1, . . . , s

∗
i−1, s

∗
i+1, . . . , s

∗
n) of the rest of the

players for all possible values of ci (with the possible exception of a set of
measure 0 in Ci).

Theorem 4 (Harsányi 1967). Let G be an I-game and G∗ the Bayesian
game associated with G. A normalized strategy profile s∗ is a Bayesian
equilibrium point of G if and only if s∗ is a Nash equilibrium point of the
normal form N(G∗).

Harsányi’s Bayesian approach is based on beliefs of players concerning
certain parameters of the I-game. But it also involves beliefs about other
players’ beliefs and so on, leading to an infinite hierarchy of beliefs. The
introduction of type has proved to be a useful tool to get around this
difficulty operationally, but leaving a void for the formal mathematical
treatment. Mertens and Zamir (1985) justified the validity of the Harsányi
model with the strictest mathematical rigor.

Harsányi’s model of games of incomplete information and the Harsányi
doctrine has been so incorporated into modern economics that it is impos-
sible to give a complete list of its applications. Harsányi himself used it in
addressing other fundamental questions in game theory. We just mention
two without going into any details.

One of the basic problems in noncooperative game theory is how to
select a particular Nash equilibrium point of the mixed extension of a finite
n-person noncooperative game if there are many equilibria. Additional
assumptions and requirements have been proposed, as they say, to refine the
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equilibrium concept. The refinement due to Harsányi has become famous
under the name: tracing procedure, Harsányi (1975). In this model, it
is assumed that each player starts his analysis of the game situation by
assigning a subjective prior probability distribution to the set of all pure
strategies available to each other player. The Harsányi doctrine is also
assumed: these distributions are conditionals of a common prior. Then the
players will modify their subjective probability distributions in a continuous
manner until all of these probability distributions converge to a specific
equilibrium point of the game.

Another controversial issue is how to interpret mixed strategies for finite
games. This is a problem when theory is confronted with practice: hardly
anyone would randomize in the way it is assumed in classical models of game
theory, that is, before each play of the game a lottery is performed and the
players will do whatever is dictated by its outcome. In Harsányi’s model,
Harsányi (1973), a game with incomplete information is associated with the
finite game under study. This game is obtained by a small perturbation of
the payoffs. Then, as is proved by Harsányi, if the variations in payoffs are
small, almost any mixed equilibrium of the finite game is close to a pure
strategy equilibrium of the associated Bayesian game and vice versa. Thus
even if no player makes any effort to use his pure strategies with the required
probabilities, the random variations in the payoffs make every player choose
his pure strategies with the right frequencies. The assumption of small
variations is not very restrictive since payoffs are usually utilities of players
whose estimations are never exact.

János von Neumann’s and János Harsányi’s contributions to modern
game theory have had a great impact on the directions in which game theory
has developed and their work is still a significant marker in contemporary
research in the field. Hungarian mathematics, and science in general, must
be very proud of their accomplishments and cherish the fame they have
brought to Hungary. Though they got their first university degrees in
Hungary, due to several reasons and special historical circumstances they
lived their active life mostly abroad, thereby sharing the fame and publicity
they earned between the homeland and the country they lived in.

Until the early sixties, any economic theory or methodology other than
the Marxian was taboo in Hungary and completely missing from university
curricula. A few professors at the University of Economics in Budapest real-
ized in the early sixties that part of the methodology of modern economics,
such as activity analysis with the mathematical programming underpinning
and game theory when stripped of any ideology and used for the analysis of
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economic problems existing in modern societies, whether it be a free market
economy or a (partially) planned and government controlled socialist econ-
omy, could be introduced in the curriculum of the university. They even
selected a small, special group of students who were given a special curricu-
lum heavily loaded with mathematics and “western-style” economics.

Professor Jenő Szép, head of the Mathematics Department at the
University of Economics at that time and the late professor Béla Krekó
were the main driving forces in this endeavor. Jenő Szép designed the first
course in game theory which was based on Burger’s book [20] and included
both noncooperative and cooperative games. Out of these lectures, grew
the first game theory book in Hungarian [176] co-authored by one of his
former students, Ferenc Forgó. In addition to covering the standard topics,
the introduction of the Nash equilibrium concept was embedded into a more
general equilibrium model invented and studied by Jenő Szép (1970) himself.

The success of this book led to the German and the English version
[176]. The English version served as text for game theory courses in several
universities world wide. Later another author, Ferenc Szidarovszky of the
University of Arizona joined Szép and Forgó to write an extended and
improved text [45]. The specialty of this book is that it enhances the
nonconvexities arising in various models of conflict situations.

Jenő Szép, as an educator, text-book author and inspirational source
for generations of scientists and practitioners has done a lot to further the
cause of meaningful and creative application of mathematics in economics
in general and in game theory in particular.
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[45] Forgó, Ferenc – Szép, Jenő – Szidarovszky, Ferenc, Introduction to the Theory of
Games: Concepts, Methods, Applications, Nonconvex optimization and its applica-
tions, Vol. 32, Kluwer Academic Publishers (Dordrecht–Boston, 1999).

[117] Morgenstern, Oskar –Neumann, John von, Theory of Games and Economic Behav-
ior, Princeton University Press (Princeton, NJ, 1944); 3rd edition 1953.
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