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1. Prologue

It is quite well known that, as Jean-Pierre Kahane tells us elsewhere in
this volume, Hungarian mathematics started the twentieth century with a
bang when in October 1900 a twenty year old student, who had just returned
from Berlin after a year there, proved that the Fourier series of a continuous
function is uniformly Cesàro-summable to the function. It is, however, less
well known that Lipót Fejér has already previously published an article
containing some simple theorems concerning power series (Mat. Fiz. Lapok
9 (1900), 405–410; [40], No. 1, p. 29). A typical result is the following: if
g is a positive integer and f an entire function of genus ≤ g − 1, then the
radius of convergence of

∑∞
n=0 cnf(n)xng

is not smaller than the the radius
of convergence of

∑∞
n=0 cnxng

. An application is the fact that a power series
and the series obtained from it by termwise differentiation have the same
radius of convergence.

2. The Jensen formula

Fejér got to know Constantin Carathéodory during the academic year he
spent in Berlin. At that time Carathéodory was an engineer for the Suez
Canal Company. His family, as many Greeks, was in the diplomatic service
of the Ottoman Empire: his father was ambassador in Brussels, his uncle,
who was also his father-in-law, ambassador in Berlin. Carathéodory was
always interested in mathematics, so while visiting his uncle he went to see
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what is going on at the seminar of Hermann Amandus Schwarz. According
to the legend, he found a man seven years his junior who presented a proof
of the characterization of the triangle with shortest perimeter inscribed into
a triangle ([40], Appendix III, vol. II, p. 847; [140]). Carathéodory was
so impressed that then and there he decided to abandon his career as an
engineer and to become a mathematician.

The Comptes Rendus note of Carathéodory and Fejér from 1907 (145,
163–165; [40], No. 19) is based on the geometric theorem according to which
if P is a point inside a circle with center O and radius R, and Q is its polar,
i.e. OPQ are collinear and OP ·OQ = R2, then the ratio PM : QM of the
distances from P and from Q to a point M on the circumference equals the
constant OP/R.

Consider now a circle in the complex plane C with radius R and center
at the origin. If a ∈ C is such that |a| < 1, then its polar with respect to
the circle is

â =
R2

ā
=

R2a

|a|2
and so ∣∣∣∣

z − a

z − â

∣∣∣∣ =
|a|
R

for all z ∈ C with |z| = R. Carathéodory and Fejér consider all functions
f holomorphic in

{
z ∈ C : |z| < R

}
with f(0) = A, which vanish

at points a1, . . . , an inside the circle, and ask for which such function is
M = max|z|<1

∣∣f(z)
∣∣ the smallest. They divide f by the product

Q(z) =
z − a1

z − â1
· z − a2

z − â2
· · · z − an

z − ân

and obtain from the fact that
∣∣Q(z)

∣∣ is constant on |z| = R that

M ≥ |A|Rn

|a1| |a2| . . . |an| ,

and that the only function for which M attains this lower bound is

AR2n

|a2
1| |a2

2| . . . |a2
n|

Q(z).

If we replace âiby R2/āi in Q(z) and multiply it by Rn/
∏n

j=1 |aj |, then
we obtain the rational function

Rn z − a1

R2 − ā1z
· z − a2

R2 − ā2z
· · · z − an

R2 − ānz
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which has zeros at a1, a2, . . . , an and absolute value 1 on |z| = R. It
has entered complex analysis under the name of “Blaschke product” after
Wilhelm Blaschke who considered it, however, only in 1915.

3. Polynomials

Edmund Landau considered in 1906 the trinomial equation

a0 + a1z + anzn = 0

and proved that it has a root in the disk

|z| ≤ 2
∣∣∣∣
a0

a1

∣∣∣∣ .

He also considered the quadrinomial equation

a0 + a1z + amzm + anzn = 0

and proved that it has a root in the disk

(1) |z| ≤ 8
∣∣∣∣
a0

a1

∣∣∣∣ .

The remarkable fact about these two estimates is that the bounds depend
only on a0, a1 and not on m, n, am, an. Landau asked the question whether
a similar result holds for a general polynomial equation of the form

(2) a0 + a1z + a2z
n2 + a3z

n3 + · · ·+ akz
nk = 0,

where a1 6= 0, 1 < n2 < n3 < · · · < nk. Lipót Fejér gave an answer to
this question (Comptes Rendus, Paris 145 (1907), 459–461, Math. Ann.,
65 (1908), 413–423, Mat. Fiz. Lapok 17 (1908), 308–324; [40], Nos. 21, 23,
24). He starts out from a then almost forgotten theorem of C. F. Gauss (also
called the Gauss–Lucas theorem) according to which if f(z) is a polynomial,
then each root of f ′(z) = 0 is inside the convex hull of the roots of f(z) = 0
unless it coincides with a root of f(z) = 0. In the third article quoted he
gives a proof of the theorem based on the fact that if

f(z) = (z − z1)
α1(z − z2)

α2 . . . (z − zn)αn ,
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where z1, z2, . . . , zn are the distinct zeros of f(z), then

f ′(z)
f(z)

=
α1

z − z1
+

α2

z − z2
+ · · ·+ αn

z − zn
.

This implies that if f ′(ζ) = 0, then ζ is the center of gravity of positive
masses placed at the points zj , from where Gauss’ theorem follows immedi-
ately. Alternatively one can say that a unit mass placed at ζ is in equilibrium
under forces of attraction inversely proportional to the distance from zj to
ζ due to masses placed at the points zj . The theorem of Gauss follows also
from this interpretation.

Fejér uses a consequence of Gauss’ theorem, namely that the largest (in
absolute value, of course) root of f(z) = 0 is not smaller than the largest
root of f ′(z) = 0. His main theorem is the following:

The polynomial equation

(3) a0 + a1z
n1 + a2z

n2 + · · ·+ akz
nk = 0,

where a1 6= 0, 1 ≤ n1 < n2 < · · · < nk, has a root in the disk

(4) |z| ≤
(

n1n2 . . . nk

(n2 − n1)(n3 − n1) . . . (nk − n1)

) 1
n1

∣∣∣∣
a0

a1

∣∣∣∣
1

n1

.

So the disk does not depend on the coefficients a2, a3, . . . ak.
A corollary of the theorem is that equation (3) has at least one solution

in the disk

(5) |z| ≤ k

∣∣∣∣
a0

a1

∣∣∣∣
1

n1

.

Here the right hand side is independent also of n2, n3, . . . , nk. Another
corollary states that (3) has at least one root in

(6) |z| ≤ k max
(∣∣∣∣

a0

a1

∣∣∣∣ , 1
)

,

where now the bound does not even depend on n1. Fejér points out that it
is very easy to obtain an estimate where in (6) the “length” k is replaced
by the possibly much larger degree n = nk.

Fejér’s results were generalized by Paul Montel and MieczysÃlaw Bier-
nacki to the case when not only the first two but the first p coefficients are
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fixed, see Pál Turán’s note in [40], p. 333 and Chapter IV of Dieudonné’s ex-
pository account [29] which discusses also the results concerning polynomials
of several other Hungarian mathematicians: Elemér Bálint, Jenő Egerváry,
Mihály Fekete, István Lipka, Gábor Szegő, Gyula Szőkefalvi Nagy. Thus
Fekete improved the estimate (4) to

|z| ≤ min
1≤r≤k−1

(
nr+1 . . . nk

(nr+1 − nr) . . . (nk − nr)

) 1
nr

∣∣∣∣
a0

a1

∣∣∣∣
1

nr

and deduced from it the following result related to the theorem of J. H.
Grace: If the coefficients of the polynomial (3) satisfy a linear relation

λ0a0 + λ1a1 + λ2a2 + · · ·+ λkak = 0,

where λ0 6= 0, then (3) has a root in the disk

|z| ≤ 2k max
1≤i≤k

(∣∣∣∣
λi

λ0

∣∣∣∣ , 1
)

.

From (5) with n1 = 1 we see that the equation (2) originally considered
by Landau has a root in the disk

(7) |z| ≤ k

∣∣∣∣
a0

a1

∣∣∣∣ ,

thus in (1) the factor 8 can be replaced by 3. The factor k is sharp as the
equation

a0

(
1 +

a1z

ka0

)k

= a0 + a1z + · · · = 0

shows. Nevertheless Fejér proved (Jahresber. Deutsch. Math.-Verein., 24
(1917), 114–128; [40], No. 56) that a root of (2) can always be found in a
region whose area is one-fourth of the area of the disk given by (7), namely
the disk which has a diameter joining the points 0 and −k a0

a1
of C.

Fejér obtains analogous results in the more general case of equation (3).
Then a root can be found in each of n1 disks contained in the disk (5). It
follows that if n1 ≥ 2, then (3) has at least two distinct roots in (5). Using
Fejér’s method Fekete proved that for the equation

(8) a0 + a1x + · · ·+ aνx
ν + b1x

n1 + b2x
n2 + · · ·+ bkx

nk = 0,
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where aν 6= 0, ν < n1 < n2 < · · · < nk, there exists a bound B, depending
only on a0, a1, . . . , aν and k, such that (8) has at least ν roots in the disk
|z| ≤ B.

A result, somewhat similar to Fejér’s, where a subset can be excluded
from a region in which the roots a priori lie, is due to István Lipka. It is
well known that all the roots of

f(z) = zn + a1z
n−1 + a2z

n−2 + · · ·+ an−1z + an = 0

lie in the disk with center 0 and radius ξ, where ξ is the unique positive
root of

zn − |a1|zn−1 − |a2|zn−2 − · · · − |an−1|z − |an| = 0

([129], III. 17). The unique positive root η of

zn−1 − |a1|zn−2 − |a2|zn−3 − · · · − |an−1| = 0

satisfies η < ξ. Lipka proves that if an > 0, then all the roots of f(z) = 0 lie
in the cogwheel-shaped region obtained by excluding from the disk |z| ≤ ξ
the annular sectors described, using the polar representation z = ρeiϕ, by
the inequalities

η < ρ ≤ ξ,
4k − 1

2n
< ϕ <

4k + 1
2n

, k = 0, 1, . . . , n− 1.

A significant number of Lipka’s publications deal with the rule of signs of
Descartes.

The article (Math. Ann., 85 (1922), 41–48; [40], No. 60) of Fejér, writ-
ten in honor of Hilbert’s 60th birthday, uses the observation that one can
approach simultaneously all the trees of a forest only if one is outside the
convex hull of the forest. Within the convex hull whenever one gets closer
to some trees, the distance from others increases.

Let n ≥ 1 be an integer, denote by Pn the set of all polynomials of the
form

g(z) = zn + c1z
n−1 + · · ·+ cn

(cj ∈ C), and let S be a closed set in C which has at least n points. Associate
with each g ∈ Pn a number A(g) ≥ 0 which is increasing in the following
sense: if

∣∣g(z)
∣∣ <

∣∣h(z)
∣∣ for h(z) 6= 0, z ∈ S,

∣∣g(z)
∣∣ =

∣∣h(z)
∣∣ forh(z) = 0, z ∈ S,
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then A(g) < A(h). Fejér’s theorem states that if the polynomial t ∈ Pn is
such that A(t) ≤ A(g) for all g ∈ Pn, then the zeros of t lie in the convex
hull of S.

Examples of functionals A are

M∞(g) = max
z∈S

∣∣g(z)
∣∣ and

∫

S

∣∣g(x)
∣∣p

dz.

When S is the interval [−1, 1], then the polynomial minimizing M∞ is 21−n

times the usual Čebishov polynomial Tn(x) = cos (n arccosx), so Fejér’s
theorem yields the classical result that all the zeros are in [−1, 1].

Proof. Write t(z) = (z−z1)(z−z2) . . . (z−zn), and assume that z1 is not in
the convex hull of S. There exists ζ ∈ C such that |s−ζ| < |s−z1| for every
“tree” s in the “forest” S. Set g(z) = (z − ζ)(z − z2) . . . (z − zn). For every
s ∈ S such that (s− z2) . . . (s− zn) 6= 0 (and such exist by hypothesis) one
has

∣∣g(s)
∣∣ <

∣∣ t(s)∣∣ , hence A(g) < A(t), which contradicts the minimality
of t.

Fejér’s article inspired a large amount of research. When Neumann
János (a.k.a. John von Neumann) was still a student in the Lutheran “Gym-
nasium” of Budapest, his parents engaged Fekete as a tutor. Not that
Neumann needed a tutor, he has read on his own Carathéodory’s “Reelle
Funktionen” at the age of fifteen, but Fekete needed an income. For polit-
ical reasons he was not only dismissed from his job as a secondary school
teacher but his title of “Privatdozent” was taken from him and he was ex-
pelled from the Mathematical Society. It is difficult to imagine Fekete, the
meekest of men, as a dangerous revolutionary.

Together they wrote Neumann’s first paper (Jahresber. Deutsch. Math.-
Verein., 31 (1922), 125–128; [118]) which apeared when he was nineteen
years old. They prove Gauss’ theorem using Fejér’s result by considering a
polynomial p(z) = zn

n + p1z
n−1 + · · ·+ pn, taking for S the set of its roots,

and for the functional A the expression

A(g) = max
z∈S

∣∣g(z)
∣∣

∣∣p′(z)
∣∣ .

They prove that the polynomial g(z) ∈ Pn−1, for which A(g) is the smallest,
is p′(z) which has thus its zeros in the convex hull of S.

Another celebrated theorem concerning the location of the zeros of the
derivative of a polynomial was stated by J. L. W. V. Jensen ([129], III.35),
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and was first proved by Gyula Szőkefalvi Nagy (Jahresber. Deutsch. Math.-
Verein., 27 (1918), 44–48): Let f(z) be a polynomial with real coefficients so
that its zeros are either real or occur in pairs of conjugate complex numbers.
Then the zeros of f ′(z) are either real or are contained in the union of disks
with a diameter that has two conjugate zeros of f(z) as endpoints.

Fekete and von Neumann base a proof of Jensen’s theorem on the
following analogue of Fejér’s principle: Let S be a closed subset of C which
is symmetric to the real axis. If z is a point in C lying outside the union of
the disks with diameters having s ∈ S and s̄ ∈ S as endpoints, then there
exists a point ζ ∈ C such that |ζ − s| · |ζ − s̄| < |z − s| · |z − s̄| To prove
this, they first consider the case when S consists of just two points s 6= s̄.
Let z be outside the disk D having the segment [s, s̄] as diameter. If z is
real, then the assertion is obvious. If z is complex, then z̄ is also outside D,
and so are some points ζ of the open segment ]z, z̄[. The required inequality
follows from the area formula A = 1

2ab sin γ we learned in trigonometry.
The proof is similar when S consists of a finite number of pairs of points,
and the general case follows by a continuity argument.

Towards the end of his life Fekete returned to the principles of Fejér and
of Fekete–von Neumann alone (Proc. Nat. Acad. Sci. U.S.A., 37 (1951), 95–
103, Bull. Res. Council, Israel 5A (1955), 11–19) and with Joseph L. Walsh
(J. Analyse Math., 4 (1954/55), 49–87, J. Analyse Math., 5 (1956), 47–76,
Pacific J. Math., 7 (1956), 1037–1064; [194], 163, 178, 181). Then Walsh
continued alone ([194], 145, 172, 187, 188, 201, 202), and in collaboration
with T. S. Motzkin ([194], 151, 166, 174, 179, 189, 193), M. Zedek ([194],
170) and Oved Shisha ([194], 209, 222, 226, 227).

In the case when the functional A is a weighted maximum

A(g) = max
z∈S

w(z)
∣∣g(z)

∣∣ ,

where w > 0 is continuous, Gyula Szőkefalvi Nagy brings precisions to
the theorems of Fejér and Fekete–von Neumann (Acta Sci. Math. Szeged 6
(1932), 49–58). Let g∗(z) ∈ Pn be the polynomial which minimizes A(g)
and let S∗ ⊂ S be the set of points where w(z)|g∗| achieves its maximum.
Then:

a) the zeros of g∗ lie in the convex hull of S∗;

b) if S is a subset of the real axis, then S∗ contains n + 1 points which
separate the n real zeros of g∗(z);
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c) if S is symmetric with respect to the real axis and the coefficients
of g∗ are real, then the complex zeros of g∗ lie in the union of disks with
diameters that have two conjugate points of S∗ as endpoints.

A theorem of Edmond Laguerre states that if f(z) is a polynomial of
degree n with real coefficients and real zeros, and we divide the interval
between two consecutive zeros into n equal parts, then f ′(z) has no zero in
the two extreme subintervals. Paul Montel made this result more precise by
proving that if the coefficients of f(z) are real, zk and zk+1 are real zeros
of f(z), and the real part of no other zero lies between zk and zk+1, then
f ′(z) has no zero in the intervals (zk, zk + δ) and (zk+1 − δ, zk+1), where
δ = (zk+1 − zk)/n. Gyula Szőkefalvi Nagy (Math. Természettud. Érteśıtő
53 (1935), 781–792, Acta Sci. Math. Szeged 8 (1936), 42–52) strengthened
this result by showing that the same conclusion holds if f(z) has no roots
in the disk with diameter [zk, zk+1], i.e. he replaced an infinite strip by a
bounded disk.

In a similar vein Pál Turán (Acta Sci. Math. Szeged 11 (1946/48), 106–
113; [184], No. 27) considers a polynomial f(z) of even degree n with real
coefficients such f(−1) = f(1) = 0. He assumes that f(z) has no zeros in
the open interval ]−1, +1[ but makes no other assumptions on the zeros of
f(z). If ξ is the point where

∣∣f(z)
∣∣ achieves its maximum in [−1, 1], then

he proves that |ξ| ≤ cos π
n and this bound is sharp. A more complicated

estimate holds if n is odd.

Gyula Szőkefalvi Nagy (Tôhoku Math. J., 35 (1932), 126–135) finds still
other regions which do not contain zeros of the derivative. Let z1 ∈ C be
a zero with multiplicity p of the polynomial f(z). Assume that on either
side of any straight line going through z1 there lie at most s zeros of f(z).
Denote by D a closed disk with radius R, having z1 on its boundary and
containing no other zero of f(z). Then f ′(z) has no zero in the disk D1

touching D from the inside at z1 and having radius p
p+sR. Gyula Szőkefalvi

Nagy was fundamentally a geometer and the proofs of his theorems about
polynomials have a strong geometric flavor: they belong to the “Geometry of
Polynomials”, the title of the book by Morris Marden [113] which discusses
many of Gyula Szőkefalvi Nagy’s results and lists 24 of his articles in the
bibliography. Marden presents the results concerning polynomials also of
other Hungarian authors: Elemér Bálint, Jenő Egerváry, Pál Erdős, Tibor
Faragó, Lipót Fejér, Mihály Fekete, Péter Lax, István Lipka, Endre Makai,
János Neumann, György Pólya, Tibor Radó, Ottó Szász, Pál Turán and
István Vincze.
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The theorems of Gauss–Lucas and Jensen are distant relatives of Michel
Rolle’s theorem which is also a statement concerning the position of a zero
of the derivative with respect to the zeros of the function. Another basic
fact of real analysis is the theorem of Bernhard Bolzano or the intermediate
value theorem which does not hold in the complex case: eiπ = −1, e0 = 1
but for no z in C is ez equal to 0. For polynomials the situation is more
favorable. Fekete (Jahresber. Deutsch. Math.-Verein., 34 (1926), 222–233)
proved that if f(z) is a polynomial of degree n and f(z1) = w1 6= f(z2) = w2,
then every value in the set of those points from which the segment [w1, w2]
can be seen under an angle ≥ ϕ is assumed by f(z) in the set of those points
from which [z1, z2] can be seen under an angle ≥ ϕ/n.

Elemér Bálint (Jahresber. Deutsch. Math.-Verein., 34 (1926), 233–237)
proved that if f(z) is a lacunary polynomial of the form (3) having “length”
k, then every value in the disk with diameter having endpoints w1 = f(z1)
and w2 = f(z2) is assumed by f(z) in a disk with center 1

2(z1 + z2) and
having radius ≤ Ck, where C is an absolute constant.

Assume that the polynomial f(z) of degree n assumes the values w1, . . . ,
wn at the points z1, . . . , zn. Let P be the convex hull of the points zj and
Π the convex hull of the points wj . Finally, let D be the smallest disk such
that from every point of the boundary of D the polygon P can be seen under
and angle ≤ π

n . Gyula Szőkefalvi Nagy (Jahresber. Deutsch. Math.-Verein.,
32 (1923), 307–309) proved that f(z) assumes in D every value lying in Π.

Let me recall that the elementary symmetric functions Sk = Sk(x1, . . . ,
xn), 0 ≤ k ≤ n, are the polynomials in the n indeterminates x1, . . . , xn

defined by

(x−x1) . . . (x−xn) = S0x
n−S1x

n−1 + · · ·+ (−1)kSkx
n−k + · · ·+ (−1)nSn,

i.e. S0 = 1, S1 = x1 + · · · + xn, S2 = x1x2 + x1x3 + · · · + xn−1xn, . . . ,
Sn = x1x2 · · ·xn.

Now let x1, . . . , xn and y1, . . . , yn be two n-tuples of indeterminates, set
sk = Sk(x1, . . . , xn), σk = Sk(y1, . . . , yn) and introduce the polynomial

G =
n∑

k=0

(−1)k 1(
n
k

)σn−ksk

in 2n indeterminates. The following result is due to J. H. Grace ([29],
Th. VII, p. 11):
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Let the complex numbers xj and yj (1 ≤ j ≤ n) satisfy

G(x1, . . . , xn, y1, . . . , yn) = 0.

If all the yj lie in the circular domain D, then at least one xj lies in D.

This theorem and related results have been investigated in great detail
by Gábor Szegő (Math. Z., 13 (1922), 28–55; [173], I, pp. 505–534). With
Grace he considers polynomials of degree n having the form

A(x) = a0 +
(

n

1

)
a1x + · · ·+

(
n

k

)
akx

k + · · ·+ anxn

and denotes the solutions of A(x) = 0 by α1, . . . , αn. Substituting the roots
αj for the indeterminates yj and using that

(−1)n−kanσn−k =
(

n

k

)
ak,

the equation G = 0 becomes Szegő’s “Faltungsgleichung”

(9) A](x1, . . . , xn) = a0s0 + a1s1 + · · ·+ ansn = 0,

where sk = Sk(x1, . . . , xn). Observe that A](x, . . . , x) = A(x). The above
theorem then yields the form of Grace’s theorem which Szegő calls the
“Faltungssatz” and for which he gave a simple new proof ([173], I, p. 509):

Assume that the αj all lie in the circular domain D and that x1, . . . , xn

satisfy (9). Then at least one of the xj lies in D.

This result has several consequences, among then the usual formulation
of the theorem of Grace: Consider a second polynomial

B(x) = b0 +
(

n

1

)
b1x · · ·+

(
n

k

)
bkx

k + · · ·+ bnxn

of the same form, and denote its zeros by β1, . . . , βn. Replacing the variables
xj by the zeros βj , the “Faltungsgleichung” becomes the condition

a0bn −
(

n

1

)
a1bn−1 + · · ·+ (−1)k

(
n

k

)
akbn−k + · · ·+ (−1)nanb0 = 0

expressing the fact that the two polynomials are “apolar”. The assertion
is that if A(x) and B(x) are apolar, and if all the zeros of A(x) lie in the
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circular domain D, then at least one of the zeros B(x) lies in D ([129],
V. 145).

Another result is the following: Assume |αj | ≤ 1 and |βj | < 1 for
1 ≤ j ≤ n, and let

C(x) =
n∑

k=0

(
n

k

)
akbkx

k

be the polynomial obtained by ‘composition”. Then every solution of
C(x) = 0 lies in the interior of the unit disk. This result was also found by
Jenő Egerváry (Acta Sci. Math. Szeged, 1 (1922), 39–45).

Let me quote one more theorem. Assume that all the roots αj of A(x) lie
in the circular domain D. Then every root γ of C(x) has the form γ = −δβj ,
where δ ∈ D and βj is one of the roots of B(x).

For further discussion I refer to Chapter II, Nos. 2 and 3, pp. 11–14
of [29]. The composition polynomial was studied by N. G. de Bruijn and
T. A. Springer, and Szegő’s method was used by Lars Hörmander to extend
Grace’s theorem to polynomials of several variables over an algebraically
closed field, see Chapters III and IV of [113].

4. Trigonometric polynomials, Toeplitz forms and a
problem of Carathéodory

The names of Lipót Fejér and Frigyes Riesz are attached jointly to a theo-
rem, to an inequality, and to a procedure.

The Fejér–Riesz theorem is about trigonometric polynomials, i. e.,
expressions of the form

τ(t) =
n∑

k=0

(ak cos kt + bk sin kt)

(b0 = 0), or in the nowadays more popular complex writing

τ(t) =
n∑

k=−n

cke
ikt,

where n is the “order” of τ(t). We have a0 = c0, ak = ck + c−k and
bk = i(ck − c−k) for k ≥ 1 so that 2c−k = ak + ibk, 2ck = ak − ibk. We shall



Holomorphic Functions 307

assume that the coefficients ak and bk are real, i.e. that c−k = c̄k for k ≥ 1
and in this case we can also write

τ(t) = c0 + 2<e

n∑

k=1

cke
ikt.

The theorem asserts that if τ(t) ≥ 0 for all t ∈ R, then there exists a rational
polynomial

g(z) = γ0 + γ1z + · · ·+ γnzn

of degree n such that τ(t) equals
∣∣g(z)

∣∣2 if we substitute z = eit ([129],
VI.40). Fejér says that he conjectured the result for some time, presumably
on the basis of his kernel

1
2
(n + 1) + n cos t + (n− 1) cos 2t + · · ·+ cos nt =

1
2

(
sin(n + 1) t

2

sin t
2

)2

(10)

=
1
2
|1 + z + z2 + · · · zn|2,

but the proof was communicated to him orally by F. Riesz (J. Reine Angew.
Math., 146 (1916), 53–82; [40], No. 51, vol. I). Riesz in an article printed
immediately after Fejér’s (pp. 83–87; [156], I4), and in which he applies the
theorem, only says that the theorem was proved in Fejér’s article. It seems
that the two could not agree to write a joint paper on the subject. Curiously,
the proof employs the geometric theorem on which the Carathédory–Fejér
result of Section 2 is based.

The Fejér–Riesz theorem can be considered as a parametrization of the
set of positive trigonometric polynomials with real coefficients ak, bk: to each
τ(t) there correspond n+1 complex parameters (or 2n+2 real parameters if
we separate the real and imaginary parts of the γk). It has been extended to
entire functions of exponential type which are in a sense generalizations of
trigonometric polynomials (see [15], 7.5.1, p. 125, where a wrong reference
is given).

As a first application, consider the set of all positive trigonometric
polynomials with constant term a0 = c0 = 1. Since ck = 1

2π

∫ 2π
0 τ(t)e−ikt dt,

we have |ck| ≤ 1
2π

∫ 2π
0 τ(t) dt = c0 = 1 and so trivially τ(0) ≤ 2n + 1. The

parametrization τ(t) =
∣∣g(eit)

∣∣2 permits to find exactly the maximum of
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τ(0). Indeed, c0 =
∑n

k=0 |γk|2 and τ(0) = |γ0 + γ1 + · · ·+ γn|2. If we write
γk = αk + iβk, we have to determine the maximum of

( n∑

k=0

αk

)2

+
( n∑

k=0

βk

)2

under the constraint
∑n

k=0 α2
k+

∑n
k=0 β2

k = 1. The usual methods of calculus
yield that the maximum is achieved when

α0 = α1 = · · · = αn, β0 = β1 = · · · = βn.

In this case α2
0 + β2

0 = γ2
0 = 1

n+1 . Thus τ(0) ≤ n + 1 and τ(0) = n + 1 only
for 2

n+1 times the trigonometric polynomial (10). Considering τ(t + t0) we
obtain that τ(t) ≤ n+1 for t ∈ R if τ is a positive trigonometric polynomial
of order n having constant term 1.

The ideas of Fejér’s paper were taken up by Gábor Szegő in an article
(Math. Ann., 79 (1918), 323–339; [173], I, pp. 153–170) where orthonormal
systems of polynomials on the unit circle were first considered. They were to
play a central role in Szegő’s research as József Szabados tells us elsewhere
in this volume. For z = eiθ, 0 < r < 1, let

p(θ, r) =
1− r2

|z − r|2 =
1− r2

1− 2r cos θ + r2
.

Denote by τ(θ) a positive trigonometric polynomial of order n which satisfies

1
2π

∫ 2π

0
p(θ, r)τ(θ) dθ = 1.

Szegő proves that then p(θ, r)τ(θ) ≤ n + 1 + 1+r
1−r , and the upper bound is

achieved for

τ(θ) =
1 + r

n + 1− r(n− 1)

∣∣∣∣1 +
z − r

1 + r

zn − 1
z − 1

∣∣∣∣
2

when θ = 0. If r → 0+ we obtain the result of Fejér proved above. The
proof uses a parametrization

τ(t) =
∣∣γ0ϕ0(z) + · · ·+ γ0ϕn(z)

∣∣2
, z = eit,

where
(
ϕk(z)

)
is a sequence of polynomials orthonormal on |z| = 1 with

respect to the weight p(θ, r).
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Returning to Fejér’s article, let τ(t) be a trigonometric polynomial of
order n whose constant term is zero. Let −m be the minimum and M the
maximum of τ(t). Then

M − τ(t)
M

and
τ(t) + m

m

are positive trigonometric polynomials with constant term 1, and so by the
result proved above

M + m

M
≤ n + 1 and

M + m

m
≤ n + 1,

i.e. m ≤ nM and M ≤ nm. If now τ(t) is an arbitrary trigonometric
polynomial of order n, we call the maximum of τ(t) − a0 the “height” H
and the maximum of a0−τ(t) the “depth” h of τ(t), i.e. −h is the minimum
of τ(t)−a0. Observing that the constant term of τ(t)−a0 is zero, we obtain
a famous result of Fejér (which can also be proved in other ways):

The height of a trigonometric polynomial of order n is at most n times
its depth, and its depth is at most n times its height.

Ottó Szász continued Fejér’s investigations in four articles, the last one
written in collaboration with Jenő Egerváry (Sitzungsber. Bayer. Akad.-
Wiss. Math.-Phys. Kl. 1917, 317–320, ibid. 1927, 185–196, Math. Z., 1
(1918), 149–162, ibid., 27 (1928), 641–652; [172], pp. 656–683, 734–757).
Some of his results are discussed in the report written by Fejér (Mat. Fiz.
Lapok 37 (1930), 63–90; [40], No. 74, vol. II) when Szász was awarded the
Kőnig Gyula prize in 1930.

I reproduce some very elegant and elementary proofs of certain inequal-
ities concerning the coefficients of a positive trigonometric polynomial τ(t).
The equality

τ(t) = c0 +
n∑

k=1

(cke
ikt + c̄ke

−ikt) =
∣∣γ0 + γ1e

it + · · ·+ γneint
∣∣2

yields that ck =
∑n−k

r=0 γk+rγ̄r for k ≥ 0 (note: Szász denotes by ck our
2ck). Assume now that c0 = a0 =

∑n
r=0 |γr|2 = 1. Using the arithmetic

mean-geometric mean inequality we have

|ck| ≤
n−k∑

r=0

|γk+rγ̄r| ≤ 1
2

n−k∑

r=0

( |γk+r|2 + |γr|2
)

=
1
2
( |γ0|2 + · · ·+ |γn−k|2 + |γk|2 + · · ·+ |γn|2

)
.
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Since n − k < k if k > [n
2 ] (where [x] denotes the largest integer ≤ x),

we obtain that the coefficients of a positive trigonometric polynomial with
a0 = 1 satisfy the inequalities

|ak − ibk| ≤ 1 if k >
[n

2

]
,

|ak − ibk| ≤ 2 for 1 ≤ k ≤ n.

These inequalities were proved by Fejér for cosine polynomials, i.e., when
bk = 0 for all k.

Still under the assumption that a0 = c0 = 1 we have, using the inequality

(
x0 + x1 + · · ·+ xn

n + 1

)2

≤ x2
0 + x2

1 + · · ·x2
n

n + 1
,

that

n∑

k=0

|ck| ≤
n∑

s=0

|γs|2 +
n∑

k=1

n−k∑

s=0

|γk+sγ̄s|

=
1
2

+
1
2

( n∑

s=0

|γs|2 + 2
n∑

k=1

n−k∑

s=0

|γk+sγ̄s|
)

=
1
2

+
1
2

( n∑

s=0

|γs|
)2

≤ 1
2

+
n + 1

2

n∑

s=0

|γs|2 =
n + 2

2

and so
n∑

k=0

|ak − ibk| ≤ n + 1.

In his report Fejér lists some of the more profound results of Szász and
Egerváry. In particular he mentions the inequalities

|ak − ibk| ≤ 2 cos
π

[n
k ] + 2

min (h,H) (1 ≤ k ≤ n)

valid for any trigonometric polynomial with real coefficients. If τ(t) ≥ 0
and a0 = 1, then h ≤ 1; if furthermore k > [n

2 ] then [n
k ] = 1 and since

cos π
3 = 1

2 we get again |ak − ibk| ≤ 1.
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Before I can tell you to what use Frigyes Riesz put the Fejér–Riesz
theorem, I must go back to 1911 and speak about a problem of Carathéodory
(Rend. Circ. Mat. Palermo 32 (1911), 193–217; [21], Bd. III, No. LIII, pp.
78–110): Find a condition on the 2n real numbers

(11) a1, b1, a2, b2, . . . , an, bn

so that there should exist a power series

1
2

+
∞∑

k=1

(ak + ibk)zk

which has the numbers (11) as initial coefficients, converges for r = |z| < 1,
and whose real part

u(r, θ) =
1
2

+
∞∑

k=1

rk(ak cos kθ − bk sin kθ)

is a positive harmonic function (z = reiθ). Carathéodory proved that for
this to happen the following condition is necessary and sufficient:

(C) The point in R2n, whose coordinates are the numbers (11), lies in
the closed convex hull K2n of the curve with parametric representation

x1 = cos θ, y1 = − sin θ, x2 = cos 2θ, y2 = − sin 2θ, . . . ,

xn = cosnθ, yn = − sinnθ.

Frigyes Riesz in an article on integral equations (Ann. Sci. École Norm.
Sup. Paris 28 (1911), 33–62; [156], F3, vol. II, pp. 788–827) proved that the
following condition is also necessary and sufficient:

(R) For all (ξ1, η1, . . . , ξn, ηn) ∈ R2n the value of a1ξ1+b1η1+· · ·+anξn+
bnηn is between the minimum and the maximum value of the trigonometric
polynomial

τ(t) =
n∑

j=1

(ξj cos jt + ηj sin jt).

To state the condition due to Otto Toeplitz let us write γ0 = 1, γk =
ak + ibk and γ−k = γ̄k for 1 ≤ k ≤ n. The following is necessary and
sufficient for the existence in Carathéodory’s problem:



312 J. Horváth

(T) The “Toeplitz form”

H(ζ0, ζ1, . . . , ζn) =
n∑

j=0

n∑

k=0

γj−kζj ζ̄k

is positive semi-definite.
In his 1916 paper quoted at the beginning of this section F. Riesz

observes that the three conditions are obviously equivalent since they are
all necessary and sufficient for the same fact, nevertheless he proves their
equivalence in a direct way. This seems to be the first time that Toeplitz
forms make an appearance in Hungarian mathematics. They were to have a
central importance in the research of Gábor Szegő as I will indicate briefly
below.

Riesz first remarks (as he already did in his 1911 article) that the
equivalence of (C) and (R) is simply a restatement of the fact that the closed
convex hull of a set is the intersection of the closed half-spaces containing
it.

To prove (R) ⇔ (T) he starts by saying that (R) is clearly equivalent
to:

(R′) Whenever the real numbers ξ0, ξ1, η1, . . . , ξn, ηn are such that the
trigonometric polynomial

(12) ξ0 +
n∑

j=1

(ξj cos jt + ηj sin jt)

is positive, it follows that the expression

(13) ξ0 + a1ξ1 + b1η1 + · · ·+ anξn + bnηn

is positive.
Now assume that (12) is positive. Then by the Fejér–Riesz theorem

there exists a polynomial

g(z) = ζ0 + ζ1z + · · ·+ ζnzn

such that

(14) ξ0 +
n∑

j=1

(ξj cos jt + ηj sin jt) =
∣∣g(z)

∣∣2 =
n∑

j=0

n∑

k=0

ζj ζ̄ke
i(j−k)t.
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Substituting aj for cos jt and bj for sin jt, i.e. γj for eijt and γ̄j = γ−j

for e−ijt (j ≥ 0), the left-hand side becomes (13) and the right hand
yields H(ζ0, ζ1, . . . , ζn). Let us e.g., assume that (R′) holds. For any
ζ0, ζ1, . . . , ζn (14) yields a positive trigonometric polynomial. By assumption
(13) is positive. But after substitution (13) equals H(ζ0, ζ1, . . . , ζn) which
is therefore ≥ 0. The proof of (T) ⇒ (R′) is similar.

In a joint article of Fejér and Carathéodory (Rend. Circ. Mat. Palermo
32 (1911), 218–239; [40], No. 39, vol. I, pp. 693–7l5; [21], Bd. III, No. LIV,
pp. 111–138), printed immediately following the above quoted paper of
Carathéodory, the authors use the results of that paper to answer questions
of the following type:

(a) Let the real numbers

(15) a0, a1, b1, a2, b2, . . . , an, bn

and a number R > 0 be given. Consider the set of all harmonic functions
u(r, θ) given by the series

(16) u(r, θ) = a0 +
∞∑

k=1

rk(ak cos kθ + bk sin kθ)

with the given initial coefficients which converge for r < R. Find the
maximum of the least upper bounds of the functions belonging to the set.

(b) Let the numbers (15) be given, assume that among those with
subscripts 1 ≤ j ≤ n at least one is different from zero, and let m∗ < a0.
Find the largest value of R > 0 such that there exists a series (16) with the
given initial coefficients which converges for r < R and whose greatest lower
bound is ≥ m∗.

(c) Let c0, c1, . . . , cn be given complex numbers, c0 6= 0, 1 and not all cj

with 1 ≤ j ≤ n equal to zero. Find the largest number R > 0 such that a
power series

∑∞
j=0 cjz

j with given initial coefficients converges for |z| < R
and represents a function which does not assume the values 0 and 1.

The last question is related to Landau’s sharpening of the Picard theo-
rem: Given c0, c1 6= 0, there exists R = R(c0, c1) > 0 such that every power
series

∑∞
0 ckz

k which converges for |z| < R assumes either the value 0 or
the value 1 in |z| < R ([74], III. 7, §6, p. 448).
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To answer e.g., the question (a), Carathéodory and Fejér introduce the
Toeplitz matrices (γk = ak + ibk, γ−k = γ̄k)




γ0 γ1 . . . γk

γ−1 γ0 . . . γk−1

· · · · · ·
γ−k γ−k+1 . . . γ0




and their determinants Dk(γ0, γ1, . . . , γk). It was Toeplitz who pointed
out to them that the equivalent conditions (C) and (R) are also equiva-
lent to (T), i.e. to the inequalities Dk(1, γ1, . . . , γk) ≥ 0 for 1 ≤ k ≤ n.
More precisely, (a1, b1, . . . , an, bn) ∈ R2n lies in the interior of K2n if
Dk(1, γ1, . . . , γk) > 0 for 1 ≤ k ≤ n, and it lies on the boundary of K2n

if Dk(1, γ1, . . . , γk) ≥ 0 for 1 ≤ k ≤ n − 1 and Dn(1, γ1, . . . , γn) = 0 With
the help of this formulation a geometric argument gives the

Theorem. Assume that the series (16) converges in r < 1 and has as initial
coefficients the given numbers (15). The equation

Dn

(
2(a0 − λ), γ1, . . . , γn

)
= 0

in the unknown λ has only real solutions. Let λn∗ be the smallest among
the solutions and λ∗n the largest one. Then infr<1 u(r, θ) ≤ λn∗ and
supr<1 u(r, θ) ≥ λ∗n. There exists a function in the set of functions (16)
considered whose greatest lower bound equals λn∗ and one whose least up-
per bound equals λ∗n.

Gábor Szegő wrote two articles in Hungarian on Toeplitz and Hankel
forms in 1917–1918 (Math. Természettud. Érteśıtő 35 (1917), 185–122, 36
(1918), 497–538; [173], I, pp. 69–108, 113–148). The second of these articles
appeared in English in the Translations of the American Mathematical
Society ((2) 108 (1977), 1–36), and it is this translation which is reproduced
in the Collected Papers. Most of the results of the two articles are treated
again in his great 1920–21 paper published in two parts (Math. Z., 6 (1920),
167–202, 9 (1921), 167–190; [173], I, pp. 237–272, 279–302). He returned to
the subject in 1952 (Comm. Sem. Math. Univ. Lund, Tome Suppl., Festskrift
Marcel Riesz (1952), 228–238; [173], III, pp. 270–280), in a joint paper with
Mark Kac and W. L. Murdock of 1953 (J. Rational Mech. Anal., 2 (1953),
767–800, 3, 802–803; [173], III, pp. 333–367), and in his 1958 book with Ulf
Grenander [59].
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Let f be a positive integrable function in [0, 2π] and assume that its
arithmetic mean

A(f) =
1
2π

∫ 2π

0
f(t) dt

satisfies A(f) > 0. Denote by µn(f) the greatest lower bound of all expres-
sions

(17)
1
2π

∫ 2π

0
f(t)

∣∣Pn(eit)
∣∣2

dt,

where Pn(z) varies in the set of all polynomials of the form

Pn(z) = 1 + ζ1z + ζ2z
2 + · · ·+ ζnzn.

If we introduce the Fourier coefficients

cj =
1
2π

∫ 2π

0
f(t)eijt dt,

the expression (17) becomes the Toeplitz form

(18)
n∑

j=0

n∑

k=0

cj−kζj ζ̄k,

where ζ0 = 1. As we have done above, we introduce the Toeplitz matrices

Mn(f) =




c0 c1 · · · cn

c−1 c0 · · · cn−1

· · · · · ·
c−n c−n+1 · · · c0




and their determinants Dn(f) = detMn(f). By assumption D0(f) = c0 =
A(f) > 0, and Dn(f) > 0 for n ≥ 1 since (18) is positive definite by its
definition. A well-known theorem on Hermitian forms implies that

µn(f) = inf
ζ0=1

n∑

j=0

n∑

k=0

cj−kζj ζ̄k =
Dn(f)

Dn−1(f)
.

Since every polynomial Pn(z) is a particular polynomial Pn−1(z), the se-
quence (µn(f)) of positive numbers is decreasing and therefore

µ(f) = lim
n→∞µn(f)
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exists.
Let the real numbers λ

(n)
0 , λ

(n)
1 , . . . , λ

(n)
n be the eigenvalues of the matrix

Mn(f). Then Dn(f) = λ
(n)
0 λ

(n)
1 . . . λ

(n)
n and Szegő proves that

µ(f) = lim
n→∞

Dn(f)
Dn−1(f)

= lim
n→∞

n+1
√

Dn(f)

is equal to the geometric mean of f , i.e.

lim
n→∞

n+1

√
λ

(n)
0 λ

(n)
1 . . . λ

(n)
n = e

1
2π

R 2π
0 log f(t) dt

if log f is integrable. From this special case he deduces a general formula
which shows that the eigenvalues behave like values of f at equidistant
points, namely if F is, say, continuous or has only finitely many jump
discontinuities, then

lim
n→∞

F(λ(n)
0 ) + F(λ(n)

1 ) + · · ·+ F(λ(n)
n )

n + 1
=

1
2π

∫ 2π

0
F

(
f(t)

)
dt.

Later Szegő generalized his result to the case when in (17) the exponent
2 is replaced by p > 0. Andrei N. Kolmogorov and Mark G. Krein replaced
f(t) dt by a Stieltjes measure ([2], Appendix B).

The second part of the 1920–21 article is devoted to orthogonal polyno-
mials, so I again refer to the corresponding Chapter.

5. The Fejér–Riesz inequality

The Fejér–Riesz inequality appeared in the only article the two authors
published jointly (Math. Z., 11 (1921), 305–314; [40], No. 59, vol. II, pp.
111–120; [156], D5, vol. I, pp. 625–634).

The authors first observe that if f is a regular analytic function in the
closed disk |z| ≤ 1, then it follows from Cauchy’s integral theorem that the
integral of

∣∣f(z)
∣∣2 along |z| = 1 is at least twice as large as the integral

along a diameter, i.e.,

(19)
∫ 1

−1

∣∣f(x)
∣∣2

dx ≤ 1
2

∫ 2π

0

∣∣f(eiθ)
∣∣2

dθ.
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Next they state that the inequality also holds for |f |p with any p ≥ 1
instead of just p = 2, and prove it for p = 1. If f has no zeros in |z| ≤ 1,
the inequality follows from (19) applied to

√
f(z). If f(z) does have zeros,

they asssume first that they lie all in the interior of the disk. Then there are
only finitely many, say a1, . . . , an, and f(z) can be divided by the “Blaschke
product”

Q(z) =
z − a1

1− ā1z

z − a2

1− ā2z
· · · z − an

1− ānz

mentioned in Section 3. Thus f(z) = Q(z)g(z), where
∣∣Q(z)

∣∣ = 1 for
|z| = 1, hence

∣∣Q(z)
∣∣ ≤ 1 in the disk, and g(z) 6= 0 for |z| ≤ 1. Finally they

take care of the general case by considering circles |z| = r < 1 on which
f(z) has no zeros and letting r → 1.

A first application is a simple proof of Hilbert’s inequality

∞∑

j=1

∞∑

k=1

ajak

j + k
≤ π

∞∑

j=1

|aj |2.

Applying the second inequality to f ′(z) one obtains

∫ 1

−1

∣∣f ′(z)
∣∣ dz ≤ 1

2

∫ 2π

0

∣∣f ′(eiθ)
∣∣ dθ

which has the following geometric interpretation: let f(z) map |z| < 1
conformally onto a domain, and |z| = 1 onto its boundary which we assume
to be a rectifiable Jordan curve Γ. Then the image of any diameter of |z| ≤ 1
is at most half as long as Γ. Mapping the disk onto a very elongated ellipse
shows that the factor 1

2 is the best possible.

R. M. Gabriel proved a similar result: let L be a closed convex curve
inside |z| ≤ 1. Then

∫

L

∣∣f(z)
∣∣ |dz| ≤ 2

∫ 2π

0

∣∣f(eiθ)
∣∣ dθ

and the constant 2 is the best possible. This does not contain the Fejér–
Riesz inequality since a diameter counted twice in opposite directions can be
considered a closed convex curve, and then the best factor is one. F. Carlson
gave a common generalization to the two theorems: Let L be a rectifiable
curve in |z| ≤ 1 and denote by V (z) the least upper bound of the sum of
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angles under which the line elements of L can be seen from the point z.
Then ∫

L

∣∣f(z)
∣∣ |dz| ≤ 1

π

∫ 2π

0

∣∣f(eiθ)
∣∣V (eiθ) dθ.

In particular, if V (z) ≤ M for all z with |z| = 1, then the right-hand side is
≤ M

π

∫ 2π
0

∣∣f(eiθ)
∣∣ dθ. So if L is a diameter, then M = π

2 , and if L is a closed
convex curve in |z| ≤ 1, then M ≤ 2π.

Marcel Riesz in a note written in honor of his brother and Fejér on the
occasion of their 70th birthday (Acta Sci. Math. Szeged 12A (1950), 53–56;
[158], No. 50, pp. 794–797) proves Carlson’s theorem using a double layer
potential.

6. Boundary values, Hp spaces

The only article the Riesz brothers published jointly (4ème Congrès des
Math. Scandinaves, Stockholm 1916 (1920), pp. 27–44; [156], D1, vol. I
pp. 537–554; [158], No. 22, pp. 195–212) was inspired by the thesis of
Pierre Fatou (Acta Math., 30 (1906), 335–400), the same memoir which
gave Frigyes Riesz the “idea and the courage” to use the Lebesgue integral
(Annales Inst. Fourier (Grenoble) 1 (1949), p. 29; [156], B16, p. 317). One
of Fatou’s main results was the following ([104], §5, pp. 35–42):

Let w be a function that is bounded and holomorphic in the unit disk
D =

{
z ∈ C : |z| < 1

}
. Then for almost every point eiθ of the circumfer-

ence T =
{

z ∈ C : |z| = 1
}

the limit f(eiθ) = limr→1−w(reiθ) exists, i.e.,
those points eiθ in which the limit does not exist form a set of Lebesgue
measure zero on the circumference.

Fatou also proved that if w is not identically zero, then on any arc of
T the set of those points eiθ in which f(eiθ) 6= 0 has positive measure.
He conjectured that the measure of the set on which the boundary value
vanishes is zero but added that to prove this seems to be very difficult.
Frigyes and Marcel Riesz say that Fatou underestimated the scope of his
methods and present a proof of the conjecture “which is closely related to
certain arguments of his work and is based directly on his results”. Assume
that f(eiθ) = 0 on a set M ⊂ T with measure m > 0. They construct a
bounded holomorphic function g(z) in D with g(0) = 1 such that

∣∣g(z)
∣∣

has boundary value eA/m on M and eA/(m−2π) on the complementary set
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M c = T\M , where A is a yet unspecified positive number. Then by
Cauchy’s theorem and by hypothesis

w(0) =
1

2πi

∫

T

f(z)g(z)
z

dz =
1

2πi

∫

Mc

f(z)g(z)
z

dz

and ∣∣∣∣
∫

Mc

f(z)g(z)
z

dz

∣∣∣∣ ≤ e
A

m−2π

∫ 2π

0

∣∣f(eiθ)
∣∣ dθ.

Let A → ∞. Since m − 2π < 0 we get that w(0) = 0, i.e. w(z)/z is
holomorphic and bounded in D. Repeating the argument, we see that
z−nw(z) = 0 at z = 0 for all n ∈ N, hence w is identically zero.

Next, the Riesz brothers consider a holomorphic function F which maps
the open unit disk D ⊂ C onto a bounded domain Ω of a Riemann surface
whose boundary Γ is a rectifiable curve. The mapping can be extended to
yield a function T → Γ which is of bounded variation because Γ is rectifiable.
Let M be a closed subset of measure zero of T. They construct a positive
integrable function ϕ(θ) on T which has the value +∞ on M and finite
values on M c. If u is a positive harmonic function in D with boundary
values ϕ, and v is the harmonic function conjugate to u, set

g(z) =
u + iv

1 + u + iv
.

Then
∣∣g(z)

∣∣ < 1 in D, the boundary value of
∣∣g(z)

∣∣ is < 1 on M c and = 1
on M , so

(20) lim
n→∞

∫

|z|=1

(
g(z)

)n
dF (z) =

∫

M
dF (z).

But ∫

|z|=1
zk dF (z) = −k

∫

|z|=1
zk−1F (z) dz = 0

for k > 0 by Cauchy’s theorem, and for k = 0 because of the factor k,
so the integral on the left-hand side of (20) is zero. The integral on the
right-hand side of (20) is the measure of F (M), therefore the image under
F of any subset of T of measure zero is a subset of Γ of measure zero. By
a theorem credited to Stefan Banach ([71], (18.25), p. 288) a function of
bounded variation is absolutely continuous if and only if it maps sets of
measure zero into sets of measure zero, therefore F is absolutely continuous
on T.
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The preceding proof shows the validity of the following result which is
how the Theorem of F. and M. Riesz is most often quoted:

If F is a function of bounded variation on T and
∫ 2π

0
einθ dF (eiθ) = 0

for n = 1, 2, 3, . . ., then F is absolutely continuous.
Since functions of bounded variation correspond to signed measures, the

theorem can also be stated in terms of measures. The work of the brothers
Riesz was presented at the fourth Congress of Scandinavian Mathematicians
in 1916 right in the middle of World War I. The Proceedings of the Congress
were printed as late as 1920 and by error only in 50 copies. So the article of
F. and M. Riesz, of which Paul Koosis says that every analyst should read
it ([97], p. 40), was very difficult to find until a reprinted edition came out.

The Theorem of F. and M. Riesz spawned an enormous amount of re-
search. It was generalized to several variables which was not straightforward
because the obvious analogues are false. Abstract forms of the theorem be-
came fundamental in the theory of function algebras and their generaliza-
tions. The output has not ceased and every year we see a number of articles
about yet another generalization of the F. and M. Riesz Theorem.

Let me return to the article of Carathéodory and Fejér mentioned in
Section 4. Let the n + 1 complex numbers

(21) c0, c1, . . . , cn

be given. As above, consider the set F(c) of all functions f(z) that are
holomorphic in the closed unit disk D∪T and whose power series expansion∑∞

k=0 ckz
k starts with the coefficients (21). They prove that there exists

a unique function f∗(z) in F(c) for which M [f ] = max|z|≤1

∣∣f(z)
∣∣ is a

minimum. This function f∗(z) is determined by the following properties: it
is meromorphic with at most n poles in the complex plane, has at most n
zeros in D, and on T its absolute value equals the constant M [f∗].

H. T. Gronwall gave an elementary proof of this theorem which uses
neither the geometry of convex bodies nor Toeplitz forms (Ann. of Math.
(2) 16 (1914/15), 77–81).

Very soon after the lecture in Stockholm, Frigyes Riesz wrote a paper
published in 1917 in Hungarian (Math. Természettud. Érteśıtő 35 (1917),
605–632; [156], D2, pp. 555–582) but only in 1919 in German (Acta Math.,
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42 (1920), 145–171; [156], D3, pp. 583–609). In it he also considers the
above class F(c) but asks for the function that minimizes

I[f ] =
∫ 2π

0

∣∣f(eiθ)
∣∣ dθ.

If F (z) is a primitive of f(z), then the expression we want to minimize is

T [f ] =
∫ 2π

0

∣∣F ′(eiθ)
∣∣ dθ,

i.e. the arc length of the image of T under the map F (z). He proves the
following

Theorem. There exists a unique function f∗(z) in the set F(c) for which
I[f ] is minimal. This minimizing function f∗(z) is characterized by the
following two properties:

1) it is a polynomial of degree at most 2n,

2) its zeros can be organized in pairs such that either the two elements
of the pair are equal and they lie outside D, or the two are reflections of
each other with respect to T.

To prove the existence of f∗(z) the obvious idea is to take a sequence
fk(z) in F(c) for which I[fk] converges to the greatest lower bound I∗

of I[f ]. However, in this way one cannot prove that the limit function
is regular on the closed unit disk. Therefore Riesz considers a sequence
Fk(z) of primitives such that T [Fk] converges to T ∗ = inf T [F ]. He proves
directly that the limit F ∗(z) is absolutely continuous and its derivative is
the required function f∗(z). He remarks that the properties of F ∗(z) he
just proved also follow from investigations he conducted with his brother
Marcel Riesz (in the Hungarian version he adds: “a Privatdozent at the
University of Stockholm”) but those investigations reach much more deeply
into the theory of Lebesgue integration then what is necessary for the special
problem considered here.

Though Frigyes Riesz says that Gronwall’s treatment of the Carathéo-
dory–Fejér result is so elementary that it could hardly be simplified, at the
end of the article he shows how their theorem follows from his.

The next step concerning the Fatou–F. Riesz–M. Riesz circle of ideas is
quite spectacular and its consequences are felt to the present day. It was
published in Hungarian as an exchange of letters between Gábor Szegő and
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Frigyes Riesz (Math. Természettud. Érteśıtő 38 (1921), 113–127; [156], D4,
pp. 610–624; [173], 21–7, I, pp. 421–435), followed by two papers in German,
one by each author (Math. Z., 18 (1923), 117–124; [156], D7, pp. 645–
653; Math. Ann., 84 (1921), 232–244; [173], 21–6, I, pp. 404–416). Szegő
informed Riesz that using his result on Toeplitz forms and the geometric
mean (see Section 4) he proved that if w is holomorphic in D, not identically
zero, and ∫ 2π

0

∣∣w(reiθ)
∣∣2

dθ

is bounded as r → 1−, then f(eiθ) = limr→1−w(eiθ), which exists for almost
every θ, is such that log

∣∣f(eiθ)
∣∣ is integrable in [0, 2π]. Thus in particular

f(eiθ) cannot be zero on a set of positive measure.
In his answer Riesz first gives a proof of Szegő’s result using only the

Jensen formula and no Toeplitz forms. Then he quotes a result of G. H.
Hardy according to which if w is holomorphic in D and p > 0, then

Mp[r; w] =
∫ 2π

0

∣∣w(reiθ)
∣∣p

dθ

is an increasing function of r in [0, 1), so it is either bounded or tends to
+∞ as r → 1−. Hardy also proved that logMp[r;w] is a convex function of
log r, i.e., shares with M∞[r; w] = maxθ

∣∣w(reiθ)
∣∣ the property expressed

by the Hadamard three circles theorem ([104], Kap. 6, pp. 88–97). Riesz
introduces the class Hp(D) of holomorphic functions for which Mp[r; w] is
bounded, and proves that every w ∈ Hp(D) has a product decomposition
w(z) = g(z)h(z), where g(z) also belongs to Hp(D) and is nowhere zero, and
h(z) is the already mentioned Blaschke product which satisfies

∣∣h(z)
∣∣ = 1

for almost every |z| = 1 (if w has infinitely many zeros in D, then h(z) is
a convergent infinite product). Since g(z)p/2 belongs to H2(D), it follows
that if w belongs to Hp(D) for some p > 0 and is not identically zero,
then its boundary values f(eiθ) exist for almost every θ and log

∣∣f(eiθ)
∣∣ is

integrable. In particular, f(eiθ) can vanish at most on a set of measure zero.
The boundary values of functions w ∈ Hp(D) form a function space

Hp(T) which for p > 1 is essentially Lp(T) but for p ≤ 1 has many
important additional properties. Their generalizations to several variables
have played a central role in harmonic analysis in the last fifty years (see
[166], Chaps. III and IV).

Frederick Riesz was not lucky with the names of spaces. He discovered
the Lp spaces and denoted them so in honor of Henri Lebesgue whose
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integral is essential for their definition; now everybody calls them Lebesgue
spaces. In his great 1918 Acta Mathematica article he introduced complete
normed spaces; the accepted terminology for them is now “Banach spaces.”
Then he introduced the spaces he called Hp in honor of G. H. Hardy who
proved the theorem quoted above; now they are called Hardy spaces (though
Ronald Coifman and Guido Weiss say: “. . . it could be argued fairly that the
name ‘Riesz’ should be attached to these spaces”, Bull. Amer. Math. Soc.,
83 (1977), p. 570). On the other hand Bourbaki gave the name “espaces de
Riesz” to lattice-ordered vector spaces but Riesz says: “. . . quelques auteurs
français . . . m’ont honoré en donnant mon nom à quelques notions (mais)
je n’ai pas réussi à pénétrer suffisamment dans le langage et l’écriture créés
par la société anonyme Bourbaki pour les comprendre entièrement” (Ann.
Inst. Fourier (Grenoble), 1 (1949), p. 40; [156], B16, p. 338).

7. Kakeya’s theorem, power series with monotone
coefficients

The simplest result concerning monotone coefficients is the theorem of En-
eström–Kakeya ([104], §2, p. 26; [129], II. 22):

If a0 ≥ a1 ≥ a2 ≥ · · · ≥ an > 0, then no solution of

(22) P (z) = a0 + a1z + a2z
2 + · · ·+ anzn = 0

lies in the open disk D =
{

z ∈ C : |z| < 1
}

.

To prove it, one considers the expression

(1− z)P (z) = a0− (a0− a1)z− (a1− a2)z2− · · · − (an−1− an)zn− anzn+1.

From here one concludes, as remarked by Simon Szidon (Sidon) (Acta Sci.
Math. Szeged 9 (1938–1940), 244–246), as follows: introduce the positive
numbers pk = ak − ak+1 (0 ≤ k ≤ n − 1), pn = an. Setting z = 1 we see
that a0 = p0 + p1 + · · ·+ pn, so (22) is equivalent to

p0z + p1z
2 + · · ·+ pnzn+1

p0 + p1 + · · ·+ pn
= 1.

The left hand side lies in the convex hull of the points zk (1 ≤ k ≤ n + 1)
and 1 does not lie in that convex hull if z, and therefore all zk, lie in D.
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István Vincze (Mat. Lapok 10 (1959), 127–132) extended the Eneström–
Kakeya theorem to complex coefficients as follows: Let the complex numbers
ak = αke

iθ + βke
iϕ satisfy α0 ≥ α1 ≥ · · · ≥ αn ≥ 0, β0 ≥ β1 ≥ · · · ≥ βn ≥ 0

and |θ−ϕ| < π. Then no solution of (22) lies in the disk |z| < |a0|/(α0+β0).
If β0 = 0, θ = 0 we have of course |a0|/α0 = 1. If θ = 0, ϕ = π

2 , so that
αk and βk are the real and imaginary part of ak, then

|a0|
α0 + β0

≥ 1√
2
,

so that (22) has no solution in the disk |z| < 1/
√

2.

Considering the expression znP (1
z ) one can also state the Eneström–

Kakeya theorem as follows: If 0 < a0 ≤ a1 ≤ a2 ≤ · · · ≤ an, then all
the solutions of (22) satisfy |z| ≤ 1. If the inequalities between the ak are
strict, then the solutions lie in |z| < 1. Egerváry (Acta Sci. Math. Szeged 5
(1931), 78–82) proved the following generalization of the Eneström–Kakeya
theorem: Let ak > 0 for 0 < k < n, let m be an integer satisfying 0 ≤ m ≤ n,
and assume that there exist numbers R ≥ r > 0 such that

(23) Rrak+1 − (R + r)ak + ak−1 > 0

for k = 0, . . . , m − 1,m + 1, . . . , n (a−1 = an+1 = 0). Then m solutions
of (22) lie in the open disk |z| < r and n −m solutions lie in the domain
|z| > R. If for some values of k the inequality (23) holds with ≥ 0, then the
solutions can also lie on the boundaries of the two regions.

If a0 > 0 and rak+1 > ak for 0 ≤ k ≤ n− 1 and some r > 0 then (23) is
satisfied for a sufficiently large R > r and for 0 ≤ k ≤ n− 1, so all solutions
of (22) lie in the disk |z| < r; for r = 1 this is again the Eneström–Kakeya
theorem.

Denote by ∆1ak = ak − ak+1 the first differences and by

∆2ak = ak − 2ak+1 + ak+2 = ∆1ak −∆1ak+1

the second differences of the sequence a0, a1, . . . , an. For R = r = 1 the
inequality (23) with ≥ can be written ∆2ak ≥ 0 and also

ak+1 ≤ ak + ak+2

2
.

The validity of the last inequality for 0 ≤ k ≤ n− 1 expresses the geometric
fact that the graph in the rectangular coordinate system, given by the poly-
gon whose sides are the segments joining a point (k, ak) with (k + 1, ak+1),
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is convex. We then say simply thet the sequence a0, a1, . . . , an, an+1 = 0 is
convex.

Fejér (Jahresber. Deutsch. Math-Verein., 38 (1929), 231–238; [40], No.
70, vol. II, pp. 256–263) found a trigonometric analogue of the Eneström–
Kakeya theorem. He considers a cosine polynomial

τ(t) =
a0

2
+

n∑

k=1

ak cos kt

(an 6= 0) and with the help of the formula

cos t cos kt =
1
2
{

cos (k − 1)t + cos (k + 1)t
}

obtains the identity

(1− cos t)τ(t) =
1
2
∆1a0 − 1

2

n∑

k=1

∆2ak−1 cos kt− 1
2
an cos (n + 1)t.

If we assume that the sequence a0, a1, . . . , an, an+1 = 0, an+2 = 0 is convex,
then it follows from this identity that τ(t) ≥ 0 for all t. It also follows that
a(0) > a1 > · · · > an > 0 and that the cosine polynomal with a convex
sequence of coefficients for which the first n coefficients are the smallest
possible is a multiple of Fejér’s signature polynomial (10), i.e.,

an

{
1
2
(n + 1) + n cos t + (n− 1) cos 2t + · · ·+ cosnt

}
.

Lipka (Acta Sci. Math. Szeged 9 (1938–1940), 69–77) observes first
the following immediate consequence of Fejér’s result: If the sequence
2a0, a1, . . . , an > 0, an+1 = 0 is convex, then equation (22) has no solu-
tion in |z| < 1. The convexity condition implies that 2a0 ≥ a1, while in
the Eneström–Kakeya theorem a0 ≥ a1 is required. Lipka proves that if
2a0 < a1 but a1, a2, . . . , an, an+1 remains convex, then P (z) has exactly one
zero in |z| < 1. This follows from:

If each coefficient a1, a3, . . . , an and at least one of a0, a2 is > 0, and the
sequence 2a1, (a0 + a2), a3, . . . , an, an+1 = 0 is convex in such a way that no
three vertices (k, ak) are collinear, then P (z) = 0 has exactly one solution
in |z| < 1.
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Szegő (Trans. Amer. Math. Soc., 39 (1936), 1–17; [173], II, pp. 593–
609) has some results of Eneström–Kakeya type concerning trigonometric
polynomials. Consider for instance a cosine polinomial

τ(t) = a0 cosnt + a1 cos (n + 1)t + · · ·+ an−1 cos t + an.

(i) If a0 > a1 ≥ · · · ≥ an ≥ 0, then τ(t) has only simple zeros in
−π < t < 0. The positive zeros t1, t2, . . . , tn satisfy the inequalities

2ν − 1
2n + 1

π < tν <
2ν + 1
2n + 1

π, 1 ≤ ν ≤ n.

(ii) If

2a0 − a1 > a1 − a2 ≥ a2 − a3 ≥ · · · ≥ an−1 − an ≥ an ≥ 0

(this condition is satisfied whenever a0, a1, . . . , an, 0, 0 is convex and not
identically zero), then τ(t) has again n positive roots and this time they
satisfy the stronger inequalities

2ν − 1
2n + 1

π < tν <
ν

n
π, 1 ≤ ν ≤ n.

Szegő’s results are the discrete analogues of theorems connected with a
question investigated by Pólya, which we will discuss a little later.

Consider now an infinite sequence

c0, c1, . . . , cn, . . . .

generalizing the notation introduced above, set ∆0cn = cn, i.e, let the
sequence of differences of order zero be the original sequence itself, and
for k ≥ 1 define inductively the sequence of differences of order k by
∆kcn = ∆k−1cn −∆k−1cn+1. Explicitly we have

∆kcn =
n∑

l=0

(−1)l

(
k

l

)
cn+l.

The sequence (cn) is said to be monotone of order k ∈ N if ∆lcn ≥ 0 for
0 ≤ l ≤ k and all n ∈ N.

Inspired probably by the Eneström–Kakeya theorem, Fejér considered
in a number of publications during the 1930’s (Z. Angew. Math. Mech., 13
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(1933), 80–88; [40], No. 81, vol. II, 479–492; Trans. Amer. Math. Soc., 39
(1936), 18–59; [40], No. 89, vol. II, 581–620; Proc. Cambridge Philos. Soci-
ety 31 (1935), 307–316; [40], No. 90, vol. II, 621–631; Math. Természettud.
Érteśıtő 54 (1936), 160–176; [40], No. 92, vol. II, 640–662; Acta Sci. Math.
Szeged 8 (1936) 89–115; [40], No. 94, vol. II, 679–701; Math. Természettud.
Érteśıtő 55 (1936), 1–27; [40], No. 95, vol. II, 702–725) also in collaboration
with Szegő (Prace Matematyczno Fizyczne 44 (1935), 15–25; [40], No. 91,
vol. II, 631–639; [173], No. 35–3, vol. II, 579–586) power series and trigono-
metric series whose coefficients form a sequence which are monotone of a
certain order. Let me list some of their results concerning power series

f(z) = c0 + c1z + c2z
2 + · · ·+ cnzn + · · ·

convergent in |z| < 1.
Fejér proved in the second paper quoted above that if the sequence

c1, c2, . . . is monotone of order four then f(z) is univalent (“schlicht”) in
|z| < 1. Szegő (Duke Math. J., 8 (1941), 559–564; [173], No. 41–2, vol. II,
797–802) improved this result by showing that the conclusion already holds
if c1, c2, . . . is only assumed to be monotone of order three.

The example 1+z +z2 + · · ·+zn +0+0+ · · · shows that the conclusion
does not hold if the sequence of coefficients is monotone of order one. Both
Szegő and Szidon (loc. cit.) gave examples of power series whose coefficients
form a sequence monotone of order two and such that the map effectuated
by the sum f(z) is not univalent.

Theorem A. If (cn) is monotone of order two, then one has the chain of
inequalities
(24)

∣∣f(z)
∣∣ ≥

∣∣f(z)− s0(z)
∣∣

|z| ≥
∣∣f(z)− s1(z)

∣∣
|z|2 ≥ · · · ≥

∣∣f(z)− sn(z)
∣∣

|z|n+1 ≥ · · ·

for |z| < 1, where sn(z) = c0 + c1z + · · ·+ cnzn is the nth partial sum of the
power series.

Observe that we have then |sn| ≤ 2
∣∣f(z)

∣∣ for all n. This is remarkable
because Fejér has earlier given an example of a power series for which∣∣f(z)

∣∣ < 1 in |z| < 1 but
∣∣sn(z)

∣∣ is unbounded (Sitzungsber. München
40 (1940), 1–17; [40], No. 32, Vol. I, 573–583; [104], §3, p. 29). Szegő
(Math. Z., 25 (1926), 172–187; [173], No. 26–3, I, 758–773) proved that
if cn > 0, cn+1/cn increases and

∑
cn diverges, then also the inequalities

|sn| ≤ 2
∣∣f(z)

∣∣ hold.
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I want to reproduce Szegö’s short and beautiful proof of Theorem A.
In the first place, it is sufficient to prove the first inequality in (24) since
the others then follow by iteration applied to the remainders

∑∞
ν=n+1 cνz

ν .
One begins by proving

∣∣f(z)
∣∣ ≥ ∣∣f(z) − c0

∣∣ , which for geometric reasons
is equivalent to <ef(z) ≥ 1

2c0 since c0 > 0 by hypothesis. An Abel
transformation (which is Fejér’s main tool in problems about coefficients
monotone of higher order) gives

f(z) =
∞∑

n=0

∆2cn.ϕn(z),

where ϕn(z) = (n + 1) + nz + · · ·+ zn. We know from (10) that <eϕn(z) ≥
n+1

2 . On the other hand

f(0) = c0 =
∞∑

n=0

∆2cn.ϕn(0) =
∞∑

n=0

∆2cn(n + 1),

hence

<ef(z) =
∞∑

n=0

∆2cn.<eϕn(z) ≥
∞∑

n=0

∆2cn
n + 1

2
=

c0

2
,

which proves our claim. Now
∣∣∣∣
f(z)− c0

f(z)

∣∣∣∣ ≤ 1,

f(0) 6= 0 and f(z)− c0 vanishes at z = 0, so by the Schwarz lemma
∣∣∣∣
f(z)− c0

f(z)

∣∣∣∣ ≤ |z|,

which is the inequality we wanted to prove.

Here are some more results:

If the sequence {ncn : n = 1, 2, 3, . . .} is monotone of order two, then
the image of |z| < 1 under f(z) is starlike with respect to f(0).

If the sequence {n2cn : n = 1, 2, 3, . . .} is monotone of order two, then
the image of |z| < 1 is convex.

If the sequence (cn) is monotone of order k + 1, then f (l)(x) ≥ 0 for
−1 < x < 1 and 0 ≤ l ≤ k.
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Fejér also proved results concerning series of the form
∑∞

n=0 cnz2n+1

whose coefficients are monotone of higher order.

Turán (Proc. Cambridge Philos. Soc., 34 (1938), 134–143; [184], No. 15)
continued the investigations of Fejér and Szegő. Fejér proved that is cn ≥ 0
and cn+1 − cn ≥ 0, then the inequalities

(25)
∣∣f(z)− sn(z)

∣∣ ≥ ∣∣f(z)− sn+1(z)
∣∣

hold in the disk |z| < 1
2 . Turán proves that if ck! = 1, ck!+1 = k! (k ≥ 1

and cn = 1
n! for n 6= k!, k! + 1, then the inequalities (25) do not hold in any

disk with center 0. On the other hand, there exists ρ > 0 depending only
on max n

√
|cn| such that the means

Sn(z) =
s0(z) + s1(z) + · · ·+ sn(z)

n + 1

satisfy
∣∣f(z)− Sn(z)

∣∣ ≥ ∣∣f(z)− Sn+1(z)
∣∣ for |z| < ρ, n = 1, 2, 3, . . . .

Consider the partial sums

gn(z) = g(0)
n (z) = 1 + z + z2 + · · ·+ zn

of the infinite geometric progression, and the iterated partial sums defined
inductively by

g(r)
n (z) = g

(r−1)
0 (z) + g

(r−1)
1 (z) + · · ·+ g(r−1)

n (z)

(r = 1, 2, . . .; n = 0, 1, 2, . . .). Fejér’s proofs are based in part on the fact
that the derivatives of order ≤ r of any g

(r)
n (x) are strictly positive for

−1 < x < 1, n ≥ r. Fejér observed that to prove this it is enough to
show that Drg

(r)
n (x) > 0 for −1 < x < 1, n ≥ r. Turán (Publ. Math.

Debrecen 1 (1949), 95–97; [184], No. 42) strengthens this by showing that
all the zeros of Drg

(r)
n (z) lie on the unit cercle |z| = 1; for r = 1 this was

proved by Egerváry (Math. Z., 42 (1937), 221–230). Turán also proves that
Drg

(r)
n (x) > 0 for all x ∈ R if n is even, and that Drg

(r)
n (x) has a simple

zero at x = −1 and is > 0 for all real x 6= −1 if n is odd.

Writing

∣∣f(reiθ)
∣∣2 = f(reiθ)f(re−iθ) =

∞∑

n=0

Pn(cos θ)rn
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we have

Pn(cos θ) =
n∑

l=0

clcn−le
i(2n−l)θ.

The expressions Pn are polynomials of degree n in the variable x = cos θ
which Fejér calls the generalized Legendre polynomials associated with f(z)
or with the sequence (cn) (Math. Z., 24 (1925), 285–298; [40], No. 64, vol.
II, 161–175). If f(z) = (1− z)−ρ, then the Pn(x) are the ultraspherical (or
Gegenbauer) polynomials of index ρ ∈ R. The special case ρ = 1

2 yields the
classical Legendre polynomials. For ρ = 1 we get the Čebishov polynomials

Un(x) =
sin(n + 1)θ

sin θ
,

and interpreting the case ρ = 0 carefully one gets the Čebishov polynomials
Tn(x) = cosnθ.

Fejér proves that if the terms of the sequence (cn) are positive and
decrease with n, then the the generalized Legendre polynomials satisfy the
inequalities

∣∣Pn(x)
∣∣ ≤ 4

sin θ
c[n/2],

where [x] is the integral part of x. In the case of the classical Legendre
polynomials this becomes

(26)
∣∣Pn(cos θ)

∣∣ ≤ C√
n sin θ

.

For the classical Legendre polynomials Stieltjes gave a proof of the inequality

∣∣Pn(cos θ)− Pn+2(cos θ)
∣∣ ≤ C√

n
.

Fejér shows that Stieltjes’ proof also serves to obtain an analogous inequality
for his generalized Legendre polynomials.

In the case of the classical Legendre polynomials the inequality

∣∣Pn(cos θ)
∣∣ ≤ C√

n
√

sin θ
,

stronger than (26), also holds. Fejér gives a “short and elementary” proof of
this inequality. It was, however, Szegő who, with the help of his result giving
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∣∣sn(z)
∣∣ ≤ 2

∣∣f(z)
∣∣ quoted above, proved that under the same hypotheses on

(cn) the generalized Legendre polynomials satisfy
∣∣Pn(cos θ)

∣∣ ≤ 8c[n/2]

∣∣f(e2iθ)
∣∣

for 0 < θ < π, n ∈ N. He also showed that the asymptotic formula

Pn(cosnθ) = 2cn<ee−inθf(e2iθ) + o(cn)

holds uniformly in ε < θ < 2π − ε (ε > 0) whenever cn > 0, (cn) decreases,
lim(cn+1/cn) = 1 and cn = O(c2n).

Fejér ([40], vol. II, p. 699 and p. 721) proved that if the sequence of
coefficients (cn) is monotone of order two, then the arithmetic means of the
partial sums of the series

∑∞
n=0 Pn(cos θ), whose terms are the Legendre

polynomials, are all posititive.
There is a treatment of Fejér’s generalized Legendre polynomials in

Szegő’s book ([174], p. 134).

If in U(z) =
∫∞
0 f(t) cos zt dt we substitute

f(t) =
∞∑

n=1

(4π2n4e
9
2
t − 6πn2e

5
2
t)e−n2πe2t

,

then U(z) becomes the Riemann function ξ(z). It is known that the Rie-
mann hypothesis is equivalent to the fact that ξ(z) has only real zeros,
and this was the motivation for György Pólya to investigate which entire
functions defined by trigonometric integrals have only real zeros. He con-
secrated a number of articles to this problem, let me just refer to J. Reine
Angew. Math., 158(1927), 6–18 ([128], vol. II), where further references can
be found. Of course such entire functions arise also in other situations, e.g.,
in the case of Bessel functions.

In an early article (Math. Z., 2 (1918), 352–383; [128], vol. II, pp. 166–
197) Pólya considers a strictly positive increasing function f(t) defined in
0 ≤ t < 1 such that

∫ 1
0 f(t) dt exists. By the Eneström–Kakeya theorem the

polynomial

f(0) + f

(
1
n

)
z + · · ·+ f

(
n− 1

n

)
zn−1

has all its zeros in |z| ≤ 1, and since 1
n

∑n−1
ν=0 f( ν

n)e
ν
n

z converges to∫ 1
0 f(t)ezt dt, it seems plausible that all the zeros of the function W (z) de-

fined by this integral lie in <ez ≤ 0. Pólya proves this not by passing to the
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limit but directly by imitating the proof of the Eneström–Kakeya theorem.
Actually the zeros of W (z) lie in the open half-plane <ez < 0 unless f(t) is
in the “exceptional case”. i.e., it is a step-function having a finite number
of jumps at points with rational abscissa.

Next assume that the coefficients of the polynomial P (z) = a0 + a1z +
· · ·+ anzn are real, an > 0, and that its zeros are all in |z| < 1 (i.e., we are
in the situation of the conclusion of the Eneström–Kakeya theorem). Then
the trigonometric polynomials

u(t) = <eP (eit) = a0 + a1 cos t + · · ·+ an cosnt

and
v(t) = =mP (eit) = a1 sin t + · · ·+ an sinnt

have exactly 2n simple roots in the interval 0 ≤ t < 2π, consequently all
their roots are real. For the proof (cf. also [129], III. 179) let z1, . . . , zn be
the zeros of P (z), each listed as often as its multiplicity indicates. Write
eit − zν = ρν(t)eiψν(t), where ψν(t) increase by 2π as t increases from 0 to
2π. Then

P (eit) = an

n∏

ν=1

ρν(t)eiΨ(t) = R(t)eiΨ(t),

where Ψ(t) =
∑n

ν=1 ψν(t) increases by 2nπ as t goes from 0 to 2π. Since
u(t) = R(t) cos Ψ(t) and v(t) = R(t) sinΨ(t), the claim is proved because
both cos θ and sin θ have 2n zeros in any half-open interval of length 2nπ.

Keeping the above hypotheses concerning f(t), introduce with Pólya the
entire functions

U(z) =
∫ 1

0
f(t) cos zt dt, V (z) =

∫ 1

0
f(t) sin zt dt.

It follows from the Eneström–Kakeya theorem, combined with the proposi-
tion just proved, that the polynomials

Un(z) =
1
n

n−1∑

ν=0

f
(ν

n

)
e

ν
n2 cos

νz

n
and Vn(z) =

1
n

n−1∑

ν=0

f
(ν

n

)
e

ν
n2 sin

νz

n

have only real zeros. Passing to the limit, Pólya obtains that the functions
U(z), V (z), and more generally the functions αU(z) + βV (z), where α, β
are real constants not both zero, have only real roots. If f(t) is not in
the “exceptional case”, then the zeros are simple, furthermore U(z) and
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V (z) have no common zero because otherwise W (z) would have a purely
imaginary zero, which is excluded by the first reult.

In Szegő’s Transaction article discussed above, in which he presents
inequalities for zeros of trigonometric polynomials, he says: “the elementary
inequalities . . . lead in a direct way to a theorem of Pólya, giving even a
slightly more precise result”. He proves the following:

Let α, β be two real constants, not both zero, and set α + iβ = ρeiδ

(ρ > 0, 0 < δ ≤ 2π). Then the entire function αU(z) + βV (z) has only real
simple zeros; every interval ((k− 1

2)π)+δ, ((k+ 1
2π)+δ), k = 0,±1,±2, . . .,

except the one containing the origin, contains exactly one zero. (If α = 0,
i.e. δ = π

2 , then V (z) = 0 at z = 0 and there are no zeros in (0, π).) The
only exception is when f(t) is a step function with jumps at the points

t = 1− 2πh

(k − 1
2)π + δ

,

h, k integers; then the zeros of αU(z) + βV (z) are still real and lie in the
closed intervals [(k − 1

2)π + δ, (k + 1
2)π + δ].

Both Pólya and Szegő have further results concerning the regularity
with which the zeros of U(z) and V (z) are distributed. For instance if f(t)
satisfies the additional condition to be convex, then V (0) = 0 and V (z) has
exactly one simple zero in each interval (kπ, (k + 1

2)π), k = 1, 2, 3, . . . .

Pólya points out that if f(t) > 0 and is decreasing, then
∫∞
0 f(t) sin zt dt

does not vanish for any z > 0, and
∫∞
0 f(t) cos zt dt has no real zeros. A

decreasing f(t) figures also in the following theorem of Alfréd Rényi (C.R.
Acad. Bulgare Sci., 3 (1950), 9–11; [151], No. 38, I, pp. 199–201) which
generalizes results of L. Ilieff:

Let n and m be two positive integers such that n + m is odd. Let f(t)
be n times differentiable in 0 < t ≤ 1 and satisfy the following conditions:
f(1) = 0, f (k)(1) = 0 for 1 ≤ k ≤ n−1, f (2k+1)(0) = 0 for 1 ≤ 2k+1 ≤ n−1,
the function t−mf (n)(t) is positive, increasing and integrable in 0 ≤ t ≤ 1.
Then U(z) and V (z) have only real zeros.
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8. Power series: singularities and analytic continuation

György Pólya begins his influential article “Untersuchungen über Lücken
und Singularitäten von Potenzreihen” (Math. Z., 29 (1929), 549–640; [128],
I, pp. 363–454) by saying that it is directed towards the “Hadamardsche
Aufgabe der Funktionentheorie”, i.e., its purpose is to obtain from proper-
ties of the sequence c0, c1, . . . , cn, . . . conclusions concerning the behavior of
the function f(z) represented by the power series

(27)
∞∑

n=0

cnzn

in the open disk where it converges.

The most classical example is of course the theorem found by Augustin
Louis Cauchy, and made precise by Jacques Hadamard, according to which
if

lim sup n
√
|cn| = l,

then f(z) has a singularity at some point z0 with |z0| = 1/l. This theorem
is usually stated saying the (27) has a radius of convergence r = 1/l.

Equally famous is the gap theorem of Hadamard: if (λk) is a sequence
of positive integers such that

(28)
λk+1

λk
≥ q

for some q > 1 and all k ≥ 1 then the “lacunary series”

(29)
∞∑

k=1

ckz
λk

cannot be continued analytically beyond its circle of convergence, i.e., the
function it represents has a singularity at every point of the said circle.

Pál Turán (On the gap theorem of Fabry, Hungarica Acta Math., 1
(1947), 21–29; [184], No. 30) says: “. . . one of the most exciting parts
of the Weierstrassian theory of functions is the group of those theorems
which draw conclusions from the lacunary distribution of the exponents λk
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to the impossibility of analytical continuation over the convergence-circle,
i.e.. . . the gap theorems”. Hadamard’s condition (28) was weakened to

(30) lim
k→∞

(λk+1 − λk) = ∞

and Edouard Fabry introduced the even weaker condition

(31) lim
k→∞

λk

k
= ∞

([104], §19, Satz 2, p. 83).
It seems to have been known for a long time that the deep reason why

Hadamard’s gap theorem holds is the inequality

(32) max
0≤θ≤2π

∣∣∣∣
n∑

ν=1

cνe
iλνθ

∣∣∣∣ ≤ C(q, δ) max
α≤θ≤α+δ

∣∣∣∣
n∑

ν=1

cνe
iλνθ

∣∣∣∣,

and Norbert Wiener proved in 1933 that the gap theorem under condition
(30) follows from an inequality which is the L2-norm analogue of (32). He
and R. E. A. C. Paley asked: from which similar inequality does the Fabry
theorem follow? Turán (loc. cit. ) showed that the answer is (32) provided
the factor C(q, δ) is replaced by

(
48π
δ

)n

.

This more precise inequality is one of the first applications of Turán’s “new
method” of which more will be said below. Actually, in his book ([187],
Section 20, pp. 219–220) Turán proves the generalization of Fabry’s theorem
to Dirichlet series, first proved by Ottó Szász (Math. Ann., 85 (1922), 99–
110; [172], pp. 503–514).

Let me list some early results “of classical beauty” (Landau) due to
Hungarian mathematicians about power series.

Assume that the radius of convergence of (27) is 0 < r < ∞. Giulio
Vivanti stated and Alfred Pringsheim proved that if cn ≥ 0 for all (large)
n, then the function represented by (27) in |z| < r has a singularity at
the point z = r. Indeed, the Cauchy-Hadamard theorem and a simple
calculation show that the radius of convergence of

∞∑

n=0

1
n!

f (n)
(r

2

)(
z − r

2

)n



336 J. Horváth

equal to 1
2r ([104], §17).

In a long paper (J. Math. Pures Appl. (6) 5 (1909), 327–413) Pál Dienes,
who later wrote two books on power series ([27], [28]), showed that it is
sufficient to assume that the cn lie in an angular domain with vertex 0 and
opening < π.

Ottó Szász (loc. cit.) considered

f(z) =
∞∑

n=0

cnzn and g(z) =
∞∑

n=0

<ecn.zn,

where he assumed that the two power series have the same radius of con-
vergence 0 < r < ∞. If g(z) has a singularity at z = r, so does f(z). From
here the theorem of Dienes follows immediately: Assume, as we may, that
−α ≤ arg cn ≤ α, where α < π

2 . Then 0 ≤ <ecn ≤ |cn| ≤ <ecn/ cosα, so
the two power series have the same radius of convergence r, and g(z) has
a singularity at z = r by the Vivanti–Pringsheim Theorem. Again Szász
proved the result even for Dirichlet series.

Let f(z) be the function represented by the power series (27) in the disk
|z| < r and assume that

∣∣f(z)
∣∣ ≤ M there. In analogy with his theorem on

trigonometric series, Fejér proved that if

sn(z) = c0 + c1z + · · ·+ cnzn

is the partial sum of order n of (27), then

(33)
∣∣s0(z) + s1(z) + · · ·+ sn(z)

∣∣ ≤ (n + 1)M

for n ≥ 0 and |z| ≤ r (special case of Theorem VII in Rend. Circ. Mat.
Palermo 38 (1914), 79–97; [40], No. 46, I, pp. 783–802; see also [104], §1).
Ottó Szász (Math. Z., 1 (1918), 163–183; [172], 446–466) and Issai Schur
proved that the conditions

∣∣s0(z)
∣∣ +

∣∣s1(z)
∣∣ + · · ·+ |sn| ≤ (n + 1)M

and ∣∣s0(z)
∣∣2 +

∣∣s1(z)
∣∣2 + · · ·+ ∣∣sn(z)

∣∣2 ≤ (n + 1)M2

for |z| ≤ r are equivalent to (33) and to
∣∣f(z)

∣∣ ≤ M ([104], §1).
On the other hand, modifying his example of a continuous function with

a divergent Fourier series, Fejér gave an example of a function analytic in
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|z| < 1, continuous (hence bounded) in |z| ≤ 1, for which the partial sums
of its power series expansion are unbounded (Sitzungsber. Bayrische Akad.
Wiss. Math.-Phys. Kl., 40 (1910), 1–17; [40], No. 32, I, pp. 573–583; [104],
§3).

Assume that the series

(34)
∞∑

n=0

cn

whose terms are complex numbers, is Cesàro-summable of order 1, i.e., that
the sequence of arithmetic means

s0 + s1 + · · ·+ sn

n + 1

of the partial sums sk = c0 + c1 + · · · + ck converges as n → ∞. The
Tauberian theorem of Hardy and Landau states that if furthermore

(35) cn/n > −K

for some K > 0 and all n, then (34) is convergent. Therefore the Dirichlet–
Jordan criterion for the convergence of the Fourier series of a function of
bounded variation follows from Fejér’s summability theorem.

Fejér replaced the Tauberian condition (35) by

∞∑

n=0

n|cn|2 < ∞.

Simple examples show that neither condition implies the other. Landau
proves ([104], §13) that instead of Cesàro summability of (34) it is sufficient
to assume Abel-summability.

This theorem has the following consequence: Let the function f(z)
represented by (27) be regular and univalent in the disk |z| < 1. If the
area ∫ ∫

|z|<1

∣∣f ′(z)
∣∣2

dx dy = π
∞∑

n=0

n|cn|2

of the image of the unit disk is finite, then
∑∞

n=0 cneinϕ converges for
almost every value of ϕ (Schwarz–Festschrift, Mathematische Abhandlungen
(1914), 42–53; [40], No. 49, I, pp. 813–822).
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In general there is no connection between the behavior of f(z) and the
convergence of its power series expansion on the circle of convergence:

∑
zn

diverges for all |z| = 1, its sum (1− z)−1 is regular at z = −1 and has a
pole at z = 1;

∑
n−1zn converges at z = −1 and − log(1 − z) is regular

there;
∑

n−2zn converges for all |z| = 1 but by Vivanti–Pringsheim has a
singularity at z = 1. Clearly if (27) converges at a single point of its circle of
convergence |z| = r, then necessarily limn→∞ cnrn = 0. It was a remarkable
result of Pierre Fatou that if f(z) is regular at a point z0 of the circle of
convergence, then the necessary condition cn|z0|n → 0 is also sufficient, i.e.,∑

cnzn
0 converges.

Marcel Riesz (J. Reine Angew. Math., 140(1911), 89–99; Nachrichten
der Königlichen Gesellschaft der Wissenschaften zu Göttingen, math.-phys.
Klasse 1916, 62–65; [158], No. 9, pp. 76–86, No. 17, pp. 145–148) gave a
simple proof of Fatou’s theorem ([104], §13) and extended it in several ways
(Ark. Mat. Astr. Fys. 11, no. 12 (1916), 1–16; [158], No. 18, 149–164).
For the sake of brevity, assume without loss of generality that the radius
of convergence is 1. If limn→∞ cn = 0 and f(z) is regular on the closed
arc {eiϕ : α ≤ ϕ ≤ β}, then the convergence of

∑
cneinϕ is uniform for

α ≤ ϕ ≤ β. If limn→∞ cn/nk = 0 for some k ≥ 0, then
∑

cneinϕ is Cesàro-
summable of order k, uniformly on every closed arc on which f(z) is regular.
If cn/nk is only bounded, then the Cesàro-sums of order k of

∑
cneinϕ are

bounded. He also generalized these results to Dirichlet series (C.R. Acad.
Sci. Paris 149 (1909, 909–912; [158], No. 7, pp. 62–64).

Answering a question raised by Gösta Mittag-Leffler at the 1908 Interna-
tional Mathematical Congress in Rome, Marcel Riesz proved the following
theorem (Rend. Circ. Mat. Palermo 30 (1910), 339–345; [158], No. 8, 65-71;
[104], §12): Let R > 1, 0 < α < π

2 and S the closed set defined by the in-
equalities |z| ≤ R, α ≤ arg(z−1) ≤ 2π−α. Assume that f(z) is continuous
on S and that it is regular on S with the exception of z = 1. If for |z| < 1
the series (27) converges to f(z), then it converges uniformly to f(z) on
|z| = 1, and in particular f(1) =

∑
cn.

Fatou conjectured that given a power series (27) with radius of conver-
gence 1, there exists a sequence εn = ±1 such that

∑
εncnzn cannot be

continued analytically beyond the unit circle. Pólya sent a proof of the con-
jecture in a letter to Adolf Hurwitz, who answered with another proof. The
two letters were published in a joint article it is one of Pólya’s first publica-
tions on power series (Acta Math., 40 (1916), 173–183; [128], I, pp. 17–21).
Landau ([104], §20) calls the result Pólya’s theorem and reproduces the
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proof of Hurwitz. Later Pólya (Acta Sci. Math. Szeged 12B (1950), 199–
203; [128], I, pp. 720–724) writing in honor of the 70th birthday of Fejér
and F. Riesz showed that if (27) converges but is not a polynomial, then
εn = ±1 can be chosen in such a way that

∑
εncnzn satisfies no algebraic

differential equation.

As is apparent from the above references, Landau’s delightful little book
[104] treats the work of several Hungarian mathematicians. A similar source
of some material is a small book by Hadamard, whose second edition,
written in collaboration with Szolem Mandelbrojt, appeared in 1926 [64].
The second edition of Landau’s book was published in 1929, the same year
as the fundamental paper of Pólya quoted at the beginning of this section
appeared. Ludwig Bieberbach in his 1955 Ergebnisse volume [14] reports
on the “very lively” progress made in the course of the preceding twenty-
five years “in great part under the influence of Pólya’s first gap-paper”.
Bieberbach discusses the work of many Hungarian mathematicians: Manó
Beke, Dienes, Erdős, Fekete, Pólya, Marcel Riesz, Ottó Szász, Szegő, Turán.
In particular Pólya’s name appears on 36 out of the 155 pages of the book.

Pólya approaches the study of lacunary power series through the theory
of entire functions of exponential type. The book [15] of Ralph P. Boas,
which appeared at the same time as [14], contains a succinct presentation
of the theory in Chapter 5, however, Boas himself says on p. 789 of [128],
vol. I that Chapter 2 of Pólya’s 1929 paper “is still a nearly complete and
very readable exposition”.

Let

f(z) =
∞∑

n=0

cnzn

be an entire function and set

M(r) = max
|z|=r

∣∣f(z)
∣∣ .

The order 0 ≤ ρ ≤ ∞ of f(z) is defined by

ρ = lim sup
r→∞

log log M(r)
log r

.

If 0 < ρ < ∞, then the type of f(z) is the number

τ = lim sup
r→∞

r−ρ log M(r).
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According to the terminology introduced by Pólya, f(z) is of exponential
type if either ρ = 1 and τ is finite, or if ρ < 1, i.e., if

∣∣f(z)
∣∣ ≤ ea|z|

for some a > 0 and large |z|. If

h(ϕ) = lim sup
r→∞

r−1 log
∣∣f(reiϕ)

∣∣

is the Phragmén–Lindelöf indicator function of f(z), then the intersection
of the half-planes

x cosϕ + y sinϕ ≤ h(ϕ) (z = x + iy)

as ϕ varies, is the indicator diagram D of f(z), and its reflection D in the
real axis is the conjugate indicator diagram. The function

(36) F (z) =
c0

z
+

1!c1

z2
+

2!c2

z3
+ · · ·+ n!cn

zn+1
+ · · ·

is regular outside D, and the series (36) converges for |z| > τ . It is called
the Borel–Laplace transform of f(z) and is given by

F (z) =
∫ ∞

0
f(t)e−zt dt

for x > τ . Inversion gives gives the Pólya representation

f(z) =
1

2πi

∮

C
F (ζ)eζzdζ,

where C is a contour containing D in its interior.
Let (λk) be a sequence of real numbers such that λ0 > 0 and λk+1−λk ≥

c > 0. For t ≥ 0 let N(t) be the number of the λk with λk ≤ t. The density
of the sequence is defined by

D = lim
k→∞

k

λk
= lim

t→∞
N(t)

t

if it exists. Thus the condition in Fabry’s gap theorem means that D = 0.
The upper density of (λk) given by

D = lim sup
k→∞

k

λk
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always exists, and so does the lower density D obtained when lim sup is
replaced by lim inf. Pólya introduces further the maximum density

∆ = lim
s→1−

lim sup
t→∞

N(t)−N(st)
t− st

and the minimum density ∆ in whose definition liminf replaces limsup. One
always has

∆ ≤ D ≤ D ≤ ∆

and all four are equal if D exists.

André Bloch pointed out that there is a strong analogy between the
study of singularities of a function on the circle of convergence of its power
series expansion, and the study of the Julia directions of an entire function.
Let me recall that α is a Julia direction (sometimes called a Picard direction)
of f(z) if f(z) assumes every complex value with at most one exception in
the angular region α − δ ≤ ϕ ≤ α + δ, r ≥ 0, where z = reiϕ and δ > 0
is arbitrarily small. E.g., ±π

2 are Julia directions for ez. Pólya presents a
parallel treatment of the two questions. One of the main results in Chapter
3 of his 1929 paper is the following:

Theorem IV. Let

G(z) =
∑

cλk
zλk (cλk

6= 0)

be an entire function of order ρ and type τ , and let the maximum density
of the exponents λk be ∆ (Pólya calls it the maximum density of the non-
vanishing coefficients, or sometimes simply of the coefficients: “maximale
Koeffizientendichte”). Writing

(37) M(r; α, β) = max
α≤ϕ≤β

∣∣G(reiϕ)
∣∣

for α < β, define

ρ(α, β) = lim sup
r→∞

log log M(r; α, β)
log r

and

τ(α, β) = lim sup
r→∞

r−ρ(α,β) log M(r; α, β).

If β − α > 2π∆, then ρ(α, β) = ρ and τ(α, β) = τ .
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In order to obtain a theorem concerning the singularities of a lacunary
power series he uses the following result which he ascribes to Émile Borel:

Lemma a. Let

f(z) = c0 + c1z + · · ·+ cnzn + · · ·

be an entire function of order 1 and type 0 < τ < ∞. We have

h(α) = lim sup
r→∞

r−1 log
∣∣f(reiα)

∣∣ = τ

if and only if the half-line z = reiα (0 ≤ r < ∞) meets the circle of
convergence of

1
z
F

(
1
z

)
= c0 + 1!c1z + 2!c2z

2 + · · ·+ n!cnzn + · · ·

in a singular point.

This leads to the famous result

Theorem IVa. Let the maximum density of the nonvanishing coefficients
of a power series with finite radius of convergence be ∆. Then every closed
arc of the circle of convergence, whose central angle equals 2π∆, contains a
singular point of the function represented by the power series.

∆ = 0 is equivalent to D = 0, so Fabry’s gap theorem is a special case.
The function (1− zk)−1 =

∑
zkn with D = 1/k illustrates Theorem IVa

nicely.

In order to obtain a theorem concerning Julia lines, Pólya uses the
following result of Bieberbach:

Lemma b. Let G(z) be an entire function of infinite order, and M(r; α, β)
as in (37). If α is such that

lim sup
r→∞

log log M(r; α− δ, α + δ)
log r

= ∞

for any δ > 0, then α is a Julia direction of G(z).

He obtains:
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Theorem IVb. If f(z) is an entire function of order ∞, and the maximum
density of the nonvanishing coefficients of its power series expansion is ∆,
then every closed angle with opening 2π∆ contains a Julia direction.

Pólya proves a theorem (Theorem II) which is of the same nature as
Theorem IV, and deduces from it with the help of Lemma a the Vivanti–
Pringsheim–Dienes theorem. The parallel result is:

If all the coefficients of the power series expansion of an entire function
of infinite order lie in an angular domain with vertex 0 and opening < π,
then the direction of the positive real axis is a Julia direction.

Related to Lemma b is the comparision of log M(r) and of log M(r; α, β)
for small β − α when the power series is lacunary. The study of this
problem was pursued by Turán and by Tamás Kővári, see Chapter 21
of [187] and the references quoted there. Pál Erdős and Kővári (Acta
Math. Acad. Sci. Hungar., 7 (1957), 305–317) proved that for any maximum
modulus M(r) = max|z|=r

∣∣f(z)
∣∣ of an entire function there exists a series

N(r) =
∑

γnrn with γn ≥ 0 such that e−ε < M(r)/N(r) < eε with
ε = 0.005.

Let f(z) be represented by the power series (27) and set µn = inf M(r)
rn .

By the Cauchy inequality |cn| ≤ µn. Vincze (Acta. Sci. Math. Szeged 19
(1958), 129–140) proved that

∑ |cn|
µn

= ∞, i.e. |cn| cannot always be much
smaller than µn.

Let f(z) =
∑

ckz
λk have radius of convergence R > 0 and assume that

the λk satisfy the Fabry gap condition. For any z0 6= 0 with |z0| < R the
expansion

(38)
∑

an(z − z0)
n

has only one singularity of f(z) on its circle of convergence C, namely
the point where C touches |z| = R. Therefore (38) cannot be a lacunary
series satisfying the Fabry condition. More precisely, Kővári (J. London
Math. Soc., 34 (1959), 185–194) proved with a geometric argument using
Theorem IVa of Pólya that if the radius of convergence of f(z) =

∑
cnzn is

1 and the maximum density of its nonvanishing coefficients is ∆, while for
z0 = reiα 6= 0 (r < 1) the maximum density of the nonvanishing coefficients
of

∑
an(z − z0)

n is ∆0, then ∆ + ∆0 ≥ 1− 1
π arcsin r.

Pólya conjectured that the power series expansions of an entire function
f(z) at two distinct points cannot both have Fabry gaps. This was proved



344 J. Horváth

by Kató (Catherine) Rényi (Acta Math. Acad. Sci. Hungar., 7 (1956), 145–
150). For a ∈ C denote by Za(n) the number of terms of the sequence
f(a), f ′(a), . . . , f (n)(a) which are equal to zero. The Fabry gap condition at
a means that

lim
n→∞

Za(n)
n

= 1.

Kató Rényi proves that if a 6= b, then

lim inf
n→∞

Za(n) + Zb(n)
n

≤ 1.

In particular the power series of a periodic entire function (e.g. ez, cos z,
sin z) cannot have Fabry gaps at any point. In a later article (ibid., 8 (1957),
227–233) she proved that if f(z) has finite order ρ ≥ 1 then

lim inf
n→∞

Za(n) + Zb(n)− n

n
1− 1

ρ+ε

≤ 0

for any ε > 0, and if f(z) has furthermore finite type τ ≥ 0, then

lim inf
n→∞

Za(n) + Zb(n)− n

n
1− 1

ρ

≤ |b− a|
2

e2
(τ

e

) 1
ρ

.

Kató Rényi returned to the topic several times, and studied also lacunary
power series of two variables (Colloq. Math., 11 (1964), 165–171). This is
one of the first articles of a Hungarian mathematician on analytic functions
of several complex variables. Turán encouraged the research in this direc-
tion, which then produced contributions by younger mathematicians, e.g.,
László Lempert and László Sztacho.

The proofs of Kató Rényi’s theorems are related to another area of
Pólya’s interests: “The zeros of derivatives of a function and its analytic
character”. In 1942 he gave an address with this title to the American
Mathematical Society (Bull. Amer. Math. Soc., 49 (1943), 178–191; [128],
II, pp. 394–407). In this lecture he summarized the known results, and
also stated some new results and conjectures. One of the theorems stated
without proof, and used by Kató Rényi is the following: Let f(z) be an
entire function which is real for real z, and denote by N (n) the number of
zeros of f (n)(z) in the closed interval [0, 1]. Then

lim inf
n→∞

N (n)
n

= 0.
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It was proved by Erdős and Alfréd Rényi (Acta Math. Acad. Sci. Hungar.,
7 (1956), 125–141) even when N (n) denotes the number of zeros is |z| ≤ 1.
Later (ibid., 8(1957), 223–225) they proved that if f(z) is an arbitrary entire
function, and r = H(s) is the inverse function of s = log M(r), then

lim inf
n→∞

N (n).H(n)
n

≤ e2,

and if f(z) is of finite order ρ ≥ 1, then the right hand side can be replaced
by e2−1/ρ.

In his lecture Pólya introduced the set of all points z such that in
any neighborhood of z infinitely many derivatives of f(z) vanish. Kővári
(Mat. Lapok 7 (1956), 106–108) gave an example of an entire function
such that the zeros of all the successive derivatives are dense in C. Erdős
(ibid., 7 (1956), 214–217) proved that given an arbitrary sequence (zk) of
complex numbers, and a sequence n1 < n2 < · · · of integers such that the
complementary sequence is infinite, there exists an entire function f(z) such
that f (nk)(zk) = 0 for k = 1, 2, . . . .

In a joint paper Alfréd and Kató Rényi (J. Analyse Math., 14 (1965),
303–310) proved that if f(z) is a non-constant entire function and P (z) is
a polynomial of degree ≥ 3, then f

(
P (z)

)
cannot be periodic. However,

f(z) = e
√

z + e−
√

z is entire and f(z2) is periodic.

The fourth chapter of Pólya’s great article appeared only in 1933 and
in a different journal (Ann. of Math. (2) 34 (1933), 731–777; [128], I, pp.
543–589). Let

f(z) = a0 + a1z + · · ·+ anzn + · · ·(a)

g(z) = b0 + b1z + · · ·+ bnzn + · · ·(b)

h(z) = a0b0 + a1b1z + · · ·+ anbnzn + · · · .(c)

Hadamard’s composition theorem states that if γ is a singularity of h(z),
then γ = αβ, where α is a singularity of f(z), and β is a singularity of
g(z). Émile Borel proved that if the pole α is the only singularity on the
circle of convergence of (a), and the pole β is the only singularity on the
circle of convergence of (b), then αβ is the unique singularity on the circle of
convergence of (c) and it is a pole of h(z). Georg Faber proved a somewhat
more general statement, and Pólya announced in 1927 without proof that
the product of two isolated singular points is a singular point.
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To go beyond this result Pólya introduces the following definitions:
Let the power series (38) represent f(z) in |z − z0| < R, and let α be

a singular point of f(z) on the circle of convergence. The singularity α is
said to be almost isolated for the series (38) if there exists a neighborhood
of α in which there is no other singular point of f(z) except possibly on the
straight half-line joining z0 with α.

A singular point α of f(z) on the circle of convergence of (38) is said
to be isolable if in any neighborhood of α there exists a simple closed
curve surrounding α along which the function f(z) defined by (38) can
be continued analytically.

His main result is:

Theorem C. If on the circle of convergence of the series (a) there is a
unique singularity α of f(z) which is almost isolated for (a), and on the
circle of convergence of the series (b) there is a unique singularity β of g(z)
which is isolable, then the point γ = αβ is singular for h(z) and it is the
only singularity on the circle of convergence of the power series (c).

The proof is based on two auxiliary results which have a great interest
on their own.

Theorem A. If on the circle of convergence of a power series there is
a unique singular point, and this singular point is almost isolated for the
power series, then the upper density D of the nonvanishing coefficients is 1.

Theorem B. If the lower density D of the nonvanishing coefficients of a
power series is 0, then the domain of existence of the function represented
by the power series is a simply connected domain in C.

Later Pólya published proofs of the converses of Fabry’s gap theorem
and of Theorem B (Trans. Amer. Math. Soc., 52 (1942), 65–71; [128], I,
pp. 713–719): Let (λk) be an increasing sequence of positive integers. If
lim infk→∞(λk/k) < ∞, i.e. D > 0, then there exists a power series

∑
akz

λk

whose radius of convergence is 1 but for which the circle |z| = 1 is not a
natural boundary; if lim supk→∞(λk/k) < ∞, i.e. D > 0, then there exists a
power series

∑
akz

λk whose radius of convergence is 1 and which defines a
multivalent analytic function (hence its domain of definition is not a simply
connected part of C). Erdős gave an elementary proof of the first result
(Trans. Amer. Math. Soc., 57 (1945), 102–104).

Pólya (Comment. Math. Helv., 7 (1934/35), 201–221; [128], I, pp. 593–
613) also studied the following question of Hadamard type: how must the
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coefficients cn be constituted in order that the function defined by (27)
have the following properties: it is single-valued on the Riemann surface of
p
√

z − 1, it is regular at all points excluding the points of ramification z = 1
and z = ∞, and it vanishes at z = ∞.

Many of Pólya’s results, in part with new proofs, can be found in the
book of Vladimir Bernstein [13] generalized to Dirichlet series, which are
the series (29) after substituting z = e−s, where the λk do not have to be
integers. Pólya (Nachrichten von der Gesellschaft der Wissenschaften zu
Göttingen Math.-Phys. Kl. 1927, 187–194; [128], I, pp. 309–317) considers
Dirichlet series with complex exponents λk and proves that if they satisfy
the Fabry condition k/λk → 0, then the domain of existence of the function
defined by the series is convex. He explains that in the case when the λk

are positive integers this yields the Fabry gap theorem.

9. Turán’s “new method”

“An idea, which is used once, is a trick. If it is used a second time, it
becomes a method” – say Pólya and Szegő in the Preface of [129]. Turán’s
idea, that too many consecutive power-sums of n complex numbers cannot
simultaneously be small, occurs first as a hypothesis in “Über die Verteilung
von Primzahlen (I)” (Acta Sci. Math. Szeged 10 (1941), 81–104; [184],
No. 23).

In 1912 Landau stated as one of the main problems of the theory of
prime numbers to prove that between x2 and (x + 1)2 there is always a
prime. Denoting, as usual, by π(x) the number of primes p ≤ x, one asks
more generally for an estimate of π(x + xθ)− π(x) as x →∞.

As every reader of these lines knows, the Dirichlet series

∞∑

n=1

1
ns

, s = σ + it ∈ C,

converges for σ > 1 and defines the Riemann ζ(s)-function, which is analytic
in the whole complex plane with the exception of s = 1, where it has a simple
pole. It follows from the functional equation discovered by Riemann that
ζ(s) = 0 for s = −2k (k = 1, 2, 3, . . .); these are the trivial zeros. It is
known that all the other zeros lie in the strip 0 < σ < 1, and that there are



348 J. Horváth

infinitely many zeros ρ with <eρ = 1
2 . The million dollar question is the

Riemann hypothesis: all the nontrivial zeros of ζ(s) lie on σ = 1
2 .

To approach this problem F. Carlson introduced in 1920 the function
N(α, T ) which equals the number of zeros of ζ(s) in the rectangle α ≤ σ < 1,
0 < t ≤ T . A. E. Ingham proved in 1937 that if

(39) N(α, T ) = O(T b(1−α) logB T)

holds uniformly for 1
2 ≤ α ≤ 1, then

(40) π(x + xθ)− π(x) ∼ xθ

log x

for θ > 1
b . Observe that according to Riemann and H. von Mangold we have

N(1
2 , T ) ∼ T

2π log T
2π , so that b cannot be less than 2.

The Riemann hypothesis implies the Lindelöf hypothesis ([181], Chap.
XIII):

(41) ζ(
1
2

+ it) = O
( |T |ε)

for any ε > 0. The converse implication does not hold (op. cit. p. 279).
Ingham proved that in (39) one can take b = 2 + 4c,B = 5, where c is the
greatest lower bound of all numbers ε for which (41) holds. Thus if the
Lindelöf hypothesis is true, then c = 0, so in (39) one has the optimal b = 2:
this is called the density hypothesis ([187], p. 359). In this case (40) is true
for θ > 1

2 .
Now Turán says that the behavior of ζ(s), and in particular the Lin-

delöf hypothesis, is inextricably connected with the distribution of primes.
Therefore he proves

N(α, T ) ≤ T 2(1−α) exp(13 log0.18 T )

under a hypothesis that has nothing to do with prime numbers:
Let |zj | ≤ 1 for 1 ≤ j ≤ n. Then

max
l(n)≤ν≤u(n)

∣∣zν
1 + · · ·+ zν

n

∣∣ > exp(−n0.09),

where l(n) = n3/2(1 − n−0.42), u(n) = n3/2. It is clearly visible on page 98
of Turán’s article how this inequality is used in formula (35b).
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László Kalmár called the following statement the quasi-Riemann hypoth-
esis: One can find a number 1

2 ≤ α < 1 such that ζ(s) has only finitely many
zeros in the half-plane σ > α. Turán (Izv. Akad. Nauk SSSR, Ser. Mat.,
11 (1947), 197–262; [184], No. 31) gave a necessary and sufficient condition
for the quasi-Riemann hypothesis to hold. The manuscript was received on
December 2, 1945, he lectured on the subject in Budapest on February 7,
1944, so he worked on the paper during the darkest days of World War II.
The condition in question is the existence of numerical constants c > 0 and
C > 0 such that for t > 0, N ∈ N the condition

0 < c < t10 ≤ 1
2
N ≤ N1 < N2 ≤ N

implies ∣∣∣∣
∑

N1≤p≤N2

eit log p

∣∣∣∣ ≤ Ct−
1
2 Ne23(log log N),

where p is prime (cf. [187], Section 33). The statement about consecutive
power-sums has been promoted from hypothesis to Lemma XII, it is a
somewhat weaker form of Turán’s “Second Main Theorem”, see below.

So the “trick” has become a “method”! Other applications soon fol-
lowed: to lacunary power series, as we saw in the preceding section, to the
quasi-analyticity of functions having an expansion into trigonometric se-
ries with “small” coefficients (C.R. Acad. Sci. Paris 224 (1947), 1750–1752;
[184], No. 29), to the distribution of real roots of almost periodic polynomials
(Publ. Math. Debrecen 1 (1949/1950), 38–41; [184], No. 40), etc. Already in
1949 Turán lectured in Prague with the title “On a new method in the anal-
ysis with applications”, and in 1953 his book with a similar title appeared
simultaneously in Hungarian and in German. It lists twelve previous papers
of the author in which the power-sum method is used. An expanded version
in Chinese appeared in 1956. Several Hungarian mathematicians, mostly
students and later collaborators of Turán, joined him in solving the fasci-
nating problems which arose: István Dancs, Gábor Halász, János Komlós,
Endre Makai, János Pintz, András Sárközy, Vera Sós, Mihály Szalay, Endre
Szemerédi. But the theory also had an influence outside Hungary: F. V.
Atkinson, A. A. Balkema, N. G. de Bruijn, J. D. Buchholz, J. W. S. Cas-
sels, D. Gaier, J. M. Geysel, H. Leenman, D. J. Newman, S. Uchiyama and
H. Wittich contributed to it. Furthermore Alfred J. van der Poorten and
R. Tijdeman wrote their doctoral dissertations on the subject, the first at
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the University of New South Wales (Sydney, Australia), the second at the
University of Amsterdam.

A considerably augmented English edition of “On a New Method of
Analysis and its Applications” [187] appeared in 1984, eight years after the
premature death of the author. Nine sections had their final versions writ-
ten by Halász, and thirteen by Pintz. The book has two parts; Part I (16
sections) deals with minimax problems concerning power-sums, concentrat-
ing on those results which then have applications in Part II (42 sections).
Each part ends with a long section on open problems.

Let me state two of the three Main Theorems. Set z = (z1, . . . , zn) ∈ Cn,
for ν ∈ N, write sν(z) = zν

1 + · · ·+ zν
n, and introduce the generalized power-

sums
gν(z) = b1z

ν
1 + · · ·+ bnzν

n,

where the bj (1 ≤ j ≤ n) are complex constants.

First Main Theorem. Assume that min1≤j≤n |zj | = 1. Then for m ∈ N
we have

max
m+1≤ν≤m+n

∣∣gν(z)
∣∣ ≥ C(m,n)

∣∣∣∣
n∑

j=l

bj

∣∣∣∣,

where C(m,n) = ( m
2e(m+n))

n
.

de Bruijn and Makai proved that the best posible value of C(m,n) is
P (m,n)−1 with

P (m,n) =
n−1∑

j=0

(
m + j

j

)
2j .

Second Main Theorem. Assume that 1 = |z1| ≥ |z2| ≥ · · · ≥ |zn|. Then

max
m+1≤ν≤m+n

∣∣gν(z)
∣∣ ≥ 2

(
n

8e(m + n)

)n

min
1≤j≤n

|b1 + · · ·+ bj |.

In special cases stronger lower bounds can be found. Thus if b1 = · · · =
bn = 1, then we have:

Theorem. Assume that min1≤j≤n |zj | = 1. Then

min
z

max
1≤ν≤n

∣∣sν(z)
∣∣ = 1.

The minimum is achieved when the zj are n vertices lying on the unit circle
of a regular (n + 1)-gon.
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I cannot resist the temptation to prove at least the first part of the
Theorem. Set

∏n
1 (ζ − zj) = ζn + a1ζ

n−1 + · · ·+ an. The assumption yields
|an| = |z1 . . . zn| ≥ 1, so |al| = max |aj | ≥ 1. The Newton–Girard formulas
(also called Newton–Waring formulas, or Newton formulas, see Heinrich
Weber, Lehrbuch der Algebra, vol. I, §46)

sν(z) + a1sν−1(z) + · · ·+ aν−1s1(z) + νaν = 0, 1 ≤ ν ≤ n,

yield

l|al| =
∣∣sl(z) + a1sl−1(z) + · · ·+ al−1s1(z)

∣∣

≤ (
1 + |a1|+ · · ·+ |al−1|

)
max

1≤ν≤n

∣∣sν(z)
∣∣ ≤ l|al| max

1≤ν≤n

∣∣sν(z)
∣∣ ,

so indeed max1≤ν≤n

∣∣sν(z)
∣∣ ≥ 1.

After an introduction (Sections 17–19), the first applications of Part
II are to Complex Function Theory (Sections 20–26). The results already
mentioned on lacunary series and on quasi-analyticity can be found here.
Other applications are to Borel summability, to the value distribution of en-
tire functions satisfying a linear differential equation, to linear combinations
of entire functions, etc. Following this, the topics covered are: Differential
Equations (Sections 27–28), Numerical Algebra (Sections 29–31), Markov
Chains (Section 32), and the largest portion of Part II (Sections 33–57) is de-
voted to Analytic Number Theory, Here we find the topics discussed earlier:
the density hypothesis, the quasi-Riemann hypothesis, but also the remain-
der term in the prime number formula, the least prime in an arithmetic
progression, and mainly the joint creation of Turán and Stefan Knapowski:
comparative prime number theory. The primary object of the study is the
analytic function ζ(s) and its cousins, the Dirichlet L(s; χ)-series, however,
I will not transcribe the results but refer to the accessible and eminently
readable book [187].

10. Power series: behavior on the circle of convergence

Pál Turán has given a number of results and examples concerning power
series which are independent of his “new method”.
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If the power series
∑

cnzn converges in |z| < 1 and represents there a
function which is continuous in |z| ≤ 1, then

∑ |cn|2 < ∞. There exist,
however, functions for which the series

∑ |cn|2−ε diverges for any ε > 0.
This phenomenon is named after Torsten Carleman whose article appeared
in 1918. But he and authors before him (E. Fabry, G. H. Hardy, S. Bern-
stein, J. E. Littlewood) listed in Turán’s note (Bull. Amer. Math. Soc., 54
(1948), 932–936; [184], No. 37) only consider the analogous phenomenon for
trigonometric series. It was Ottó Szász (Math. Z., 8 (1920), 222–236; [172],
pp. 481–496) who first stated it explicitly for power series. Turán quotes two
articles of Simon Szidon in which the divergence of

∑∣∣cnk

∣∣2−ε is examined
for an increasing sequence (nk) of integers.

Turán gives an example for the Carleman phenomenon which requires
only elementary (though not simple) calculations, and does not need van der
Corput’s Lemma as the example given in [203] (Chapter 5, (4.11), p. 200).
Ottó Szász pointed out to Turán that completely elementary examples are
also furnished by the reasoning he and S. Minakshisundaram used in their
paper (Trans. Amer. Math. Soc., 61 (1947), 36–53; [172], pp. 1054–1071).

A Möbius transformation

z 7→ w = µ(z) = c
z − z0

1− z̄0z
,

where |c| = 1 and |z0| < 1, maps the unit disk |z| < 1 bijectively and
conformally onto |w| < 1, and the circle |z| = 1 onto |w| = 1. For simplicity
take c = 1. The inverse transformation is

w 7→ z = µ−1(w) =
w − w0

1− w̄0w
,

where w0 = −z0 = µ(0). Let

f1(z) =
∞∑

n=0

anzn

be a function which is holomorphic in the unit disk, and set

f2(w) = f1

(
µ−1(w)

)
=

∞∑

n=0

bnwn.

Turán (Publ. Inst. Math. (Beograd) 12 (1958), 19–26; [184], No. 103) gave
an example of a series f1(z) which converges at z = 1 but the series f2(w)
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does not converge at the corresponding point w = µ(1). Turán also proved
that if f1(z) is Abel-summable at z = 1, then f2(w) is Abel-summable at
w = µ(1).

László Alpár, Turán’s friend and disciple, devoted several articles to this
situation. In a paper written in Hungarian (Mat. Lapok 11 (1960), 312–
322) he shows that there exists an f1(z) such that

∑ |an| < ∞ but
∑ |bn|

diverges. What makes this result interesting is the fact that
∑ |an| < ∞

implies
∑ |an|2 < ∞, i.e. that f1(z) ∈ L2 on |z| = 1 and thus also∑ |bn|2 < ∞. Alpár asks whether there exists a number 0 < ε < 1 such

that
∑ |bn|2−ε converges. Gábor Halász (Publ. Math. Debrecen 14 (1967),

63–68) gave a negative answer by proving the following theorem:
Given z0 and 0 < ω(n) which tends to +∞ as n → ∞, there exists a

function f1(z) such that
∑ |an| < ∞ but

∞∑

n=0

|bn|2−
ω(n)
log n = ∞.

However, as he shows in a footnote, if k ≥ 0, then

∞∑

n=0

|bn|2−
k

log n < ∞.

In a second paper (ibid., 15 (1968), 23–31) Halász proves that if there
exists a decreasing sequence (An) such that |an| ≤ An and

∑
An < ∞,

then also
∑ |bn| < ∞. If, however,

∑
An = ∞, then there exists (an) with

|an| ≤ An,
∑ |an| < ∞ but

∑ |bn| = ∞.

Alpár wrote a sequence of eight articles in French on the subject. The
last one appeared in Studia Sci. Math. Hungar., 1 (1966), 379–388 and
contains references to the preceding ones. Motivated by his result on Abel-
summability, Turán asked whether the same holds for Cesàro-summability.
Alpár gave a negative answer. More precisely, he proved that if k ≥ 0 and∑

an is Cesàro-summable of order k, then
∑

bnµ(1)n is Cesàro-summable
of order k + 1

2 but not necessarily of smaller order. If α
(k)
n is the nth Cesàro-

sum of order k of
∑

an and β
(k+δ)
n is the nth Cesàro-sum of order k + δ of∑

bnµ(1)n, then one has a linear relation

β(k+δ)
n =

∞∑

ν=0

γ(k,δ)
nν α(k)

ν .
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The idea of Alpár was to show that the matrix (γ(k,δ)
nν ) satisfies the Toeplitz–

Schur regularity conditions if δ ≥ 1
2 but not if δ < 1

2 .
Alpár also considered the analogous problems when instead of power

series one studies expansions into a series of Faber polynomials.

As we have seen in Section 8, Fejér has given an example of a function
f(z) holomorphic in |z| < 1, continuous in |z| ≤ 1 whose Taylor series∑

cnzn diverges at z = 1. If |cn| ≤ 1
n for all n, then

∑
cnzn converges

uniformly in |z| ≤ 1. Turán (Mat. Lapok, 10 (1959), 278–282; [184],
No. 113) uses the method of Fejér to show that if ω(n) is a positive sequence
which tends increasingly to +∞ as n → ∞, then there exists a function
f(z) =

∑
cnzn in |z| < 1, continuous in |z| ≤ 1 such that |cn| ≤ ω(n)

n but∑
cn diverges.

Let f(z) be an entire function of order ρ, let b ∈ C, and denote by zν

the points (counted with multiplicity), where f(zν) = b. Denote by ρ(b) the
exponent of convergence of (zν), i.e., the number such that

∑
ν

1
|zν |α

converges for α > ρ(b) and diverges for α < ρ(b); a number b0 for which
ρ(b0) < ρ is called a Borel exceptional value of f(z).

This concept can be generalized. Let ϕ be a positive function defined for
0 ≤ x < ∞, strictly decreasing to zero. A number b ∈ C is a ϕ-exceptional
value of f(z) if

∑
ϕ(|zν |) < ∞. In a joint article Alpár and Turán (Publ.

Math. Inst. Hungar. Acad. Sci., A6 (1960), 157–164; [184], No. 120) show
that for any function ϕ of the above kind there exists an entire function of
infinite order that has no ϕ-exceptional values.

Let (λk) be a sequence of positive integers which satisfies the gap con-
dition

λk+1 − λk ≥ γ

for some fixed γ ≥ 1. Assume that the power series

f(z) =
∞∑

k=0

ckz
λk

has radius of convergence 1. If writing z = reiθ the limit

f(θ) = lim
r→1−0

f(reiθ)



Holomorphic Functions 355

exists almost everywhere and belongs to L2 on an arc of length greater than
2π/γ, then f(θ) exists everywhere and belongs to L2 on [0, 2π]. The result
can be found in [203] (Chapter V, (9.1), p. 222), where the notes contain the
following remark: “Nothing seems to be known about possible extensions
to classes Lp, p 6= 2” (p. 380).

In the book [135] published in honor of the 75th birthday of Pólya, the
champion of gap theorems, there is a contribution by Erdős and Rényi (pp.
110–116) and one by Turán (pp. 404–409) addressing this problem for q > 2.

The first two use probability theory. They consider the exponents λk as
random variables and prove that with probability one there exists a function
f(θ) whose Fourier series

∑
ck cosλkθ satisfies λk+1 − λk →∞, belongs to

L2 in |θ| ≤ π, is bounded in δ ≤ |θ| ≤ π for every δ > 0, but does not belong
to any Lq with q > 2 on |θ| ≤ π.

Turán constructs for any q > 6 an explicit lacunary power series such
that

λk+1 − λk >
1
2
λ

1/(q+6)
k ,

and for which f(θ) ∈ Lq(π
2 , 3π

2 ) but f(θ) is not in Lq(0, 2π).

11. Pólya–Schur functions

One of the earliest publications of György Pólya has the title “Über ein
Problem von Laguerre” (Rend. Circ. Mat. Palermo 34 (1912) 89–120; [128],
II, pp. 1–32); it is in fact an exchange of letters between him and Mihály
Fekete. Much later Pólya wrote a paper with almost the same title: “Über
einen Satz von Laguerre” (Jahresber. Deutsch. Math.-Verein., 38 (1929),
161–168; [128], II, pp. 314–321). It is the preoccupation with problems left
open by Edmond Laguerre which led to the class we now call Pólya–Schur
functions. There is a nice account of their theory in the little book of Nikola
Obrechkoff [125].

Let f(z) be an entire function of finite order ρ, denote by (zk) the se-
quence of its zeros different from 0 counted according to their multiplicities,
and set |zk| = rk. The genus p of the sequence (rk) is the smallest integer
such that

∞∑

k=1

1
rν
k
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converges for ν ≥ p + 1. The function has the product representation

f(z) = zmeQ(z)
∞∏

k=1

(
1− z

zk

)
e

z
zk

+ 1
2

�
z

zk

�2
+···+ 1

p

�
z

zk

�p

,

where Q(z) is a polynomial of degree q ≤ ρ. Laguerre called the genus of
the function the larger of the two integers p and q. Completing the proofs
and weakening the hypotheses of theorems stated by Laguerre, Pólya proved
the following results (Rend. Circ. Mat. Palermo 36 (1913), 279–295; Nachr.
Ges. Wiss. Göttingen 1913, 325–330; [128], II, pp. 54–70, 71–75):

Let Pl(z) (l ∈ N) be a sequence of polynomials which converges uni-
formly in a disk |z| ≤ R to a function F (z).

I. If the zeros of all the polynomials Pl(z) are > 0, then F (z) is an entire
function of the form e−βzG(z), where G(z) is of genus zero and β ≥ 0. If
F (z) is not identically zero, then Pl(z) converges to F (z) in the whole plane
and the convergence is uniform in every bounded domain.

More generally ([125], pp. 13–14): If the zeros of the Pl(z) lie in an
angular domain W with opening < π, then F (z) = e−βzG(z), where G(z)
has genus 0, and β lies in the domain W which is symmetric to W with
respect to the real axis.

II. If the zeros of the Pl(z) are all real, then F (z) is a Pólya–Schur
function, i.e., an entire function of genus 1 multiplied by a Gauß density
function e−γz2

(γ ≥ 0).

Actually I. follows easily from a theorem of Hurwitz ([104], p. 17) and the
Hadamard factorization. The proof of II. is “weniger einfach” (less simple).

Pólya wrote the immediately following article (Rend. Circ. Mat. Palermo
37 (1914), 297–302; [128], II, pp. 76–83) in collaboration with Egon Lind-
wart. They prove that if zl1, zl2, . . . , zll are the zeros of Pl(z) and if there
exists M > 0 such that

l∑

j=1

1

|zlj |k
≤ M

for some k > 0, then F (z) is an entire function of genus ≤ [k]; if k is an
integer, F (z) = eγzk

G(z), where the genus of G(z) is ≤ k − 1.

The authors list several consequences, e.g., the following suggested by
Fekete: Write zls = rlse

iθls and assume that the θls belong to the union of
the r closed intervals [(4t− 1) π

2r , (4t + 1) π
2r ], t = 0, 1, . . . , r− 1. Then F (z)
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has genus ≤ 2r. Furthermore if zk denotes again the zeros 6= 0 of F (z) and
|zk| = rk, then

∑
r−2k
k < ∞.

Another corollary of the theorem of Lindwart and Pólya was given the
following stronger form by Ottó Szász (Bull. Amer. Math. Soc., 49 (1943),
377–383; [172], pp. 1390–1396): Assume that the zeros of each Pl(z) lie
in a half-plane containing 0 on its boundary, which can vary with l. If Pl

converges to F (z) on a set which has a finite limit point and the coefficients
of the Pl(z) are bounded, then Pl(z) converges to F (z) uniformly on every
bounded domain and

F (z) = eα+βz+γz2
∏(

1− z

zk

)
e
− z

zk ,

where
∑

1/|zk|2 < ∞.

The problem of Laguerre, investigated by Pólya, received a very gen-
eral treatment in the 1949 Leiden thesis of Jacob Korevaar. He assumes
that the zlj belong to an arbitrary subset of C and characterizes F (z) =
liml→∞ Pl(z). An account of his results can be found in [31], pp. 261–272.

Then Issai Schur got into the picture. At the origin is the follow-
ing theorem by E. Malo which appeared of all places in the Journal de
Mathématiques Spéciales (4) 4 (1895), 7: Assume that the zeros of the
polynomial

(42) a0 + a1z + a2z
2 + · · ·+ amzm (am 6= 0)

are all real, and that the zeros of the polynomial

(43) b0 + b1z + b2z
2 + · · ·+ bnzn (bn 6= 0)

are all real and of the same sign. Set k = min (m,n). Then the zeros of

(44) a0b0 + a1b1z + a2b2z
2 + · · ·+ akbkz

k

are all real. If m ≤ n and a0b0 6= 0, then the zeros of (44) are distinct.

Schur proved (J. Reine Angew. Math., 144 (1914), 75–88) a result
he calls “composition theorem” and which asserts that under the same
hypotheses as before the zeros of

0!a0b0 + 1!a1b1z + 2!a2b2z
2 + · · ·+ k!akbkz

k



358 J. Horváth

are all real. If m ≤ n, a0b0 6= 0 the same conclusion holds as above.

From the composition theorem Malo’s result follows with a neat little
trick (§3 of loc. cit.).

In their joint article (J. Reine Angew. Math., 144 (1914), 89–113; [128],
II, pp. 100–124; [163], II, No. 24, pp. 56–69) Pólya and Schur say that a
sequence

(A) α0, α1, α2, . . . , αn, . . .

of real numbers is a factor sequence of the first kind if given any polynomial
(42) whose zeros are all real, the polynomial

α0a0 + α1a1z + α2a2z
2 + · · ·+ αmamzm

has only real zeros. Similarly a sequence

(B) β0, β1, β2, . . . , βn, . . .

is a factor sequence of the second kind if for any polynomial (43) whose zeros
are all real and have the same sign (i.e., are all positive or all negative), the
polynomial

β0b0 + β1b1z + β2b2z
2 + · · ·+ βnbnzn

has only real zeros.

Clearly a factor sequence of the first kind is also one of the second kind
but not conversely. It was Laguerre who gave the first examples of factor
sequences.

Pólya and Schur start with giving algebraic criteria for factor sequences.
For instance (A) is a factor sequence of the first kind if and only if the
polynomials

α0 +
(

n

1

)
α1z +

(
n

2

)
α2z

2 + · · ·+ αnzn

have only real zeros of the same sign. In one direction this follows from the
fact that (1 + z)n has -1 as its only zero and from Descartes’ rule of signs.

Let γ0, γ1, . . . , γn, . . . be a sequence of real numbers. The authors prove
that

γ0

0!
,
γ1

1!
,
γ2

2!
, . . . ,

γn

n!
, . . .
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is a factor sequence of the first kind if and only if the following condition
is satisfied: whenever (42) has only real zeros and (43) only real zeros with
the same sign, the polynomial

γ0a0b0 + γ1a1b1z + γ2a2b2z
2 + · · ·+ γkakbkz

k

has only real zeros. Since the sequence where αn = 1 for all n is obviously
a factor sequence of the first kind, this yields Schur’s composition theorem.

In order to give transcendental criteria for factor sequences, Pólya and
Schur introduce two classes of entire functions with real Taylor coefficients.

A function

(45) Φ(z) =
∞∑

k=0

αk

k!
zk

with real zeros having the same sign is of type (I.) if Φ(z) or Φ(−z) has the
representation

Φ(z) =
αr

r!
zreβz

∞∏

ν=1

(1 + γνz)

with αr 6= 0, β, γν ≥ 0 (i.e. if on some disk |z| ≤ R it is the uniform limit of
a sequence of polynomials having only real zeros of the same sign).

A function

(46) Ψ(z) =
∞∑

k=0

βk

k!
zk

whose zeros are all real is of type (II.) if it has the representation

Ψ(z) =
βr

r!
zreβz−γz2

∞∏

ν=1

(1 + δνz)e−δνz,

where βr 6= 0, γ ≥ 0, β and δν real (i.e. if on some disk it is the uniform
limit of a sequence of polynomials having only real zeros).

Theorem. (A) is a factor sequence of the first kind if and only if (45) is of
type (I.). (B) is a factor sequence of the second kind if and only if (46) is
of type (II.).
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Now a new motif enters in the form of the Hermite–Poulain theorem:
Let the polynomials

P (z) = a0 + a1z + a2z
2 + · · ·+ anzn (an 6= 0)

and

Q(z) = b0 + b1z + b2z
2 + · · ·+ bnzn + bn+1z

n+1 + · · ·+ bn+mzn+m,

where b0, b1, . . . , bn > 0, have only real zeros. Then the polynomial

b0P (z) + b1P
′z + b2P

′′(z) + · · ·+ bnP (n)(z)

has only real zeros.
In a short note (Vierteljahrschr. Naturforsch. Ges. Zürich 61 (1916),

546–548; [128], II, p. 163–165) Pólya gives a geometric proof of the fact
that under the same hypotheses the curve

F (x, y) = b0P (y) + b1xP ′(y) + b2x
2P ′′(y) + · · ·+ bnxnP (n)(y) = 0

has n real points of intersection with any straight line sx − ty + u = 0,
provided that s ≥ 0, t ≥ 0, s + t > 0 and u is real.

The special case s = 1, t = 0, u = −1, i.e. x = 1, yields the Hermite–
Poulain result. The case s = 0, t = 1, u = 0, i.e. y = 0, gives the Schur
composition theorem. Finally, s = t = 1, u = 0, i.e. x = y, gives an example
of Pólya–Schur according to which

b0P (z) + b1zP ′(z) + b2z
2P ′′(z) + · · ·+ bnznP (n)(z)

has only real zeros. Conversely, the general theorem can be deduced from
the three special cases by changes of variables.

In an earlier article (J. Reine Angew. Math., 145 (1915), 224–249;
[128], II, pp. 128–153) Pólya made some elementary remarks related to
the Hermite–Poulain theorem, and generalized it to certain pairs of entire
functions. Changing slightly the hypotheses and the notation, let

F (z) = a0 + a1z + a2z
2 + · · ·+ anzn

be a polynomial with only real roots, a0 6= 0 real, an 6= 0, n ≥ 1, and
let G(z) be a polynomial with real coefficients having exactly r real roots.
Then the following hold concerning the polynomial

H(z) = F (∂)G(z) = a0G(z) + a1G
′(z) + a2G

′′(z) + · · ·+ anG(n)(z) :
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(i) H(z) has r + 2k real zeros, k ∈ N;
(ii) If r ≥ 1, then H(z) has at least one real zero with odd multiplicity,

hence assumes for real z both positive and negative values;
(iii) If r ≥ 2, then H(z) has at least two distict real zeros;
(iv) If G(z) has only real zeros, then the multiple zeros of H(z) are also

multiple zeros of G(z)
(v) If r ≥ 1 and F (z) has only positive zeros, then H(z) has a real zero

with odd multiplicity which is larger than the largest real zero of G(z);
Let Φ(z) be an entire function of type (I.), where in (45) the coefficients

αk are positive, and let Ψ(z) be of type (II.). Then the series

∞∑

ν=0

αν

ν!
zνΨ(ν)(z) and

∞∑

ν=0

βν

ν!
zνΦ(ν)(z)

converge and represent entire functions of type (II.).

The second paper referred to at the beginning of this section appeared
immediately following an article of Obrechkoff who gave a simplified proof
of a theorem of Hurwitz according to which the function

√
z

ν
J−ν(2

√
z) has

exactly [ν] negative zeros if ν ≥ 0. In the first part of his proof Obrechkoff
uses an algebraic theorem of Laguerre, in the second part also the differential
equation of the Bessel function J−ν(z). Pólya shows that the whole proof
can be based on ideas of Laguerre if one transports them from polynomials
to entire functions. He proves namely the following theorem: Let

g(z) = a0 + a1z + azz
2 + a3z

3 + · · ·

be either a polynomial of degree m with only positive zeros, or an entire
function of type (I.) with positive zeros. In the algebraic case set J = [0,m],
in the transzendental case J = [0,∞). Let G(z) be an entire function of type
(II.) which in J has exactly s simple zeros such that the distance between
two consecutive zeros is ≥ 1. Then

a0G(0) + a1G(1)z + a2G(2)z2 + a3G(3)z3 + · · ·

has exactly m − s strictly positive zeros in the algebraic case, and it has s
negative zeros in the transzendental case.

Since
√

z
ν
J−ν(2

√
z ) =

∞∑

n=0

(−z)n

n!
1

Γ(n + 1− ν)
,
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setting g(z) = e−z and G(z) =
(
Γ(z + 1 − ν)

)−1 the theorem of Hurwitz
follows.

Pólya says that the content of the paper is a portion of an investigation
on which he published two notes (C.R. Acad. Sci. Paris 183 (1926), 413–
414, 467–468; [128], II, pp. 261–264). The full proofs appeared in the
dissertation of E. Benz (Comment. Math. Helv., 7 (1934), 243–289). Let L
be an operation determined by a sequence l0, l1, . . . , ln, . . ., which associates
with each polynomial P (z) the polynomial

LP (z) = l0P (z) + l1P
′(z) + l2P

′′(z) + · · · .

Setting L(z) = l0 + l1z + l2z
2 + · · · one can write

LP (z) = L(∂)P (z).

Pólya proposes to determine the class of operations L such that whenever
P (z) has all its roots in the convex domain K, then so does LP (z). Pólya
mentions that there are three equivalent necessary and sufficients conditions,
the third of which involves a product decomposition of L(z). When K is
the lower half-plane, then L(z) has to be a Pólya–Schur function with zeros
in the upper half-plane. In the second note Pólya considers the case when
P (z) is a Dirichlet polynomial

P (z) = a0e
λ0z + a1e

λ1z + · · ·+ aneλnz

and
LP (z) = L(λ0)a0e

λ0z + L(λ1)a1e
λ1z + · · ·+ L(λn)aneλnz.

In a joint paper of Pólya with André Bloch (Proc. London Math. Soc. (2)
33 (1932), 102–114; [128], II, pp. 336–348) the authors consider polynomials
of the form

P (z) = 1 + ε1z + ε2z
2 + · · ·+ εnzn,

where each coefficient has one of three values −1, 0 or 1. These are now
called partition polynomials, and for recent literature concerning them see
the article by Morley Davidson (J. Math. Anal. Appl., 269 (2002), 431–443).
There are 3n such polynomials, so there are some which have a maximum
number of zeros in the open interval (0,1). Denote this maximum number
by πn; clearly 0 ≤ πn ≤ n, and πn increases with n. It is easy to see that
πn = o(n) and the authors say that the crucial question is whether πn is of
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order as low as log n. They find that the answer is negative. They prove
that there exists a constant A.0 such that

1
A

n1/4

(log n)1/2
< πn < A

n log log n

log n

for n ≥ 3.
Bloch and Pólya feel that “this question seems very particular and

rather out of the way”, therefore they present a number of examples and
observations which motivate it. The first example is

(47)
(

1
p

)
+

(
2
p

)
z +

(
3
p

)
z2 + · · ·+

(
p− 1

p

)
zp−2,

where p is an odd prime number and the coefficients are the Legendre
symbols. This is precisely the polynomial from which the Fekete–Pólya
correspondence mentioned at the beginning of this section sets out. If
p is such that (47) has no zeros in the interval (0, 1), then the Dirichlet
series

∑∞
n=1 (n

p)
1
ns has no positive real zeros, and the problem is to decide

for which primes p is this the case. Fekete conjectured that (47) has no
zeros in (0, 1). Pólya (Jahresber. Deutsch. Math.-Verein., 28 (1919), 31–
40; [128], III, pp. 76–85) disproved the conjecture by a simple calculation
which showed that for p = 67 and for p = 167 the polynomial has two zeros
between 0 and 1.

Another example is the partial sums Sn of the power series

(48) z − z2 − z3 + z4 + z5 + z6 + z7 − z8 − · · · − z15 + z16 + · · · ,

where on plus sign is followed by 2 minus signs, then 4 plus signs, 8 minus
signs, etc. The number of zeros in (0,1) of Sn in log n/ log 2 + O(1). This
is related to two earlier articles of Pólya. The first (Nachr. Ges. Wiss.
Göttingen 1930, 19–27; [128], I, pp. 459–467) is about the sign of the
remainder term in the prime number theorem. Completing a result of
Landau, he finds an upper bound for the smallest γ > 0, where ζ = β + iγ
is a pole with maximal β of the function

Φ(s) =
∫ ∞

0
ω(u)u−s du.

The bound is given in terms of the asymptotic behavior of the number
of changes of sign of ω(u) in 0 < u ≤ x as x → ∞. The investigation
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is continued in a paper (Proc. London Math. Soc. (2) 33 (1932), 85–101;
[128], I, pp. 521–537) which is printed preceding immediately the Bloch–
Pólya article. Let (an) be a bounded sequence of real numbers, and set

D(s) = a11−s + a22−s + · · ·+ ann−s + · · · ,

P (z) = a1z + a2z
2 + · · ·+ anzn + · · · .

The Dirichlet series converges for <es > 1 and the two functions are related
by the formula

Γ(s)D(s) =
∫ ∞

0
P (e−x)xs−1 dx.

Assume that D(s) is meromorphic for <es > b, where b < 1 and that, if
p(n) is the number of zeros of

Pn(z) = a1z + a2z
2 + · · ·+ anzn

in the interval (0, 1), then there exists an increasing sequence (nm) of
integers such that

lim
m→∞

log nm+1

log nm
= 1, p(nm) = O(log nm) as m →∞.

Then either Γ(s)D(s) is holomorphic for <es > b or it has a pole β + iγ
with maximal β such that

(49) 0 ≤ γ ≤ π lim sup
m→∞

p(nm)
log nm

.

The example (48) is used to show that equality on the right hand side of
(49) can be attained.

12. Conformal mapping, complex interpolation

The most important concept to which the names of Lipót Fejér and Frigyes
Riesz are attached was not published by the two either separately or jointly.
It appeared in a note of Tibor Radó (Acta Sci. Math. Szeged 1 (1922/23),
240–251), and it is the “Fejér–Riesz procedure” for the proof of the Riemann
mapping theorem. Radó’s note is reproduced in part in Fejér’s collected
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works ([40], II, pp. 841–842) and in its entirety in the works of Riesz ([156],
pp. 1483–1494).

Carathéodory, who simplified slightly the procedure, writes the following
(Bull. Calcutta Math. Soc., 20 (1928), 125–134; [21], III. pp. 300–301):
“About . . . the main theorem of conformal mapping I must say a few
words. After the insufficiency of Riemann’s original proof was recognized,
the miraculously beautiful but very complicated methods of proof developed
by H. A. Schwarz were the only paths to this theorem. Since about twenty
years in rapid succession a large series of shorter and better proofs was
proposed; but it was reserved for the Hungarian mathematicians L. Fejér
and F. Riesz to return to the basic idea of Riemann and to relate again
the solution of the problem of conformal mapping with a solution of a
variational problem. But they did not choose a variational problem which,
like Dirichlet’s principle, is extraordinarily difficult to treat but one for
which the existence of a solution is clear. In this way a proof came about
which is only a few lines long and which was immediately adopted by all
newer textbooks.” In Fejér’s collected works Turán quotes this passage in
the original German ([40], II, pp. 842–843).

Riemann’s mapping theorem states that if G is a simply connected
domain in C having at least two boundary points and a is a point in G,
then there exists a univalent holomorphic function f mapping G onto the
disk

{
ζ : |ζ| < ρ

}
and satisfying f(a) = 0, f ′(a) = 1; the radius ρ and the

function f are uniquely determined. An elementary transformation shows
that we may assume G to be bounded and take a = 0. Radó explains
the Fejér–Riesz procedure as follows: Consider all bounded, holomorphic
functions f which map G univalently into the ζ-plane and satisfy f(0) = 0,
f ′(0) = 1. Such functions exist, e.g., f(z) = z. Set M(f) = supz∈G

∣∣f(z)
∣∣

and let ρ be the greatest lower bound of all numbers M(f). There exists
a sequence (fn) such that M(fn) → ρ. By Montel’s theory of normal
families (or – as we say now – compactness) a subsequence of (fn) converges
uniformly on every compact subset of G to a univalent, holomorphic function
f satisfying f(0) = 0, f ′(0) = 1 and

∣∣f(z)
∣∣ < ρ for z ∈ G. If the image of

G under f does not fill out the whole disk |ζ| < ρ, then a square root
transformation due to Carathéodory and Koebe yields a function F (z)
which has the required properties and is such that M(F ) < M(f), which is
impossible.

Radó realized that simple connectedness is not made use of in the
proof of the Fejér–Riesz procedure, and he proves with it the so-called
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“Grenzkreissatz”. Also this proof is simplified in the article of Carathéodory
quoted above.

An often quoted result of Tibor Radó (Acta Sci. Math. Szeged 2 (1925),
101–121) states that every Riemann surface satisfies the second axiom of
countability. This is interesting because Heinz Prüfer has given an example
of a two-dimensional differentiable manifold which does not satisfy the
axiom: the countability is a consequence of the conformal structure, Radó
also pointed out that, as a consequence of countability, every Riemann
surface can be triangulated.

A short note of Henri Cartan has the title “Sur une extension d’un
théorème de Radó” (Math. Ann., 125 (1952), 49–50; [22], II, pp. 667–668).
The theorem referred to can be found in a paper (Math. Z., 20 (1924), 1–6)
whose main result asserts that there exist open Riemann surfaces F which
cannot be continued, i.e., there exists no Riemann surface G such that F is
conformally equivalent to a proper subdomain of G.

Radó’s “theorem” in which Cartan is interested is, however, the following
Lemma in Radó’s article:

Let G be a simply connected domain in the unit disk D which is distinct
from D. Let f(z) be holomorphic in D and assume that at every boundary
point of G which lies in the interior of D the function f(z) has boundary
value zero. Then f(z) ≡ 0.

Peter Thullen (Math. Ann., 111 (1935), 137–157) gave a new proof and
a generalization of the theorem. Then Heinrich Behnke and Karl Stein
(Math. Ann., 124 (1951), 1–16) extended it to n variables (Satz 1). They
use Radó’s result and even reproduce its proof. Cartan found a very simple
proof of the general theorem. He uses potential theory and does not need
Radó’s result. His assertion, slightly different from that of Behnke-Stein, is
as follows:

Let M be an n-dimensional complex analytic manifold. Let g be a
continuous, complex-valued function defined on M , and assume that g is
holomorphic at each point z where g(z) 6= 0. Then g is holomorphic on M .

If n = 1 we obtain Radó’s result setting g(z) = f(z) for z ∈ G and
g(z) = 0 if z ∈ D\G.

Conformal mapping and interpolation is the subject of a note of Fejér
(Göttinger Nachrichten 1918, 319–333; [40], II, 100–111). Let C be a
continuous, simple, closed curve in C and z

(k)
1 , . . . , z

(k)
k points on it for k ∈ N.

Fejér gives a sufficient condition for the following to happen:
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If f(z) is a function holomorphic inside C and on C itself, and if Lk(z; f)
is the Lagrange interpolation polynomial of F at the points z

(k)
l (1 ≤ l ≤ k),

then Lk(z; f) converges uniformly to f(z) inside C as k →∞.
Let Φ(z) map conformally the exterior of C onto |ζ| > 1 and satisfy

Φ(∞) = ∞. Then Fejér’s condition requires that the points ζ
(k)
l = Φ(z(k)

l )
be the vertices of a regular k-gon inscribed in |ζ| = 1. At the end of his
note Fejér remarks that it would be sufficient to require that the ζ

(k)
l be

uniformly distributed in the sense of Hermann Weyl.

The subject was taken up by László Kalmár in a prize essay he wrote as
a student and which became his doctoral dissertation (Mat. Fiz. Lapok 33
(1926), 120–149). To describe his results, we change slightly our notation.
Let Ψ(z) be the unique holomorphic function which maps the exterior of C
onto the exterior of a circle |ζ| = R and which satisfies

lim
z→∞

Ψ(z)
z

= 1.

The uniquely determined radius R = Re(E) is the exterior mapping radius
of the closure E of the inside of C. Let (z(k)

1 , . . . , z
(k)
nk ) (k ∈ N) be a

sequence of nk-tuples of points on C (the z
(k)
j , 1 ≤ j ≤ nk do not have to be

distinct, in that case Lk(z; f ; ) denotes the Lagrange–Hermite interpolation
polynomials). Denote by ψk(z) that branch of the function

{
(z − z

(k)
1 )(z − z

(k)
2 ) · · · (z − z(k)

nk
)
}1/nk

outside the curve C which satisfies

lim
z→∞

ψk(z)
z

= 1.

For 0 ≤ a < b ≤ 2π denote by νk(a, b) the number of those points

Ψ(z(k)
j ) = Reiθ

(k)
j , 1 ≤ j ≤ nk,

whose arguments θ
(k)
j lie in a ≤ θ < b. The following are equivalent:

a) limk→∞ Lk(z; f) = f(z) uniformly for every function f(z) holomor-
phic inside and on C, i.e., the points z

(k)
j are “well-interpolating”;

b) limk→∞ ψk(z) = Ψ(z) outside C;
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c)

lim
k→∞

νk(a, b)
nk

=
b− a

2π

for all 0 ≤ a < b ≤ 2π.

For the equivalence of a) and b) the points z
(k)
j can be chosen anywhere

in E.

A different approach to finding well-interpolating points was found
by Fekete using the concept of transfinite diameter introduced by him
(Math. Z., 17 (1923), 246–249). Let E be a closed bounded set in C, and
n ≥ 2 an integer. Denote by δn(E) the root of order

(
n

2

)

of the maximum of all expressions

(50)
∣∣(z1 − z2)(z1 − z3) · · · (z2 − z3) · · · (zn−1 − zn)

∣∣

as the z1, z2, . . . , zn vary in E. The sequence of positive numbers δn(E)
tends decreasingly to the transfinite diameter δ(E) of E.

It is a remarkable fact that δ(E) coincides with Re(E), and with the
logarithmic capacity c(E) (Szegő, Math. Z., 21 (1924), 203–208; [173], I,
pp. 637–642). Consider furthermore the set Pn of all polynomials with
leading coefficient 1, and denote by Mn(E)n the greatest lower bound of
maxz∈E

∣∣Pn(z)
∣∣ as Pn(z) varies in Pn. The “Čebishov constant” M(E) =

limn→∞Mn(E) is also equal to δ(E).

For n ≥ 2 the points (zn
j ) in E (1 ≤ j ≤ n) for which (50) achieves its

maximum are called Fekete points. Fekete proved that if E is the inside a
continuous, simple, closed curve C together with C itself, then the Fekete
points are well-interpolating (Z. Angew. Math. Mech., 6 (1926), 410–413).

This implies that the points Ψ(zn
j ) are uniformly distributed. Kővári

and Pommerenke obtained precise results about the distribution of Fekete
points (Mathematika 15 (1968), 70–75, 18 (1971), 40–49).
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13. Epilogue

And here, my friends, I cease. There is, however, much, much more.
I hope I gave you a taste of some beautiful classical mathematics and the
desire to read more about it. Fortunately this is easy, the works of Fejér,
F. and M. Riesz, Pólya, Rényi, Szegő, Szász, Turán have appeared collected
together (see Bibliography). They were not only titans of mathematics but
also masters of exposition.
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