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Commutative Harmonic Analysis

JEAN-PIERRE KAHANE

The present article is organized around four themes: 1. the theorem of Fejér,
2. the theorem of Riesz–Fischer, 3. boundary values of analytic functions,
4. Riesz products and lacunary trigonometric series. This does not cover
the whole field of the Hungarian contributions to commutative harmonic
analysis. A final section includes a few spots on other beautiful matters.
Sometimes references are given in the course of the text, for example at the
end of the coming paragraph on Fejér. Other can be found at the end of
the article.

1. The theorem of Fejér

On November 19, 1900 the Académie des Sciences in Paris noted that it had
received a paper from Leopold FEJEV in Budapest with the title “Proof of
the theorem that a bounded and integrable function is analytic in the sense
of Euler”. On December 10 the Comptes Rendus published the famous
note “On bounded and integrable fonctions”, in which Fejér sums, Fejér
kernel and Fejér summation process appear for the first time, and where
the famous Fejér theorem, which asserts that any decent function is the
limit of its Fejér sums, is proved. The spelling error of November 19 in
Fejér’s name (Fejev instead of Fejér) is not reproduced on December 10. It
is replaced by an other one: the paper presented by Picard is attributed to
Leopold TEJER. This is how Fejér’s name enters into history (C.R. Acad.
Sci. Paris, 131 (1900), 825 and 984–987).

Fejér was a very young man, 20 years old, and unknown. But Fejér’s
theorem became famous quickly. It was used for proving the completeness
of the trigonometric system in Hurwitz’s work on the isoperimetric problem,



160 J.-P. Kahane

extended by Lebesgue to Lebesgue-integrable fonctions (Fejér–Lebesgue the-
orem), generalized to other kernels useful in approximation theory (Ch. de
la Vallée Poussin), applied in a simple and completely new proof of the
Dirichlet–Jordan theorem (Hardy), made more precise by the notion of ab-
solute summability (Hardy and Littlewood), and, above all, its simplicity
made it accessible to any mathematics student {1}, {2}, {3}, {4, p. 245},
{5}, {6}. By the 1910’s the Fejér theorem had already the status of a classi-
cal result, and no mathematician could ignore Fejér’s name and its spelling
— perhaps except for the place of the accent.

The change can be appreciated in comparing the first and the second
edition of Ch. de la Vallée Poussin’s Cours d’Analyse {7}. In the first edi-
tion (1903–1906) it follows the tradition of the great analysis textbooks of
the time: it devotes little place to Fourier series and presents Dirichlet’s
convergence theorem in the tradition of Dirichlet and Jordan. In the second
edition (1912) we can find the Fejér theorem, Hardy’s method for deducing
the Dirichlet–Jordan theorem from it, and also Fejér’s example of a contin-
uous functions whose Fourier series diverges at one point. The difference
shows well enough the importance of the revolution which took place.

What was the nature of this revolution? In order to see this, let us go
back to 1900.

In the 19th century the theory of analytic functions of one complex
variable progressed by giant leaps. It had become “Theory of Functions” par
excellence. The theory of functions of several real variables had developed
through the investigation of partial differential equations arising in physics.
On the other hand, the field of functions of one real variable revealed strange
and disquieting creatures: continuous but nowhere differentiable functions
(Weierstrass), continuous functions whose Fourier series diverges at one
point (du Bois Reymond). Hermite wrote to Stieltjes that he “turned away
with fright and horror from that lamentable ulcer: a continuous function
with no derivative”. Poincaré in l’Enseignement Mathématique complained
that examples were not constructed any more in order to illustrate theorems
and theories, but just for the purpose of showing that our predecessors were
wrong. Gaston Darboux, who wrote an important memoir on discontinuous
functions in 1875, turned to geometry quite prudently.

Between 1880 et 1900 there were only a few works on trigonometric series
and they did not attract much attention. Fourier series did not appear as a
reliable tool; there were too many strange things about them. Maybe there
are continuous functions whose Fourier series diverge everywhere, just as
there are nowhere differentiable continuous functions (this was still an open
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question in 1965, before Carleson’s theorem {8}). It is even possible that
the Fourier series converges but does not represent the function, as it is the
case for Taylor series of C∞-functions? This question seems to have been
raised by Minkowski ([40, I, p. 24]).

Emile Picard’s Traité d’analyse, which appeared in 1891, is quite in-
structive in this respect. The problem of finding a harmonic function in a
domain when boundary values are given (the Dirichlet problem) is treated
for the sphere, in the section of the book devoted to functions of several
variables, before being treated for the circle. This is not because things
are worse for the circle than for the sphere. But the solution for the circle
belongs to the chapter “Fourier series” and this is not a subject to begin
with {9}.

However, the pages devoted by Emile Picard to the Dirichlet problem
on the circle are quite interesting; in 1900 Fejér knew them well and refers
to them in his note. Picard presents the method of Schwarz (1872), which
is based on the properties of the “Poisson kernel”

1− r2

1− 2r cos t + r2
= 1 + 2

∞∑

1

rn cosnt

As an application he shows that a continuous function on the circle whose
Fourier series is

∞∑

0

(an cosnt + bn sinnt)

can be expressed as a uniform limit of trigonometric polynomials of the form

∑

n≤N(r)

(an cosnt + bn sinnt)rn,

providing therefore a new proof of the Weierstrass approximation theorem.

In 1893, Ch. de la Vallée Poussin also used the Poisson kernel in order
to establish the Parseval formula, which is essentially equivalent to the
totality of the trigonometric system {10}. In 1901 Adolph Hurwitz stated
the Parseval formula as a lemma to his solution of the isoperimetric problem
by means of Fourier series, saying that he would prove it later {11}.

There were actually a few interesting results on Fourier series, but results
and problems were not related to each other. The problem of Minkowski
could have been solved easily using the method of Schwarz presented in
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Picard’s book, but Picard did not know about the problem and Minkowski
was apparently unaware of this part of the works of Schwarz and Picard.
Schwarz’s method also yielded the formula obtained by Ch. de la Vallée
Poussin, but de la Vallée Poussin was not aware of it. Certainly Hurwitz
did not know the paper of de la Vallée Poussin: this is acknowledged in
his article of 1903 {1}. Thus all these were isolated works on a marginal
subject.

Fejér wrote at the beginning of his thesis that nothing essentially new
appeared on Fourier series between 1885 and 1900. Though this is not
completely true, still Fourier series appeared as a stagnant subject, out of
fashion.

Fejér’s discovery is that the averages of the partial sums

σn =
1
n

(S0 + S1 + · · ·+ Sn−1)

approximate the given function f at each point where f(x+0) and f(x−0)
exist and f(x) = 1

2

(
f(x+0)+f(x−0)

)
, and uniformly when f is continuous

on the circle. Let us trace the circumstances of that discovery.

The idea of assigning a sum to a divergent series by means of some
summation process was familiar to mathematicians. According to Lebesgue,
d’Alembert already used the process of taking averages of partial sums for
the series

1
2

+
∞∑

1

cosnt (0 < t < 2π).

Summation processes became a significant topic of Abel’s investigations,
then of those of Poisson, Frobenius, Hölder, Cesàro and Borel. Abel proved
the famous theorem asserting that

lim
r↑1

∞∑

1

anrn =
∞∑

1

an

whenever the right-hand side exists in the usual sense. Poisson considered
the left hand side as the generalized sum of the series, whether or not the
series converges. Frobenius generalized Abel’s theorem by showing that

lim
r↑1

∞∑

1

anrn = lim
n→∞

1
n

(S0 + S1 + · · ·+ Sn−1)
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whenever the right side exists. Hölder generalized this theorem of Frobenius
by iterating the process of arithmetic means. Cesàro generalized another
theorem of Abel, on multiplication of series, and introduced for this purpose
the processes that we now denote by (C, k). Emile Borel defined new sum-
mation processes and applied them to the analytic continuation of functions
defined by a Taylor series. Fejér knew all these works.

In order to solve the Dirichlet problem for the circle in the form

f(r cos t, r sin t) =
a0

2
+

∞∑

1

(an cosnt + bn sinnt)rn

when the function prescribed at the boundary has the Fourier series

a0

2
+

∞∑

1

(an cosnt + bn sinnt)

one might think of using Abel’s theorem. However, the example of P. du Bois
Reymond excludes any hope to obtain a solution for an arbitrary continuous
function in this way. Could one apply the theorem of Frobenius? This seems
to have been the starting point of Fejér.

Fejér learned about this problem during the academic year 1899–1900
which he spent as a student at the University of Berlin. He obtained a
solution in Budapest at the end of October. He observed quickly that the
method he used was more important that the new solution of the Dirichlet
problem. In his Comptes Rendus note, the solution of the Dirichlet problem
appears as one of the consequences of his theorem. The proof is based on
the kernel

Kn(x) =
1− cosnx

n(1− cosx)
,

and it is strongly related to Schwarz’s solution of the Dirichlet problem,
which makes use of the Poisson kernel.

Fejér indeed did not introduce any new summation process for divergent
series; on the contrary, he used the most evident of them. It was not he
who introduced positive kernels in investigating Fourier series: the Poisson
kernel was well known and its application to Fourier series could be found in
Picard’s treatise long before 1900. Fejér did not solve a difficult conjecture
by sophisticated methods.

What he did is much more than that. He gave a clear, simple and
powerful statement in a field where the strange and the bizarre prevailed
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before. By coupling Fourier series and summation processes he provided a
convenient frame for both theories. Since that time, the summation process
of Riemann (based on the second differences of the second integral), the
method of Schwarz for the Dirichlet problem on the circle (that is, what
Fourier already used for computing temperatures inside a heated body) and
the newly introduced process of Weierstrass in order to study temperature
as a function of time by means of the series

∑
(an cosnx + bn sinnx)e−nt2

appeared as expressing the same principle, most simply presented in Fejér’s
note: on one hand, regularization of the function by means of a convenient
kernel, on the other, a summation process for Fourier series. The role of
positive kernels was emphasized, and developed in many works of Fejér
himself later (see section 5). Cesàro processes of different orders appeared
for different purposes — for Laplace series, the relevant process is (C, 2)
([40, I no 22, 24, 28]; [40, II no 63]). The two pages long note of Fejér
completely changed the position of trigonometric series in mathematics. It
also gave impetus to the study of general summation methods.

I shall restrict myself to a very few examples of applications and con-
tinuations of Fejér’s theorem, that I chose because they involve Hungarian
mathematicians. Others can be found in my joint book with Pierre-Gilles
Lemarié-Rieusset, Fourier series and wavelets ([83, part I, chapter 7]).

The Fejér kernel can be written as

Kn(x) =
n∑
−n

(
1− |m|

n

)
eimx.

A linear combination of Kn with positive coefficients yields a positive
function whose Fourier coefficients cm (in the complex form) are even
(cm = c−m), positive (≥ 0), convex for m ≥ 0 and decreasing to 0 as
m → ∞. Conversely each sequence (cm) of this form is a sequence of
Fourier coefficients of a positive and integrable function. This is a theorem
of W. H. Young (1913), rediscovered many times, and very useful {12}. The
analogue for functions c(t) (t ∈ R) is important in probability theory: if c(t)
is even, positive, convex on R+ and decreasing to 0 at infinity, it is Fourier
transform of a positive and integrable function — therefore, a characteristic
function if moreover c(0) = 1. This was pointed out by György Pólya and
such functions c(t) are called Pólya functions {13}.



Commutative Harmonic Analysis 165

Another kind of linear combinations of Fejér kernels was introduced by
Hardy (1910) {14}, used by Fejér (1913) ([40, I, 715–718]) and later on by
Ch. de la Vallée Poussin (1919) {15} in his lectures on the approximation
of functions of a real variable, namely

(N + 1)K(N+1)n(x)−NKNn(x)
(

=
∑

|m|≤Nn

eimx +
∑

Nn<|m|<(N+1)n

(N + 1)n− |m|
n

eimx

)
,

The convolution with a function f(x) reads

SNn(x) +
∑

Nn<|m|<(N+1)n

(N + 1)n− |m|
n

cmeimx

and the last sum is controlled when we assume an extra condition on the
coefficients. As a consequence, the statement of the Fejér theorem stays
valid when Fejér sums are replaced by partial sums, under specific conditions
on the coefficients. Hardy’s condition is cm = O( 1

|m|)(m → ∞). The Fejér
condition is

(F )
∑

|m| |cm|2 < ∞.

Here is an application: if a function f(z) =
∑∞

0 cmzm is holomorphic in
the disc |z| < 1 and continuous on |z| ≤ 1 and if the image of the disc has
a finite area on the Riemann surface spanned by f(z) (that is, (F ) holds),
then the Taylor series converges uniformly on the closed disc.

This is the case in particular when f(x) yields a conformal mapping of
the disc |z| < 1 on the interior of a simple Jordan curve. This theorem
was used by Harald Bohr and Gyula Pál and later by Raphaël Salem in
order to prove that for every real continuous function g on T there is a
homeomorphism h of T such that the Fourier series of g

(
f(t)

)
(t ∈ T)

converges uniformly {16}, {17}, {18}.
Only in the 1970’s was the result extended to complex functions g, by

purely real methods {19}, {20}.
Processes of summation raised a number of publications in relation with

Dirichlet series and Fourier series between 1910 and 1940. One of the main
contributors was Marcel Riesz. In particular, M. Riesz extended the theorem
of Fejér by showing that it stays valid when the process of arithmetic means
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(Cesàro process of order 1, or (C, 1)) is replaced by Cesàro process (C,α)
of any positive order (α > 0) {21} [158, pp. 62–64].

The effect of Fejér’s theorem on the theory of Fourier series was instanta-
neous. Actually this effect did not decrease along time. Books on harmonic
analysis or Fourier series give always Fejér’s theorem a special status. In
Katznelson’s Introduction to Harmonic Analysis [86] the first chapter is de-
voted to Fejér’s theorem in the frame of Banach-valued continuous functions
when the Banach space under consideration is invariant under translation
and the translation is continuous (a “homogeneous Banach space”). In the
book of Zygmund Trigonometric series [203] only a very few statements are
given their author’s name: one of them is “The Theorem of Fejér”.

2. The theorem of Riesz–Fischer

Another and even more important revolution occurred at the beginning of
the century: it was the Lebesgue theory of measure and integral. Though
the Lebesgue integral of bounded functions on a bounded interval was
already introduced in 1901 {22} and Lebesgue extended it to unbounded
functions in 1902 {23}, the first exposition of Lebesgue’s integral as we
know it now (for unbounded as well as bounded fonctions) appeared first in
his 1906 book “Leçons sur les séries trigonométriques” {24}. At the same
time, 1906, Fatou defended his thesis on “Séries trigonométriques et séries
de Taylor” {25}.

From the very beginning there was a strong linkage between the Lebesgue
integral and Fourier series.

However, the intimate relation between the two subjects appeared with
the Riesz–Fischer theorem on Fourier coefficients of L2 functions, that is, the
isomorphism between L2(T) and `2(Z) through the Fourier formulas, called
by Frigyes Riesz in a pleasant way “billet aller-retour permanent entre deux
espaces à une infinité de dimensions” ([156, I, p. 327]).

The essential tool used by both authors in a more or less explicit way
was the completeness of the space L2. Actually the terms were not yet
defined: a rather long sentence was needed in order to express that L2 is
complete. Now the theorem “Lp is complete” is a three-words statement,
but the substance of the method elaborated independently by Frederic Riesz
and Ernst Fischer is to be found in the definitions of a complete metric space
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and an Lp space (1 ≤ p < ∞). The superiority of Lebesgue’s over Riemann’s
integral and its role to come in functional analysis relies on this three-words
statement. The history of the Riesz–Fischer theorem deserves to be related.
Here it is.

Frederic Riesz was visiting Göttingen at the beginning of the year 1907,
while Ernst Fischer was in Brno (Brünn). Both of them, independently,
discovered the following fact: given a sequence (an) ∈ `2, there exists
a function f ∈ L2 whose Fourier coefficients are the an. Both of them
stated the result for general orthonormal systems. Riesz communicated his
result in a lecture at Göttingen on February 26, and Fischer in a lecture
at Brünn on March 5. Riesz immediately published the theorem in two
forms: an article in the Göttingen Nachrichten, presented by Hilbert on
March 9, and a note in the Comptes-Rendus de l’Académie des Sciences
de Paris, presented by Picard on March 11, published on March 18. The
motivation of Riesz was the Hilbert treatment of linear integral equation
by means of an orthonormal system. However he proved the theorem first
for the trigonometric system, then extended it for an orthonormal system
of functions defined on an interval, then to a general orthonormal system.
The last step is realized in another note aux Comptes-Rendus, presented on
April 2, published on April 8.

As soon as he read Riesz’s note of March 18, Ernst Fischer reacted by
sending his own contribution to the Comptes-Rendus. In a first note, dated
May 13, he recognized the priority of Riesz in publishing the result, but
pointed out that he had got it and lectured on it in Brno (Brünn) already
on March 5. The result was the same but Fischer’s approach was more
direct and stated the main point (L2 is complete) in an explicit (though not
so concentrated) form. In a second note, dated May 27, Fischer introduced
best approximation in L2 and announced that he would develop this theory
later in the frame of a kind of geometry of functions (“en m’appuyant sur
une espèce de géométrie des fonctions”).

It was Riesz’s turn to react. The Comptes rendus of June 24 published a
note of Frédéric Riesz with the title “Sur une espèce de géométrie analytique
des systèmes de fonctions sommables”. First, he reinforces his priority by
mentioning his lecture at Göttingen on February 26. Then he enlarges
the question. “After the fundamental result obtained by several geometers
during the past last years and based for the main part on those of Mr Fejér,
the idea of representing a function by its Fourier constants became very
familiar. The set of the summable functions could be represented in this
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way on a subset of the space with infinitely many dimensions. What is this
subspace? Until now we are not able to answer”.

In modern notations, what can we say of A(Z) = FL1(T)? Then Riesz
explains what happens when L1 is replaced by L2, namely FL2(T) = `2(Z).
({26}, {27}, {28}, {29}, {30}).

Frédéric Riesz went back to this subject in a later article when he
extended Fischer’s theorem (L2 is complète) in the now classical form known
as Riesz’s theorem: Lp is complete (p ≥ 1) ([156, I, C. 10, 441–489]). This
is still more fundamental than the theorem of Riesz–Fischer and its goes far
beyond harmonic analysis.

Fischer and Riesz worked independently and got the same result about
the same time at the beginning of 1907. According to the alphabetical
order, it would be justified, as some authors do (Nina Bari in her treatise on
Trigonometric series), to say “the theorem of Fischer and Riesz”. However
most authors and textbooks (and Frédéric Riesz in the first place) call it the
theorem of Riesz and Fischer. Anyhow it is the most important theorem
relating functions and Fourier coefficients. Let us try to see it in its true
perspective.

Given f ∈ L2(T ) and its Fourier coefficients Cn, the formula

∑
|cn|2 =

∫
|f |2,

called the Parseval formula, was known. Fatou had given the appropriate
framework, namely the totality of the trigonometric system in L2, and
also credit to Parseval for the formula, which can be found in a memoir,
dated 1806, at a time when nobody was able to really prove anything like
totality of the trigonometric system. Prior to Fatou, the Parseval formula
was called by Hurwitz “Fundamentalsatz der Fourierschen Konstanten” and
Fischer had just published “Zwei neue Beweise für der Fundamentalsatz
der Fourierschen Konstanten”, but the proofs were given only for bounded
integrable functions. Fatou was very near to the Fischer–Riesz theorem,
but he missed it ({25}, {31}, {32}).

The Parseval formula can be extended to the case of other exponents in
the form of two inequalities: when p ≤ 2 and 1

p + 1
q = 1,

( ∑
|cn|q

)1/q

≤
∫ ( |f |p)1/p
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and ∫ ( |f |q)1/q ≤
(∑

|cn|p
)1/p

.

These are the Hausdorff–Young inequalities (Young 1912 when q is an
even integer, Hausdorff 1923 in the general case). Therefore

FLp(T) ⊂ `q(Z), F `p(Z) ⊂ Lq(T).

Frédéric Riesz generalized these inegalities by considering a bounded or-
thonormal system instead of the trigonometric system (1923). After a con-
versation with his collegue Alfréd Haar in Szeged he observed that his result
can be expressed in a purely algebraic form, namely

( N∑

1

|yn|q
) 1

q

≤ M (2−p)/p

( N∑

1

|xn|p
) 1

p

when (y1, y2, . . . , yN ) is obtained from (x1, x2, . . . , xN ) through an orthogo-
nal matrix with entries majorized by M in absolute value. These inequalities
are easy consequences of the convexity theorem of Marcel Riesz (1924), gen-
eralized with a simplified proof by his student G. O. Thorin in 1948, which
now forms a part of the large theory of interpolation of linear operators
([158, C13], and other references in [203, chapter XII]).

The above inclusions, involving FLp and F`p, are strict except when
q = p = 2. Frédéric Riesz pointed out in 1907 that no characterisation
was known of FL1(T), in terms of usual sequence spaces. We know that
all spaces FLp(T) (1 ≤ q ≤ ∞) as well as FC(T) (Fourier coefficients of
continuous functions) are intrisically intricate except for the case q = 2.
The same is true for the spaces F`p(Z). Actually I wrote a whole book on
F`1(Z) [82] and it is an inexhaustible subject.

Let me relate a personal experience. When I got interested in the subject
it was not clear whether or not c ∈ FL1(T) implies |c| ∈ FL1(T), and f ∈
F`1(Z) implies |f | ∈ F`1(Z). Now we know, by Katznelson’s theorem {33},
that only analytic function operate, and consequently the answer is negative.
The first proof of this was given by means of explicit constructions, namely
a positive function on (0, π) such that its expansion as a sine series is
absolutely convergent and its expansion as a cosine series is not absolutely
convergent, and a positive sequence (an) such that

∑
an sinnx is a Fourier–

Lebesgue series and
∑

an cosnx is not. And I was led to such constructions
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by an article of Béla Sz. Nagy in which he proved the following theorem:
given a positive and decreasing function g on (0, π), and

an =
2
π

∫ π

0
g(x) cos nx dx, bn =

2
π

∫ π

0
g(x) sinnx dx

(assuming g ∈ L1 for the computation of the an, and xg ∈ L1 for the bn),
then, given 0 < γ < 1,

xγ−1g(x) ∈ L1(0, π) ⇐⇒
∞∑

1

n−γ |an| < ∞⇐⇒
∞∑

1

n−γ |bn| < ∞,

while, for γ = 1,

g ∈ L1(0, π) ⇐⇒
∞∑

1

|an| < ∞,

g(x) log x ∈ L1(0, π) ⇐⇒
∞∑

1

|bn| < ∞ {34}.

This nice theorem extends results of Young, Pólya and Zygmund con-
cerning the case γ = 1 (Young and Pólya are mentioned above), and actually
I got aware of these previous results through the article of B. Sz.-Nagy.

I shall not dwell on FL1(T) (the question raised by F. Riesz) nor on
FC(T). However, I have to explain their relation with the Riesz–Fischer
theorem.

If
∑ |cn|2 < ∞ (n ∈ Z), then

∑
cneinx is a Fourier–Lebesgue series.

Is there a better condition on the modulus |cn| with the same conclusion?
The answer is negative, and the clearest proof is given by a theorem of
Paley and Zygmund on random trigonometric series: if

∑ |cn|2 = ∞,
almost surely

∑±cneinx is not a Fourier–Lebesgue series; on the other
hand, if

∑ |cn|2 < ∞, the random series represents almost surely a function
belonging to all Lp(T) (1 ≤ p < ∞; but not L∞).

If
∑

cneinx (n ∈ Z) represents a continuous function, then
∑ |cn|2 <

∞ (Parseval). Is there a better conclusion? The answer is negative if
the following sense: given any (dn) ∈ `2(Z) there exist (cn) such that
|cn| ≥ |dn| and

∑
cneinx represents a continuous function. The original

proof by De Leeuw, Kahane and Katznelson used randomization; another
proof by Nazarov avoids it {35}, {36}.
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The question raised by F. Riesz in 1907 has a rather disappointing
answer not only for L1(Z), but for C(T) and all Lp(T) except L2(T): the
spaces of Fourier coefficients are not easily described and in particular
they are not stable by the operation of taking absolute values. Simple
characterizations of Fourier coefficients exist only for very few classes of
functions: analytic, C∞, Sobolev spaces, Schwartz distributions.

The success of the modern theory of wavelets comes from the fact that
many properties of functions can be recognized easily on the coefficients of
their wavelet expansion. There is a simple description of many function
spaces in terms of their wavelet transforms. Let me recall that a wavelet
system is an orthonormal system in L2(R) of the form

2
j
2 Ψ(2jx− k) (j ∈ Z, k ∈ Z)

where Ψ is a “good” function, for example Ψ ∈ S(R), the Schwartz space
of C∞ rapidly decreasing functions.

The wavelet theory is recent and explosive since 1985. However the
paradigm of wavelets is rather old and it deserves attention. It is the Haar
system, corresponding to Ψ(x) = 1 on (0, 1

2), Ψ(x) = −1 on (1
2 , 0) and

Ψ(x) = 0 elsewhere. Haar considered only the Haar wavelets on (0, 1)
and had to add the constant 1 in order to have a complete orthonormal
system in L2(0, 1). The article of A. Haar was published by Mathematische
Annalen in 1910, and his modern impact on harmonic analysis can not be
overestimated ([62, 331–371]).

The history of wavelets is very interesting example of interactions be-
tween physicists, engineers, and mathematicians [83]. The Hungarian physi-
cist Dénes Gábor, who was awarded the Nobel Prize, is one of the important
figures of this history; his fundamental contribution can be found in his ar-
ticle “Theory of communication” (1946) {37}.

3. Boundary values of analytic functions

The Taylor series of an analytic function in the unit disc of the complex
plane,

∞∑

0

cnzn
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can be considered as a one-parameter family of trigonometric series by
writing z = reit (0 < r < 1, 0 ≤ t ≤ 2π). The real and imaginary parts of
the Taylor series are conjugate trigonometric series.

Conversely, given two conjugate trigonometric series S and S̃, S + iS̃
can be written formally as

∞∑

0

cneint,

There is therefore an intimate relation between conjugate trigonometric
series and boundary values of analytic functions inside the unit disc.

The subject was explored and developed after 1906 by Fatou, Young and
Hardy. In the following decades three Hungarian names emerge: Frédéric
and Marcel Riesz, and Gábor Szegő. The book of Henry Helson, Harmonic
analysis [70] is in a large part devoted to their works and their consequences.

“Über (die) Randwerte einer analytischen Funktion” is the common title
of three important papers of F. and M. Riesz (1916), G. Szegő (1921) and
F. Riesz (1923) and also the matter of a joint article of F. Riesz and G. Szegő
(1920) ([156, D 4]). The first paper is the only one that Frédéric and Marcel
Riesz signed together ([156, D 1]). The second and the third come from an
exchange of letters between F. Riesz and G. Szegő, exploited separately by
both of them after their joint article ([173, 21–6], [156, D 1]). The notation
Hp for Hardy spaces, that is, spaces of analytic functions in the unit disc
such that ∫ 2π

0

∣∣f(reit)
∣∣p

dt = O(1) (r → 1)

was introduced by F. Riesz in the third paper. I use Hp(T) for the boundary
value.

Helson explains the meaning of the F. and M. Riesz theorem in the
following way:

1. “Theorem of F. and M. Riesz”. If µ is a mesure of analytic type,
meaning that its Fourier coefficients of order n vanish when n < 0, then
µ is absolutely continuous. Equivalently, if F is analytic in the unit disc
and

∫ ∣∣F (reit)
∣∣ dt = O(1), F is the Poisson then integral of a function in

H1(T) (here H1(T) denotes the subspace of L1(T) consisting of functions
with vanishing coefficients of negative order).

2. If f ∈ H1(T) and f vanishes on a set of positive measure, then f = 0.
What F. and M. Riesz stated and proved combines the two statements.
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Let g be an analytic function in the disc, of bounded variation on T. It was
already known that g must be continuous. Thus g maps T into a continuous
and rectifiable curve in the plane. The arc length along the curve determines
a measure on the curve. The original theorem asserts that the image under
g of a Lebesgue null set on T is a null set on the curve and vice-versa. This
is the equivalent to statements 1 and 2.

The starting point of F. and M. Riesz was Fatou’s theorem on boundary
values of bounded analytic functions — each bounded analytic function in
the unit disc has non-tangential limits almost everywhere on the circle.

The starting point of the article of G. Szegő and F. Riesz was the theorem
of Fejér (1916) which states that each positive trigonometric polynomial on
the circle is of the form |a0 + a1e

it + · · ·+ ameimt|2. Szegő showed that the
square moduli of the functions in H2(T) are characterized by the property
that they are positive and their logarithm is Lebesgue integrable (except for
the zero function). Riesz extended this to all Hp(T) by means the following
decomposition theorem: every function in Hp(p > 0) can be written in the
form of a product gh, where h is bounded, g has no zero in the open unit
disc, and g ∈ Hp.

This decomposition plays an essential role in the study of invariant
subspaces of H2(T). According to Arne Beurling, g is an outer and h an
inner function, if moreover the boundary values of h have modulus 1 almost
everywhere. Outer functions satisfy

∫
log |g| = log

∣∣∣∣
∫

g

∣∣∣∣ > −∞

and this characterizes them. Inner functions can, in turn, be represented as
the products of a Blaschke factor and a singular factor:

h(z) =
∏(

z − zj

1− zz̄j

)
exp

(
−

∫
eit + z

eit − z
dµ(t)

)

where the zj are inside the unit disc and Π|zj | > 0, and dµ is a positive
measure on T. Beurling’s theorem, generalized by Helson, is as follows.
Let M be an invariant subspace of L2(T) (eitM ⊂ M). Either M consists
precisely of all functions of L2(T) that are supported on some measurable
subset of T, or it is qH2(T) for some inner function q. (The first kind of
subspace is a Wiener subspace, the second a Beurling subspace). It is worth
mentioning that already in 1907 Carathéodory and Fejér introduced the so-
called Blaschke factors, in the case of a finite number of zeros zj , as solutions
of an extremal problem ([40, I, 19]).
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An earlier theorem of Szegő (1920–21) answers an extremal problem,
namely to compute the infimum of

∫ |1 + P |2ω when ω is a non negative
integrable function on T, and P ranges over all trigonometric polynomials
of the form P (x) = a1e

ix + · · ·+ aneinx. The Szegő theorem is

inf
P

∫
|1 + P |2ω = exp

∫
log ω.

The interpretation when log ω is not integrable, that is, the right hand side
is zero, is obvious but very important, and it is of constant use in prediction
theory ([173, 20–3, 21–1]).

The subject of Hp spaces was renewed in the 60s and 70s from the
probabilistic point of view by Austin, Gundy, Burkholder and Silverstein.
The Hp martingales associated with Brownian motion give an elegant way
to recover the classical result on Hp spaces of analytic functions. Boundary
values of analytic functions is both an old and a modern subject {38}, {39},
{40}, {41}, {42}, {43}, {44}.

Together with Hp spaces of analytic functions, the subject of conjugate
fonctions was in the air in the 1920s. Is L1(T) stable under conjugacy? The
answer is easily seen to be negative (consider a cosine series with convex
coefficients) and Kolmogorov in 1924 {45} and Zygmund in 1929 {46} gave
substitutes involving either “weak L1” or the space L log L. Is Lp(T) stable
under conjugacy when 1 < p < ∞? Now the answer is positive and it is due
to Marcel Riesz (a Comptes rendus note in 1924 and a developed article in
1927) ([158, 29, 33]). The theorem is also expressed by inequalities

∫
|f̃ |p ≤ Ap

∫
|f |p.

It is a deep result, and many proofs of it were given (a pretty proof was
published in 1990 in the Comptes rendus by S. Pichorides {47}). Marcel
Riesz himself gave two proofs. One is long and direct, the other applies the
convexity theorem that he found exactly at that time (1927) ([158, 32]) as
a tool for interpolating the inequality between p = 2 (obvious case) and p =
even integer (amenable case).

The convexity theorem, in the form given by Thorin (1948) is still
more important than the Hausdorff–Young and Marcel Riesz inequalities.
But undoubtebly Marcel Riesz had these applications in mind when he
discovered and proved his convexity theorem.
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4. Riesz product and Sidon sets

As a consequence of the F. and M. Riesz theorem the following holds: let
f be a function of bounded variation on the circle, together with f̃ , the
conjugate function; then the Fourier coefficients of f are o( 1

n)(n →∞).
In 1918, two years after the communication of F. and M. Riesz at the

fourth Congress of Scandinavian Mathematicians, Frédéric Riesz published
a paper on the following question: given a continuous function of bounded
variation in the circle, are its coefficients necessarily o( 1

n) (n →∞)?
He provided a negative answer with the example

f(x) = −x + lim
m→∞

∫ x

0
(1 + cos x)(1 + cos 4x) . . . (1 + cos 4m−1x) dx.

Nowadays we are more familiar with the language of measures and we can
say that the derivative of f(x)+x is the first example of a positive continuous
measure whose Fourier coefficients do not tend to zero. It can be written
as a “Riesz product”

µ = Π∞1 (1 + cos 4nx).

The partial products are positive and can be written in the form

1 +
∑

cos 4nx + R,

R containing only frequencies of the form ±4n1 ± 4n2 · · · ± 4nj (1 ≤ n1 ≤
n2 ≤ · · · ≤ nj , j ≥ 2). Their L1-norm is bounded (actually, constant).
Taking a weak limit of a subsequence defines µ as a positive measure, with
a Fourier expansion of the type just described: µ̂(4n) = 1

2 (n = 1, 2, . . . ).
There are other ways to answer F. Riesz’s question and they appeared

in the 1920’s in the investigations of A. Rajchman on sets of uniqueness.
Maybe the simplest is to consider the probability measure carried by the
standard triadic Cantor set, whose Fourier transform is

υ̂(u) = Π∞1 cos (2π3−nu);

it is easy to see that υ̂(3m) tends to a non-zero limit as m →∞.
The construction of F. Riesz is versatile and proved very useful in

harmonic analysis. Given a positive sequence of integers λn such that
λn+1/λn ≥ q ≥ 3 (n = 1, 2, . . . ) a sequence (an) such that 0 < an ≤ 1
and a real sequence ϕn, the Riesz product corresponding to these data is

R
(
(λn), (an), (ϕn)

)
= Π∞1

(
1 + an cos (λnx + ϕn)

)
.
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It defines a positive and continuous measure whose Fourier expansion reads

1 +
∞∑

1

an cos (λnx + ϕn) + R,

R containing only frequencies different from 0 and from the λn. Such a
measure is either absolutely continuous (when (an) ∈ `2) or purely singular
(when (an) /∈ `2). When the sequence λn is fixed, the measure depends only
on the sequence c = (cn) with cn = aneiϕn and it can be written as

µc = Π∞1
(
1 + Re(cneiλnx)

)
.

It is known that, given c and c′, µc and µc′ are either equivalent (same null-
sets) or orthogonal (carried by disjoint Borel sets). When all cn are in a
compact subset of the open unit disc, the equivalence condition is c−c′ ∈ `2

(Peyrière, Brown and Moran). In the general case it is still unknown and it
is an active field of research {48}, {49}, {50}, {51}.

The lacunary condition on the λn implies that the factors of the Riesz
product are pretty independent. The study of Riesz products anticipated
the theory of multiplicative processes and the random measures that they
generate. Actually random Riesz products ((λn) and (an) fixed, ϕn random
with the usual distribution) are parts of both theories {52}.

In 1924 Simon Sidon went back to the original question: given a con-
tinuous function of bounded variation on the circle, what can we say about
its Fourier coefficients? Sidon proved that they satisfy the equivalent con-
ditions limn→∞ 1

n

∑n
1 |kak|2 = 0 and limn→∞ 1

n

∑n
1 |kak| = 0.

Using an expression introduced by Mihály Fekete in 1916, the sequence
(kak) “quasi-converges” to 0. Actually Sidon’s condition are necessary and
sufficient for the continuity of the function whose Fourier coefficients are
ak, when bounded variation is assumed; this is Wiener’s condition for the
continuity of measures. Though Wiener found it independently, part of the
result belongs to Sidon.

Riesz products in the modern acceptation were introduced by Sidon in
his study of lacunary trigonometric series. In the 1920’s Hadamard lacunary
trigonometric series, meaning series of the form

(∗)
∞∑

1

an cos (λnx + ϕn), λn+1/λn ≥ q > 1 (n = 1, 2, . . . ),

became a popular subject, with contributions of Kolmogorov, Banach and
Zygmund in particular. The contribution of Sidon proved crucial. First he
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proved that if (∗) is the Fourier series of a function bounded from above (or
from below), then

∑∞
1 |an| < ∞ (1927). Then he identified the sequences(

f̂(λn)
)(

f ∈ L1(T)
)

with the sequences tending to zero; in brief,

FL1 | ∧ = c0(∧), ∧ = {λn} (1932).

The two results are strongly related to each other. Nowadays Sidon sets are
defined as subsets ∧ of Z satisfying one of the equivalent relations:

sup
x

∑

λ∈∧
Re(aλeiλx) ≥ c

∑

λ∈∧
|aλ|

for some c > 0 and all finite sequences (aλ)(λ ∈ ∧),

FL1 | ∧ = c0(∧)

already mentioned, and
FM | ∧ = `∞(∧),

where M is the space of complex measures on the circle. The relation
of the last condition with the Riesz product is clear: if λ = (±λn) with
λn+1/λn ≥ q > 3, given any sequence (cn) in the unit disc, the measure
that I denoted by µc satisfies µ̂c(λn) = 1

2cn. From this fact it is easy to
deduce Sidon’s theorems of 1927 and 1932.

Sidon sets were investigated vigorously since the end of the 1950’s.
A crucial step was accomplished in 1970 by S. Drury when he proved that
the union of the two Sidon sets is a Sidon set. New characterizations were
given by G. Pisier and J. Bourgain in the 1980’s. Meaningfully the 1985
paper of Bourgain is entitled: “Sidon sets and Riesz products”. The subject
is a crossing point between harmonic analysis, combinatorics and probability
theory {53}, {54}, {55}, {56}.

There are many other properties of Hadamard lacunary trigonometric
series. Let me mention two of them, involving Hungarian mathematicians.

If the coefficients of a Hadamard lacunary trigonometric series are real
and tend to zero, the series converges at some point. This is theorem of
Zygmund. What can we say of the sequence (λn) (1 ≤ λ1 < λ2 . . . ) such
that every series

∞∑

1

an cos (λnx + ϕn), lim
1→∞

an = 0,
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converges at some point x? This question was considered by Erdős in
1966, and the subject seems difficult. There are necessary conditions, and
sufficient conditions that look like the necessary conditions, and sufficient
conditions for ∧ to be a Sidon set, but it is not known whether the Sidon
implies the Zygmund properties, nor the reverse {57}.

Suppose now that f(t) is a continuous function and

f(t) =
∞∑

1

an cos (λnx + ϕn), (t ∈ R),

(λn) being a Hadamard sequence. Then there is an intimate relation be-
tween the local properties of the function and the order of magnitude of the
coefficients. Very precise results were obtained by Géza Freud in 1962 and
1966. Here are two of them {58}, {59}.

1. Assume an = 1/λn. Then

a) f(t + h)− f(t) = O

(
|h| log

1
|h|

)
(h → 0) everywhere

b) lim
h→0

(
f(t + h)− f(t)

)
/

(
|h| log

1
|h|

)
> 0 quasi everywhere

c) lim
h→0

(
f(t+h)− f(t)

)
/

(
|h|

√
log

1
|h| log log

1
|h|

)
< ∞ almost every-

where

d) f(t + h)− f(t) = O
( |h|) (h → 0) on a dense t-set

e) f is nowhere differentiable.

This last statement, e), is due to Hardy, and the function under consid-
eration is called a Hardy–Weierstrass function. The theorem expresses that
the run of the function is as fast as possible (taking a) into account) when
t belongs to some set of the second category of Baire (it is the meaning
of “quasi everywhere”), and that is as slow as possible (taking e) into ac-
count) on some dense set, with an average behaviour (“almost everywhere”)
inbetween. Such a behaviour was discovered later for the Brownian motion,
with |h| 12 instead of |h|, and it is very much in the spirit of the modern
investigations on multifractal analysis.
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2. Assume ∫ π

−π

∣∣∣∣
f(t + h)− f(t)

h

∣∣∣∣ dh < ∞

for some t. Then
∑ |an| < ∞.

Assume f(t + h) − f(t) = O
( |h|α)

(h → 0) for some t (0 < α < 1).
Then an = O(λ−α

n ) (n → ∞) and f ∈ ∧α, the Lipschitz–Hölder class of
order α.

The last statement was discovered independently by Masako Sato–
Izumi and there are several variations about in a paper of Izumi–Izumi–
Kahane {60}. It is one the very rare properties of Hadamard lacunary
trigonometric series where the Hadamard condition proves necessary and
sufficient.

5. Miscellaneous∗

I insisted on the importance of the theorem that Fejér published in 1900.
Fejér’s works and personality go far beyong this first and essential result.
On the other hand, Fourier analysis in Hungary involved many first-class
mathematicians and many more topic than what I considered in the pre-
ceding sections. Let me try to fill some of the large gaps of this review.

Let me begin with a theorem of Ferenc Lukács (1919).

Suppose f ∈ L1(T) and
∫ h
0

∣∣f(x + t)− f(x− t)−Dx

∣∣ dt = O(h). Then

Dx = − lim
n→∞π

S̃n(x)
log n

where S̃n(.) denotes the n-th partial sum of the conjugate Fourier series
of f .

This is theorem B in the original paper of Lukács {61}. Theorem A is a
particular case of special interest, when it is assumed that both f(x+0) and
f(x− 0) exist, and Dx = f(x + 0)− f(x− 0). Theorem C is a consequence,
namely that S̃n(x) = o(log n) (n →∞). almost everywhere.

∗Most of the references of this section are given in the text. A few others are listed at
the References section of the paper.
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The paper was published in 1920, but the actual date is 1918. F. Lukács
was a young man, who died on November 30, 1918, and this is his legacy.
It is worth seeing the context.

Theorem A answers in a complete way a question that Fejér asked in
1913: to determine the jump of a function at a point through its Fourier
expansion. Fejér himself indicated different ways and gave a complete
answer in the case of a function satisfying the Dirichlet conditions. Both
Fejér’s and Lukács papers are entitled: “Über die Bestimmung des Sprunges
einer Funktion aus ihrer Fourierreihe” ([40, I p. 718], {61}). In between
several articles appeared in Hungarian journals and Hungarian language,
by Fejér again (1913), Pál Csillag (1918) and S. Sidon (1918) ([40, I p. 744],
{62}, {63}). The formula of Lukács was discovered by Fejér when Dirichlet’s
conditions are satisfied, then proved by Csillag for functions of bounded
variation, and reproved by Sidon in a simpler way for the same functions.
Both Csillag and Sidon were stimulated by the questions F. Riesz asked at
the end of this paper of 1918 when he introduced the Riesz product:

“Gibt es eine stetige, nach 2π periodische Funktion von beschränkter
Schwankung, für welche die Folgen nan, nbn konvergieren und wenigstens
einer der beiden Grenzwerte von Null verschieden ist? Gibt es eine unstetige
Funktion von beschränkter Schwankung, für welche an = o( 1

n) und bn =
o( 1

n)?” (an et bn are the cosine and sine coefficients). The formula answers
both questions in a negative way.

Though quite different, Lukács’s theorem originated from the same area
as Riesz products and Sidon sets. Theorem A is well known, theorems B
and C deserve to be known also.

The thesis of Marcel Riesz was published in 1910, in Hungarian, in the
Mathematikai és Physikai Lapok. The main result was already published in
the Comptes-rendus in October 1907 {64}, when M. Riesz was not yet 21.
It answers a question asked by Fejér, namely, to give a condition on the
coefficients of a trigonometric series

∑
(an cosnx+bn sinnx) such that, if this

condition is satisfied and if the arithmetic means σn(x) of the partial sums
converge to 0 everywhere, it is necessarily the null series. The condition
given by M. Riesz is

∞∑

1

|an|+ |bn|
n2

< ∞.

Moreover, the assumptions |an|+ |bn| = o(1) and σn(x) = o(1) except on a
countable compact (= reductible) set imply the same conclusion. As a test
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of the sharpness of the result one can consider the series

∞∑

2

n sinnx

log n
,

1
2

+
∞∑

1

cosnx

the first is (C, 1) summable to 0 everywhere (last example in the thesis)
and the second everywhere except 0 (mod 2π) (example given by Fejér).
There are very good results but the subject was not explored later anymore
neither by Riesz nor by other Hungarian mathematicians (see a comment
on {64} in the references).

However, the subject belongs to an important stream of real and har-
monic analysis, the Riemann theory of trigonometric series and the Cantor
theory of uniqueness, and it was cultived later by Russian and Polish math-
ematicians, Menšov, Bari, Rajchman and Zygmund. Moreover, the thesis
as a whole is a masterpiece of exposition of old and new ideas, not un-
like the historical models, Riemann’s and Cantor’s theses on trigonometric
series. The thesis of M. Riesz was translated into English by J. Horváth
and published in English in the Collected papers of M. Riesz in 1988. It is
available now to a large international public and it is a delightful piece of
reading. It connects the Riemann process of summation, the sets of unique-
ness introduced by Cantor, the process of summation of Fejér, the Lebesgue
integral, the summability processes used in Taylor series and a critical ex-
amination of Hadamard’s statement on analytic continuation, with also a
series of examples among which I have mentioned just one [158].

A permanent question of interest in Fourier analysis is the relation
between properties of functions and behaviour of Fourier coefficients. For
instance, Marcel Riesz in his thesis asked for a characterisation of Fourier
coefficients of continuous functions (in a simple form which involves only
the coefficients and not a variable x); the specific question is still unsolved
and very likely unsolvable. We already discussed the question after the
Riesz–Fischer theorem. Let us write again cm (m ∈ Z) for the Fourier
coefficients of a function f . A theorem of S. Bernstein (1914) asserts that
the assumption f ∈ Lip α, α > 1

2 implies
∑ |cn| < ∞. Here f ∈ Lipα

means
sup
x,h

(|h|−α
∣∣f(x + h)− f(x)

∣∣) < ∞.

The subject was renewed by Ottó Szász (see [172]), then, using Szász’s
results, by Hardy and Littlewood (1928). Here is the first result of Szász
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(1922): the assumption

(L2)
∫ 2π

0

∣∣f(x + 2t) + f(x− 2t)− 2f(x)
∣∣2

dx = O(t2α) (t ↓ 0)

with 0 < α < 1, implies
∑ |cm|k < ∞ when k > 2

2α+1 , but not when
k = 2

2α+1 . The best way to see it is to observe that

(L2) ⇐⇒
∑

|m|≤n

m4|cm|2 = O(n4−2α) (n →∞)

as Szász does at the end of this 1928 paper. The latter is devoted to the
consequences of a more general assumption, namely

(Lp)
∫ 2π

0

∣∣f(x + 2t) + f(x− 2t)− 2f(x)
∣∣p

dx = O(tpα) (t ↓ 0)

with p > 1 and −1
p < α < 1. In particular, when 1 < p ≤ 2 and 0 < α < 1,

Lp implies
∑ |cm|k < ∞ when k > p

p(1+α)−1 , but not necessarily when
k = p

p(1+α)−1 . The same statement appears as Theorem 8 in the article of
Hardy and Littlewood devoted to the Lip (α, p) classes (essentially, classes
of functions that satisfy condition (Lp)), with reference to the results and
observations of Szász (see collected papers of G. H. Hardy, vol III, pp. 631–
632).

Late in life (1948) L. Fejér gave an expository talk on singular and
positive kernels, and he made use of a pleasant image: at a first look, “elles
se ressemblent comme les pingouins”, they look all the same, like penguins
([40, II, pp. 750]). Of course, Fejér then shows how different these creatures
can be. It is worth visiting some pieces of the Fejér collection of positive
trigonometric polynomials, the Fejér personal zoo. The favorite, born in
1900, is the Fejér kernel

Kn(x) = 1 + 2
(

1− 1
n

)
cosx + · · ·+ 2

n
cos (n− 1)x.

Then comes the integrated Dirichlet kernel (divided by 2 as usual)

Fn(x) = sinx +
1
2

sin 2x + · · ·+ 1
n

sinnx,
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positive on ]0, π[ and uniformly bounded with respect to x and n, that serves
as a basic cell in order to construct continuous functions whose Fourier series
diverge at 0 ([40, I p. 258], 1909). Not far from those we meet the Lukács
polynomials

Ln(x) = sinx +
(

1− 1
n

)
sin 2x + · · ·+ 1

n
sinnx,

also positive on ]0, π[ ([40, II. p. 230]), which a little more should be said.
As we saw, Lukács died in 1918, and he never published that result, but
he mentioned it to Fejér, with a direct proof. Fejér included this “Satz von
Lukács” in an extended article in 1928, with a new and interesting proof,
using generating functions of the form

∞∑

n=1

nLn(x)
sinx

rn−1

(
=

1
(1− r)2

1
1− 2r cosx + r2

)
.

The method of generating functions was used again in order to derive
properties of the Cesàro means of order > 1 of the Dirichlet kernels, as
presented in the 1948 survey ([40, II p. 742–4]). The most striking result,
going back to 1932, is that the Cesàro means of order 3

K(3)
n (x) =

(
n+3

3

)−1((n+3
3

)
+ 2

(
n+2

3

)
cosx + 2

(
n+1

3

)
cos 2x + · · ·+ 2

(
3
3

)
cosnx

)

are not only positive on ]0, π[, but also decreasing on that interval. The zoo
contains other interesting creatures, but I’ll stop the visit here.

The properties of K
(3)
n (x) were used immediately by Fejér in order to

compare the graph of a function and those of the Cesàro means of order 3
of its Fourier series, that is, the convolutions

S(3)
n = f ∗K(3)

n .

For example, if f is a continuous, odd, and concave on [0, π], the same
holds for S

(3)
n ([40, II p. 480], 1933). After Fejér, the comparison between

the graph of a function and those of approximating polynomials became a
Hungarian speciality, with important contribution of Pál Turán and Pólya
in particular. Here are some of them.

Though different shapes of functions were considered, let me stick to
functions f of the above type (odd, f(0) = f(π) = 0, concave on [0, π]). In
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1935, Turán proved a spectacular result for the Cesàro means S
(k)
n of these

functions, namely

f(x) ≥ S(1)
n (x) ≥ S(2)

n (x) ≥ S(3)
n (x) . . . (0 ≤ x ≤ π),

implying that the best approximation is provided by the S
(1)
n , the Fejér

sums (Journal of the London Mathematical Society, 10 (1935), pp. 277–
280). For such functions again, Turán proved in 1938 that the pointwise
approximation by the S

(k)
n improves when n increases:

f(x) ≥ S
(k)
n+1(x) ≥ S(k)

n (x) (0 ≤ x ≤ π; k ≥ 2, n ≥ 0),

(Theorem 3, Proceedings of the Cambridge Philosophical Society, 34 (1938),
pp. 134–143); the same holds when k = 1 and f satisfies the symmetry
condition.

f(π − x) = f(x) (0 ≤ x ≤ π)

(Theorem 4, ibidem). The situation is different for ordinary partial sums
S

(0)
n which are positive on ]0, π[ (L. Koschmieder, Monatshefte für Mathe-

matik und Physik, 39 (1932), pp. 321–344). What Turán proved is

0 ≤ S(0)
n (x) ≤ 2f(x) (0 ≤ x ≤ π)

and 2 is the best constant (Journal of the London Mathematical Society, 13
(1938), pp. 278–282).

In 1958, G. Pólya and I. I. Schoenberg returned to the general topic
introduced by Fejér: comparing the shapes of approximating trigonometric
polynomials and the shape of the function. They considered the de la Vallée
Poussin kernels

Vn(x) = cn

(
cos

x

2

)2n
(∫ π

−π
Vn(x)

dx

2π
= 1

)

and the convolutions f ∗ Vn. They observed that, compared to the Cesàro
means S

(k)
n , “the de la Vallée Poussin means possess such shape-preserving

properties to a much higher degree, thanks to their variation diminishing
character” (Pacific Journal of Mathematics, 8 (1958), pp. 295–334). Among
the numerous results of Pólya and Schoenberg, one is related to the simple
situation mentioned above (odd functions, concave on [0, π]); then the de
la Vallée Poussin sums enjoy the property that Fejér pointed out for S

(3)
n ,

namely
0 ≤ (f ∗ Vn)(x) ≤ f(x) (0 ≤ x ≤ π)
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and f ∗ Vn is concave on [0, π]. For general oscillating shapes, they were
able to prove results of the same nature.

At the end of the thirties multiple Fourier series became a topic of inter-
est, with new techniques developed by Marcinkiewicz and Zygmund {65}.
The history involves Fejér again. Going back to 1913, Hardy and Littlewood
proved that

(∗) lim
n→∞

1
n + 1

(
S2

0(x) + S2
1(x) + · · ·+ S2

n(x)
)

= f2(x)

when f ∈ L1(T ) and f is continuous at x, Sn(= S
(0)
n ) denoting the n-th

partial sum of the Fourier series. As a consequence

lim
n→∞

1
n + 1

(
S0(x)− f(x)

)2 + · · ·+ (
Sn(x)− f(x)

)2 = 0

and

lim
n→∞

1
n + 1(

∣∣S0(x)− f(x)
∣∣ + · · ·+ ∣∣Sn(x)− f(x)

∣∣) = 0

the “strong summability” theorem. The proof of (∗) is not easy. Fejér had
the idea of deriving it from a statement on double Fourier series ([40, II
p. 725], 1938): if f ∈ L1(T)2 and f is continuous at (x, y) the “square
partial sums” Sn,n(x, y) converge to f(x, y) through the Cesàro process of
order 3 (C, 3). This relies on the positivity of the corresponding kernel, one
more creature of the Fejér zoo. Actually Géza Grünwald extended the result
by proving (C, 1) summability almost everywhere, without the continuity
condition (Proceedings of the Cambridge Philosophical Society, 35 (1939),
pp. 343–350) and it was extended later to (C, α) summability (α > 0) by
J. Herriot (Transactions of the American Mathematical Society, 53 (1952)).

The strong summability theorem of Hardy and Littlewood can be applied
in order to give conditions for a cosine series to be a Fourier–Lebesgue series,
as the Fejér theorem is applied in order to get the Young convexity condition
mentionel in section 1. This was done by S. Sidon (Hinreichende Bedingun-
gen für den Fourier Charakter einer trigonometrische Reihe, Journal London
Math. Soc., 14 (1939), 158–160) and generalized by S. A. Teljakowskii (On a
sufficient condition of Sidon for integrability of trigonometric series (in Rus-
sian), Mat. Zametki, 14 (1973), 317–328) and more recently by F. Móricz
(Sidon type inequalities, Publ. Inst. Math. Szeged, 48 (1990), 101–109).
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Summability processes can be considered from a quantative point of
view: given a process and a function space, how far does the process converge
to functions that belong to the space? Given a process, is there an optimal
speed of convergence, and a maximal function space for which the process
converges that fast? The last question was asked by Jean Favard in 1947
(Colloque d’ Analyse Harmonique, CNRS, Nancy); the maximum function
space is called the “saturation class” of the process. The first question goes
back to the beginning of the century and the works of S. Bernstein, Dunham
Jackson and others.

Both questions were investigated in Hungary. The first main contri-
bution is due to Béla Sz. Nagy (Sur une classe générale de procédés de
sommation pour les séries de Fourier, Hungarica Acta Mathematica, 1, 3
(1948), 14–52). For quite general processes of summation Sz. Nagy ob-
tained very precise estimates on the order of approximation on one hand,
on “Lebesgue constants” on the other. The particular processes given by
fractional integration were investigated by M. Mikolás and related to some
one-sided generalized limits, denoted by f〈x±0〉 (Application d’une nouvelle
méthode de sommation aux séries trigonométriques et de Dirichlet, Acta.
Math. Acad. Sci. Hungar., 11 (1960), 317–344). For the strong summabil-
ity process h(p) (p ≤ 1) which associates with a given function f and its
Fourier sums Sk(f, .) the pointwise approximations

hn(f, x, p) =
1

n + 1

( n∑

k=0

∣∣f(x)− sk(f, x)
∣∣p

) 1
p

,

the pioniering work was that of György Alexits (Acta. Sci. Math. Szeged,
26 (1965), 211–224): if f belongs to the Hölder class ∧α and α < 1

p , then
hn(f, x, p) = O(n−α) (n → ∞) uniformly with respect to x, and that is
false for α = 1

p . In 1969, Géza Freud investigated the boundary case and
the saturation problem, and obtained very precise results: given h(p), the
best speed of convergence is n−1/p, that is, hn(f, x, p) = O(n−1/p) uniformly
in x when f ∈ Xp, the saturation class (containing non-constant functions),
while hn(f, x, p) = o(n−1/p) implies that f is a constant. The space Xp

is included in ∧ 1
p

and consists of functions f satisfying f(x + h) − f(x) =

o
( |h|1/p) a.e. The space X2 is defined by

X2 =

{
f :

∫ ∣∣∣∣
f(x + t) + f(x− t)− 2f(x)

t

∣∣∣∣
2

dt < ∞
}
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(Acta Math. Acad. Sci. Hungar., 20 (1969), pp. 275–279). More information
about the topic can be found in the article of L. Leindler in Journal of
Approximation Theory, 46 (1986) pp. 58–64.

Let us turn back to the favorite animals of Fejér, the positive (≥ 0)
trigonometric polynomials. The fundamental theorem expresses that they
are nothing but the square moduli of polynomials in eix:

f(x) =
∣∣P (eix)

∣∣2
.

It was guessed by Fejér, proved by F. Riesz, proved again in several ways
by J. Egerváry and Fejér himself (see [40, I. p. 843], 1915). From this
representation Fejér derived a number of inequalities. Here are the simplest.
If

f(x) = 1 + λ1 cosx + µ1 sinx + · · ·+ λn cosnx + µn sinnx ≥ 0,

then f(0) ≤ n + 1, with equality if and only if f is the Fejér kernel of order
n. If moreover f is even (µ1 = · · · = µn = 0), then

|λ1| ≤ 2 cos
π

n + 2

([40, I. p. 869]). This last inequality plays a role in the modern theory of
operators in Hilbert spaces. It can be translated into the following statement
(V. Haagerup, P. de la Harpe, Procedings of the American Mathematical
Society, 115 (1992), pp. 371–379). If T is a linear operator in a Hilbert
space H such that ‖T‖ ≤ 1 and Tn = 0, its “numerical radius”

ω2(T ) = sup{∣∣〈Tx, x〉 : x ∈ H, ‖x‖ = 1}
satisfies ω2(T ) ≤ cos π

n−1 . Inequalities of this type are a topic of current in-
terest (see for example C. Badea and G. Cassier, Constrained von Neumann
Inequalities, Adv. Math., 166 (2002), 260–297).

After such a random walk through the legacy of Fejér a natural question
is: why stop here? We visited only a few spots, leaving aside many more
places of interest. Instead of filling the gaps between the first sections of
this survey, I created more and more gaps — as it is natural for a plane
Brownian motion. The best I can do is to invite the reader to a promenade
inside journals and books, to discover by himself the Hungarian jewels in
harmonic analysis, of which I uncovered only a small part.
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1932.

{2} H. Lebesgue, Sur une condition de convergence des séries de Fourier, Comptes
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{13} G. Pólya, Remarks on characteristic functions, Proc. Berkeley Symp. Math. Statis-
tics and Probability, Berkeley, 1949, 115–123.

{14} G. H. Hardy, Summability and convergence of slowly oscillating series, Proc. Lon-
don Math. Soc. (2), 8 (1910), 301–320.
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580) = Oeuvres Math., p. 334–335, Références et errata, p. 5, Paris (Hermann),
1967.
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{64} M. Riesz, Sur les séries trigonométriques, Comptes rendus Acad. Sci. Paris, 145
(1907), 583–586.

{65} J. Marcinkiewicz and A. Zygmund, On the summability of double trigonometric
series, Fund. Math., 32 (1939), 122–132.

Comment on {64}. The note {64} is worth reading by those who know
French. It is beautifully written and states the main results of the thesis.
Surprisingly it is not reprinted in the Collected Works of M. Riesz. As a sign
of bad luck it cannot be found in the 1907 issue of the Jahrbuch über die
Fortschritte der Mathematik under the name of M. Riesz; it is attributed
to F. Riesz.
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