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Constructive Function Theory: I.
Orthogonal Series

FERENC MÓRICZ∗

1. The Riesz–Fischer Theorem

Let us consider the family of measurable functions defined on a Lebesgue
measurable subset E of finite or infinite measure of the real line R :=
(−∞,∞). The functions may take real or complex values. The function
space L2(E) consists of all measurable functions f whose squares |f |2 are
integrable in the Lebesgue sense. By the Schwarz inequality, f will then be
integrable on the subsets of finite measure. Let us endow L2(E) with the
inner product and norm

(f | g) :=
∫

E
f(x)g(x) dx and ‖f‖ :=

√
(f | f),

respectively. Then L2(E) becomes a normed linear space whose norm is
derived from the inner product. We say that a sequence (fn : n = 1, 2, . . .)
of functions in L2(E) converges in the mean to a function f in L2(E) if

lim
n→∞ ‖fn − f‖ = 0.

Observe that the limit function f is uniquely determined, up to a set of
measure zero. In fact, if

lim
n→∞ ‖fn − f‖ = 0 and lim

n→∞ ‖fn − g‖ = 0,
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then by the triangle inequality we have

‖f − g‖ ≤ ‖fn − f‖+ ‖fn − g‖ → 0 as n →∞.

Consequently, ‖f − g‖ = 0, which means that f(x) − g(x) = 0 almost
everywhere (in abbreviation: a.e.).

The Riesz–Fischer theorem states that the classical Cauchy convergence
criterion is valid in the case of this mean convergence notion. As a conse-
quence, the space L2(E) is complete, and this fact turned out to be of basic
importance in the theory of Hilbert spaces.

Riesz–Fischer theorem. Given a sequence (fn) of functions in L2(E),
then in order that there exist a function in L2(E) to which it converges in
the mean it is necessary and sufficient that

‖fm − fn‖ → 0 as m,n →∞.

Frigyes Riesz and Ernst Fischer proved this theorem in 1907, indepen-
dently of one another. Both of them published it in the Comptes Rendus
Acad. Sci. Paris. However, Riesz submitted his paper two months earlier
than Fischer. See [156, Vol. 1, C2, C5, pp. 378–381, 389–395], and also [203,
Vol. 1, pp. 127–128, 377].

A system (φn : n = 1, 2, . . .) of functions in L2(E) is called orthogonal
if none of the φn vanishes a.e. and

(φk | φ`) = 0 whenever k 6= `.

The system (φn) is called orthonormal (in abbreviation: ONS) if, besides
the above condition of orthogonality, we also have

‖φn‖ = 1, n = 1, 2, . . . .

Clearly, each orthogonal system (φn) can be made normal by substituting(
φn/‖φn‖

)
for (φn).

Given a function f in L2(E), we form its expansion (one may say:
generalized Fourier) coefficients with respect to the ONS (φn) as follows:

cn := (f | φn), n = 1, 2, . . . .

The series ∞∑

n=1

cnφn(x)



Constructive Function Theory: I. Orthogonal Series 31

is called the orthogonal expansion (or we may say: generalized Fourier
series) of f with respect to (φn). By the Bessel inequality, we have

∞∑

n=1

|cn|2 ≤ ‖f‖2.

Since ∥∥∥∥
n∑

k=m

ckφk

∥∥∥∥
2

=
n∑

k=m

|ck|2 → 0 as m,n →∞,

by the Riesz–Fischer theorem, the series
∑

ckφk converges in the mean to
some function g in L2(E). Since mean convergence implies weak conver-
gence, we have

(g | φ`) = lim
n→∞

n∑

k=1

ck(φk, φ`) = c` := (f | φ`),

whence
(f − g | φ`) = 0, ` = 1, 2, . . . ;

that is, f − g is orthogonal to every φ` of the given ONS.

The ONS (φn, n = 1, 2, . . .) is called maximal (sometimes called com-
plete) if it cannot be enlarged in the sense that whenever a new function
not vanishing a.e., say ψ, is added to it, then the new system (ψ, φn :
n = 1, 2, . . .) is no longer orthogonal. To sum up the above reasoning, we
obtain the following theorem: Given a complete ONS in L2(E), every func-
tion f in L2(E) admits an expansion convergent in the mean:

f =
∞∑

n=1

(f | φn)φn.

We say that a set of functions in L2(E) is total (sometimes called
closed) if it determines the entire space in the sense that every function
f in L2(E) can be approximated arbitrarily closely, in the mean, by the
linear combinations of the elements of this set. We may say briefly that a
total set of functions in L2(E) spans the whole space L2(E). By the Bessel
identity ∥∥∥∥f −

n∑

k=1

(f | φk)φk

∥∥∥∥
2

= ‖f‖2 −
n∑

k=1

∣∣(f | φk)
∣∣2

,
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it is easy to see that the notions of “maximal” and “total” systems (φn) are
equivalent; furthermore, these are equivalent to the validity of the Parseval
formula

‖f‖2 =
∞∑

n=1

∣∣(f | φn)
∣∣2

, f ∈ L2(E).

Combining these reasonings gives the following.

Riesz–Fischer theorem for orthogonal systems. Given an orthonor-
mal system (φn : n = 1, 2, . . .) in L2(E) (complete or not) and an arbitrary
sequence (an : n = 1, 2, . . .) of complex numbers such that

∞∑

n=1

|an|2 < ∞,

the orthogonal series
∑

anφn converges in the mean to some function g in
L2(E) such that the Fourier coefficients of g with respect to φn are these an:

(g | φn) = an, n = 1, 2, . . . .

It is this form as the Riesz–Fischer theorem was originally stated and
proved by Frigyes Riesz. This theorem was one of those impressive theorems
which first demonstrated the effectiveness of the integral introduced by
Lebesgue in 1902.

We note that if the system (φn) is maximal, then the function g in the
above theorem is uniquely determined. If the system (φn) is not maximal,
then the expansion

∑
(g | φn)φn is the orthogonal projection of the function

g onto the closed subspace spanned by the functions of the system (φn).

The Riesz–Fischer theorem explains why we usually start with a se-
quence (an) of numbers in the space `2, instead of a function f in the space
L2(E) in Sections 5–7 below.

Frigyes Riesz played an outstanding role in the development of the
powerful new theory of functional analysis, which emerged from the theory
of real and complex functions, linear algebra and topology, etc. As a matter
of fact, the emerging functional analysis preceded the present form of the
modern linear algebra. For example, the notion of duality first became clear
for Banach spaces. Up to the 1940’s, the finite dimensional vector spaces
were identified with their duals.



Constructive Function Theory: I. Orthogonal Series 33

2. Riesz Typical Means

Almost everywhere convergence of an orthogonal series is a much more
complicated question than its convergence in the mean. We shall discuss
the problem of the pointwise convergence of the partial sums in Section 5
in connection with the work by Károly Tandori.

Instead of convergence of the partial sums of an orthogonal series, one
may consider various summability methods to assign a reasonable sum (if
any) to the given series. The so-called Riesz typical means were introduced
by Marcel Riesz [158, Parts 5, 6, pp. 55–58, 59–61] in 1909 as follows.

Let λ = (λn : n = 0, 1, . . .) be a sequence of real numbers such that

(2.1) 0 ≤ λ0 < λ1 < λ2 < . . . and lim
n→∞λn = ∞,

and let α be a positive number. Given a series
∑∞

n=0 un of real or complex
numbers, the so-called Riesz typical means of type λ and of order α are
defined by

R(ω; λ, α) :=
∑

λk≤ω

(
1− λk

ω

)α

uk, ω > 0.

The series
∑

un is said to be summable to some L by the Riesz method of
type λ and of order α if the finite limit

lim
ω→∞R(ω;λ, α) = L

exists. M. Riesz introduced these means for the study of the behaviour
of Dirichlet series

∑
ane−λnz, where (an) is a given sequence of complex

numbers and z is a complex variable.

In the particular case where ω := n + 1 and λn := n, we get

Rn(α) := R
(
n + 1; (n), α

)
=

n∑

k=0

(
1− k

n + 1

)α

uk,

which is fairly similar to the expression of the nth Cesàro mean of order α
of the series

∑
un provided α is a positive integer:

Cn(α) =
n∑

k=0

(
1− k

n + 1

)(
1− k

n + 2

)
. . .

(
1− k

n + α

)
uk, n = 0, 1, . . . .



34 F. Móricz

However, the parameter ω of the Riesz method approaches ∞ in a contin-
uous way.

Let us consider another special case where ω := λn and α := 1. Then

R(λn; λ, 1) :=
1
λn

n∑

k=0

(λn − λk)uk =
1
λn

n−1∑

k=0

(λk+1 − λk)sk,

where sk :=
∑k

j=0 uj is the kth partial sum. If, in addition, λn := n, then
Rn(1) is the first arithmetic mean of the partial sums.

Now, we return to the general case and introduce the notation

T (ω; λ, α) :=
∑

λk≤ω

(ω − λk)
αuk,

while in case α = 0 set

Tλ(ω) := T (ω;λ, 0) =
∑

λk≤ω

uk,

the latter may be called the partial sum function. Clearly, we have

R(ω;λ, α) =
T (ω;λ, α)

ωα
.

We can express T (ω; λ, α) in terms of a Riemann–Stieltjes integral as
follows:

T (ω; λ, α) =
∫ ω

λ0

(ω − τ)αdTλ(τ) if λ0 > 0,

while in case λ0 = 0 we have to add the term ωαu0 to the right-hand side.
By integration by parts, in either case we obtain

T (ω;λ, α) = α

∫ ω

0
(ω − τ)α−1Tλ(τ) dτ.

Let us observe that the integral on the right-hand side coincides, up to
a constant, with the Riemann–Liouville integral

(Iαf)(ω) :=
1

Γ(α)

∫ ω

0
(ω − τ)α−1f(τ) dτ,
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which is used for defining the fractional integral of f of order α, when it
is applied to f = Tλ. Here Γ(α) is the Euler gamma function. From the
identity

Γ(α + 1) = αΓ(α)

it follows that

R(ω; λ, α) =
Γ(α + 1)

ωα
(IαTλ)(ω).

On the other hand, for the binomial coefficient

A(α)
n :=

(
n + α

n

)
,

it follows from the Stirling formula that

lim
n→∞

A
(α)
n

nα
=

1
Γα + 1)

, α > 0.

Hence, for the nth Cesàro mean Cn(α) we obtain the following asymptotic
equality:

Cn(α) :=
S

(α)
n

A
(α)
n

≈ Γ(α + 1)
nα

S(α)
n ,

where

S(α)
n :=

n∑

k=0

A
(α)
n−kuk =

n∑

k=0

A
(α−1)
n−k sk.

In the special case where α runs over the positive integers, the following
recursive definition is equivalent to the above one:

S(j)
n :=

n∑

k=0

S
(j−1)
k for j = 1, 2, . . . , and S(0)

n := sn.

To sum up, the “integral of the partial sum function Tλ of fractional
order α” occurs in the case of the Riesz typical means, while the “α times
iteration of the partial sum sn” comes in for the Cesàro means. This makes
plausible the conjecture that the Cesàro method of summability of order α
is equivalent to the Riesz method of summability of type λ = (λn := n) and
of order α whenever ω runs over the positive real numbers. This conjecture
turned out to be true [158, Part 9, pp. 72–75], but its proof is rather
complicated. (See the detailed proof for integer α in [68, §5.16, p. 113].)
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On the other hand, the equivalence of the Cesàro and Riesz methods of
summability is no longer true if ω runs over only the positive integers.

Marcel Riesz discovered the above summability method, named after
him, in 1909, but he but he gave a detailed treatment of it only in 1915 in
hiscitep [66] with G. H. Hardy.

The Riesz method of summability became of great significance in the
theory of multiple Fourier series, as Jean-Pierre Kahane tells us in the
Section “Commutative Harmonic Analysis”. Here we confine ourselves
to mention another result in the theory of orthogonal series. Given any
orthogonal series

∞∑

n=1

anφn(x) with
∑

|an|2 < ∞,

there exists a sequence λ = (λn) satisfying the conditions in (2.1) such
that the orthogonal series in question is summable a.e. by the Riesz method
Rn(λn; λ, 1).

Marcel Riesz achieved several significant results and each of them opened
the way to new branches of analysis. Among others, the famous Riesz–
Thorin convexity theorem started the development of the interpolation the-
ory of linear operators, indispensable in modern harmonic analysis. M. Riesz
also revealed the behavior of the harmonic conjugate to functions in the
Lebesgue spaces Lp, where 1 < p < ∞. Last but not least, the celebrated
Riesz brothers’ theorem on the unit circle surprisingly connected the theory
of Fourier series with measure theory, thereby initiated a large number of
deep results in both classical and abstract harmonic analysis.

3. The Haar Orthogonal System

An interesting and very useful orthonormal system was constructed by
Alfréd Haar [62, B1, pp. 45–87] in his doctoral dissertation in 1909. The
functions are defined on the interval [0, 1] and are conveniently labelled by
two indices:

χ
(0)
0 (x);χ(1)

0 (x);χ(1)
1 (x), χ(2)

1 (x); . . . ;χ(1)
n (x), . . . , χ(2n)

n (x); . . . .
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To go into details, the first of them, χ
(0)
0 (x) is identically equal to 1; while

for n ≥ 0 and 1 ≤ k ≤ 2n, we set

χ(k)
n (x) :=





2n/2 for x ∈
(

k − 1
2n

,
k − 1/2

2n

)
,

−2n/2 for x ∈
(

k − 1/2
2n

,
k

2n

)
,

0 for x ∈
(

`− 1
2n

,
`

2n

)
with ` 6= k, 1 ≤ ` ≤ 2n;

furthermore, at the points of discontinuity let χ
(k)
n (x) be equal to the arith-

metic mean of the values assumed on the two adjacent intervals; and at the
points x = 0 and x = 1 let χ

(k)
n (x) take the same value as on the interval

(0, 2−n−1) and (1− 2−n−1, 1), respectively.

It is easy to see that the Haar system is an ONS on the interval [0, 1]. Let
f(x) be a function integrable on [0, 1] in the Lebesgue sense. Its expansion
with respect to the Haar system

(3.1) f(x) ∼ a
(0)
0 χ

(0)
0 (x) +

∞∑

n=0

2n∑

k=1

a(k)
n χ(k)

n (x),

where

a
(0)
0 :=

∫ 1

0
f(t) dt, a(k)

n :=
∫ 1

0
f(t)χ(k)

n (t) dt,

has remarkable properties of representing the function f(x). The following
theorem was theorem was proved citep Haar [62, B1, B2, pp. 45–87, 88–103].

Convergence theorem of Haar. (i) If f(x) is integrable in the Lebesgue
sense on the interval (0, 1), then its Haar expansion (3.1) converges to f(x)
a.e.

(ii) The Haar expansion (3.1) converges to f(x) at each point of con-
tinuity of f(x), and converges uniformly on each interval on which f(x) is
uniformly continuous.

Statement (ii) expresses one of the most interesting features of the Haar
system that every continuous function on the interval [0, 1] is uniformly
approximated by the partial sums of its expansion with respect to the
discontinuous functions of the Haar system.
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Denote by s
(k)
n (x) the partial sum of the series in (3.1) ending with the

term a
(k)
n χ

(k)
n (x). Then by introducing the kernel

K(k)
n (x, t) := χ

(0)
0 (x)χ(0)

0 (t) + χ
(1)
0 (x)χ(1)

0 (t) + . . . + χ(k)
n (x)χ(k)

n (t),

we get the following representation:

s(k)
n (x) =

∫ 1

0
f(t)K(k)

n (x, t) dt.

The convergence theorem of Haar follows in a natural way from the nice
properties of the kernel K

(k)
n (x, t). It turns out that if x is not a dyadic

rational number in (0, 1), then K
(k)
n (x, t) differs from zero only on an interval

I
(k)
n (containing x) of length |I(k)

n | = 2−n or 2−n−1, on which it takes the
value 2n or 2n+1, respectively. Therefore, we have

(3.2) s(k)
n (x) =

1

|I(k)
n |

∫

I
(k)
n

f(t) dt.

If x is a dyadic rational number in (0, 1), then

K(k)
n (x, t) =





2n on I
(k)
n := (x− 2−n−1, x),

2n−1 on J
(k)
n := (x, x + 2−n),

0 otherwise.

Consequently, in this case we have

(3.3) s(k)
n (x) =

1

2|I(k)
n |

∫

I
(k)
n

f(t) dt +
1

2|J (k)
n |

∫

J
(k)
n

f(t) dt.

If x = 0 or x = 1, then the first or the second term on the right-hand side
in (3.3) should be deleted, respectively.

If we let n tend to infinity, the intervals I
(k)
n and J

(k)
n contract into the

point x and
lim

n→∞ s(k)
n (x) = F ′(x),

provided that the derivative of the integral

F (u) :=
∫ u

0
f(t) dt
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exists at the point u = x. As it is well known, the derivative F ′(x) exists
at almost every x. So, statement (i) of the convergence theorem of Haar
follows at once. The proof of statement (ii) also follows almost immediately
from (3.2) and (3.3).

As a by-product of the above reasoning, we can conclude that the Haar
system is maximal. Indeed, if each expansion coefficient of a function f(x)
equals zero in (3.1), then each partial sum s

(k)
n (x) ≡ 0. Thus, by statement

(i) above, we necessarily have f(x) = 0 a.e. even in the case when f(x) is
only integrable. This proves the maximality of the Haar system not only in
L2(0, 1), but also in the larger space L(0, 1).

The Haar wavelet basis evolved from the classical Haar system, was the
first prototype of the wavelet theory, one of the major events in Harmonic
Analysis started in the 1980’s. Signal processing, image compression, and
many other areas of applied mathematics have been revolutionized because
of wavelet theory. We note that the Nobel Prize winning physicist Dénes
Gábor essentially discovered the notion of wavelets and applied them suc-
cessfully in his physical computations already in 1946, decades before the
rigorous mathematical theory.

In 1933, Alfréd Haar also solved the problem of the existence of an in-
variant measure on topological groups, thus giving one of the most powerful
tools to all subsequent investigations of such groups. In the Section on
“Noncommutative Harmonic Analysis”, Jonathan Rosenberg will tell the
details of this story.

4. The Saturation Problem for the Fejér Means

Let f be a 2π-periodic (real or complex-valued) function, integrable in the
Lebesgue sense on the torus [−π, π), in symbol: f ∈ L2π. The Fourier series
of f is given by

(4.1) f(x) ∼ 1
2
a0 +

∞∑

k=1

(ak cos kx + bk sin kx),

where

ak :=
1
π

∫ π

−π
f(t) cos kt dt, bk :=

1
π

∫ π

−π
f(t) sin kt dt



40 F. Móricz

are the Fourier coefficients. Denote by

sn(f, x) :=
1
2
a0 +

n∑

k=1

(ak cos kx + bk sin kx)

the nth partial sum, and by

σn(f, x) :=
1

n + 1

n∑

k=0

sk(f, x)

=
1
2
a0 +

n∑

k=1

(
1− k

n + 1

)
(ak cos kx + bk sin kx)

the first arithmetic, so-called Fejér mean, of series (4.1).
In 1900 Lipót Fejér proved that if a 2π-periodic function is continuous,

then the means σn(f, x) converge uniformly to f(x). In 1905, Lebesgue
proved that if f ∈ L2π, then the means σn(f, x) converge to f(x) a.e. For
more details see the Section “Commutative Harmonic Analysis” written by
Jean-Pierre Kahane.

We recall that the conjugate series to (3.1) is defined by

(4.2)
∞∑

k=1

(ak sin kx− bk cos kx).

In 1911, I. I. Privalov proved that the first arithmetic means of series (4.2)
(the so-called conjugate Fejér means) also converge a.e. for each f ∈ L2π.
This limit is called the conjugate function to f and denoted by f̃ . This f̃ is
not necessarily integrable in the Lebesgue sense. However, if f̃ ∈ L2π, then
(4.2) is the Fourier series of f̃ .

The conjugate function f̃ can be represented in the form of a Cauchy
principal value integral as follows:

f̃(x) = (P.V.)
1
π

∫ π

−π

f(x− t)
2 tan t

2

dt

=: lim
ε↓0

1
π

∫ π

ε

f(x− t)− f(x + t)
2 tan t

2

dt,

where the limit exists a.e. whenever f ∈ L2π. This explains why f̃ is
sometimes called the periodic Hilbert transform of f .
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A 2π-periodic function f is said to satisfy the uniform Lipschitz condi-
tion of order α > 0, in symbol: f ∈ Lip2π α, if

ω(f, δ) := sup{∣∣f(x1)− f(x2)
∣∣ : |x1 − x2| ≤ δ} = O(δα), 0 ≤ δ < 2π.

Only the case 0 < α ≤ 1 is interesting: if α > 1, then ω(f, δ)/δ tends to
zero with δ. Consequently, in this case f ′(x) exists and is zero everywhere,
and f is constant. The function ω(f, δ), 0 ≤ δ < 2π, is called the modulus
of continuity of f . It is clear that a function f is uniformly continuous if
and only if ω(f, δ) tends to zero with δ. On the other hand, f belongs to
Lip2π 1 if and only if f is the antiderivative of a bounded function.

It is easy to check that if f ∈ Lip2π α, then
∥∥σn(f)− f

∥∥
C

:= max
x

∣∣σn(f, x)− f(x)
∣∣

=

{
O(n−α) if 0 < α < 1,

O(n−1 ln n) if α = 1.

In 1941, György Alexits {1} proved the following remarkable characteriza-
tion.

Theorem of Alexits. A necessary and sufficient condition for the relation

(4.3)
∥∥σn(f)− f

∥∥
C

= O(n−1)

is that the conjugate function f̃ ∈ Lip2π 1.

This theorem becomes even more significant in the light of the following
simple observation: If

(4.4)
∥∥σn(f)− f

∥∥
C

= o(n−1),

then we have necessarily f ≡ constant. In fact, since

1
π

∫ π

−π

[
f(x)− σn(f, x)

]
cos kx = kak/(n + 1), 1 ≤ k ≤ n,

relation (4.4) implies that the left-hand side here is o(n−1), which means
that ak = 0 for k ≥ 1. Analogously, we have bk = 0 for k ≥ 1. Consequently,
f ≡ 1

2a0 as we have claimed.
Using the terminology introduced by Jean Favard, we may say that the

Fejér means are saturated with saturation order O(n−1). The collection
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of functions f for which relation (4.3) is satisfied, is called the saturation
class for the Fejér means. Now, the above theorem of Alexits says that the
saturation class for the Fejér means consists of those functions f for which
f̃ ∈ Lip2π 1.

At this point, we have to correct a historical misunderstanding in the
literature. Unfortunately, it had been a widespread belief that G. Alexits
proved only the sufficiency part in the above theorem; that is, if f̃ ∈ Lip2π 1,
then (4.3) is satisfied. For example, A. Zygmund in his monograph [203,
Vol. 1, p. 377] writes the following: “The sufficiency part. . . was proved
by Alexits, the necessity by Zamansky.” However, reading the text of
{1} makes it clear that G. Alexits did prove both the necessity and the
sufficiency part even in the case of the more general (C,α ≥ 1) Cesàro
means. We emphasize that Alexits’ paper appeared 8 years earlier than
that of Marc Zamansky {21}. What could have been the reason for this
misunderstanding? We guess that the answer lies in the fact that Alexits’
paper appeared in a Hungarian periodical in 1941, the third year of World
War II.

The first international recognition of Alexits’ paper was given by R. A.
De Vore {3, pp. 59–60}, who wrote the following: “In 1941, G. Alexits in
a now classical theorem gave a characterization of the saturation class for
Fejér operators (the ‘o’ saturation theorem for Fejér operators goes back
to Zygmund). This paper of Alexits was the beginning of the study of
saturation of convolution operators. In 1949, J. Favard gave a general for-
mulation of the phenomenon of saturation for convolution operators. Later,
M. Zamansky initiated a systematic study of saturation for convolution with
trigonometric polynomials. In particular, Zamansky was able to recover the
Alexits theorem.”

Last but not least, Alexits was one of the creators of the Hungarian
orthogonal school in the middle of the twentieth century, who envisaged
several far-reaching problems in the theory of orthogonal series and approx-
imation theory. He had numerous disciples in Hungary as well as all over
the world. His monograph [8] on orthogonal series appeared in German in
1960, translated into English the following year, and into Russian in 1963.
It has became the standard reference book for researchers in the theory of
orthogonal series.

Motivated by the notion of strong (C, 1)-summability introduced by
G. H. Hardy and J. E. Littlewood in 1913, Alexits {2} introduced the
notion of strong approximation by Fourier series in 1963, and by raising
several problems in subsequent papers he laid the foundation of the so-called
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strong approximation, a new branch of approximation theory. The strong
approximation by Fourier series as well as by general orthogonal series have
been studied, while considered not only Fejér but also Cesàro and other
means. We refer the reader to the monograph of László Leindler [108].

5. Almost Everywhere Convergence of Orthogonal
Series

One of the main problems in the theory of orthogonal series is to characterize
the pointwise behavior of the orthogonal series

(5.1)
∞∑

k=1

akφk(x)

in terms of its coefficients ak, where (ak) is a sequence of real numbers and(
φk(x)

)
is an arbitrary ONS on a finite interval, say (0, 1) for the sake of

simplicity.

By the Schwarz inequality and the Beppo Levi theorem, the condition

(5.2)
∞∑

k=1

|ak| < ∞

implies even the absolute convergence of series (5.1) a.e. But this require-
ment is too strong for a more delicate study of convergence problems. On
the other hand, the requirement

(5.3)
∞∑

k=1

a2
k < ∞

is indispensable, because in the special case where
(
φk(x)

)
is the familiar

Rademacher system, the orthogonal series (5.1) converges a.e. if and only if
(5.3) is satisfied. Thus, the useful convergence tests lie between conditions
(5.2) and (5.3).

(i) Sufficient condition: Rademacher (1922), Menshov (1923). The most
important convergence test was discovered nearly simultaneously by Hans
Rademacher {13} and D. E. Menshov {8}.
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Rademacher–Menshov theorem. If

(5.4)
∞∑

k=1

a2
k(log k)2 < ∞,

then the orthogonal series (5.1) converges a.e.

Here and in the sequel the logarithm is to the base 2, but any base
greater than 1 would be appropriate.

It was D. E. Menshov {8} who first observed that condition (5.4) is the
best possible in general.

Theorem of Menshov. If
(
w(k) : k = 1, 2, . . .

)
is an increasing sequence

of positive numbers with

w(k) = o(log k) as k →∞,

then there exist a sequence (ak) of numbers and an ONS
(
φk(x)

)
such that

(5.5)
∞∑

k=1

a2
kw

2(k) < ∞

and the orthogonal series (5.1) diverges everywhere.

(ii) Necessary condition: Tandori (1957). The breakthrough in the con-
vergence (or one may say, in the divergence) theory of orthogonal series was
achieved by Károly Tandori {14}, who proved the following deep comple-
ment of the Rademacher–Menshov theorem.

Divergence theorem of Tandori. If

(5.6) |a1| ≥ |a2| ≥ . . .

and

(5.7)
∞∑

k=1

|ak|2(log k)2 = ∞,

then there exists an ONS
(
φk(x)

)
depending on (ak) such that the orthog-

onal series (5.1) diverges everywhere.



Constructive Function Theory: I. Orthogonal Series 45

It is easy to see that the theorem of Menshov above is a consequence of
the divergence theorem of Tandori.

Combining the Rademacher–Menshov theorem with the divergence the-
orem of Tandori gives that if (ak) satisfies (5.6), then condition (5.4) is not
only sufficient, but also necessary that the orthogonal series (5.1) converge
a.e. for all ONS

(
φk(x)

)
.

Starting with {14}, which contains the divergence theorem, K. Tandori
wrote a series of ten papers entitled “Über die orthogonalen Funktionen
I–X”, which is the longest of its kind ever published in the “Acta Scientiarum
Mathematicarum”. By constructing delicate counterexamples, he gave a
great impetus to the further development of the theory of orthogonal series.
His contribution is commensurable with the one D. E. Menshov exerted
30 years earlier. The majority of these results are collected in the monograph
by G. Alexits [8], which serves as a by G. Alexits [8], which serves as a
reference book even nowadays.

The divergence theorem of Tandori has several consequences. We cite
here only one of them. It follows from the Rademacher–Menshov theorem
and the familiar Kronecker lemma that if

(
λ(k) : k = 1, 2, . . .

)
is an

increasing sequence of positive numbers such that

(5.8)
∞∑

k=1

(log k)2

λ2(k)
< ∞,

then for every ONS
(
φk(x)

)
we have

(5.9) lim
n→∞

1
λ(n)

n∑

k=1

φk(x) = 0 a.e.

Now, from his divergence theorem K. Tandori {14} deduced that condition
(5.8) is the best possible for the validity of (5.9).

Corollary. If
(
λ(k)

)
is an increasing sequence of positive numbers such

that ∞∑

k=1

(log k)2

λ2(k)
= ∞,

then there exists an ONS
(
φk(x)

)
such that

lim sup
n→∞

1
λ(n)

∣∣∣∣
n∑

k=1

φk(x)
∣∣∣∣ = ∞ a.e.
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In particular, set

λ(n) :=
{

n(log n)3(log log n)1+ε}1/2
.

Then (5.9) holds true for ε > 0, but it is no longer true for ε = 0. In a
certain sense, (5.9) can be related to the “strong law of large numbers” well
known in probability.

(iii) Synthesis: Tandori (1964). Denote by M the class of those se-
quences a = (ak) of real numbers for which the orthogonal series (5.1) con-
verges a.e. for all ONS

(
φk(x)

)
, where the set of measure zero of divergence

points may depend on the particular ONS
(
φk(x)

)
. For each N = 1, 2, . . .

introduce the quantity

I(a1, a2, . . . , aN ) := sup
∫ 1

0

(
max

1≤n≤N

∣∣∣∣
n∑

k=1

akφk(x)
∣∣∣∣
)2

dx,

where the supremum is taken over all ONS
(
φk(x)

)
. The following charac-

terization of M is due to K. Tandori {15}.

Characterization theorem of Tandori. A sequence a = (ak) of numbers
belongs to M if and only if

(5.10) ‖a‖ := lim
N→∞

I1/2(a1, a2, . . . , aN ) < ∞.

Furthermore, the set M is a reflexive Banach space with respect to the usual
vector operations and the norm defined in (5.10).

The significance of this theorem is that it reduces the problem of a.e.
convergence of general orthogonal series to the problem of evaluating the
norm defined in (5.10). The Rademacher–Menshov theorem provides an
upper estimate, while the divergence theorem of Tandori provides a lower
estimate for this norm, the latter being valid only in the monotonicity
case (5.6).

Corollary. There exist positive constants C1 and C2 such that for every
sequence a = (ak) of numbers we have

‖a‖2 ≤ C1

∞∑

k=1

a2
k(log 2k)2;
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and for every sequence a = (ak) of numbers satisfying condition (5.6), we
have

‖a‖2 ≥ C2

∞∑

k=1

a2
k(log 2k)2.

The space M enjoys the following remarkable property. Let a = (ak)
and b = (bk) be sequences of numbers for which

|ak| ≤ |bk|, k = 1, 2, . . . .

If b ∈ M, then a ∈ M. If a /∈ M, then b /∈ M.

(iv) Sign type ONS: Kashin (1976). In the examples of divergent or-
thogonal series given by D. E. Menshov {9} and K. Tandori {14}, the or-
thonormal functions φk can be chosen to be uniformly bounded:

(5.11)
∣∣φk(x)

∣∣ ≤ C, 0 ≤ x ≤ 1; k = 1, 2, . . . ,

with some constant C.
The most important case is when C = 1. In this case, we necessarily

have ∣∣φk(x)
∣∣ = 1, 0 ≤ x ≤ 1; k = 1, 2, . . . ;

and the ONS
(
φk(x)

)
is said to be sign type. Now, B. S. Kashin {6}

improved the divergence theorem of Tandori as follows.

Divergence theorem of Kashin. If conditions (5.6) and (5.7) are sat-
isfied, then there exists a sign type ONS

(
φk(x)

)
depending on (ak) such

that the orthogonal series (5.1) diverges everywhere.

Later K. Tandori {16} gave an extremely short proof of this surprising
result.

Let 1 ≤ C ≤ ∞ and denote by M(C) the class of those sequences
a = (ak) of real numbers for which the orthogonal series (5.1) converges
a.e. for all ONS

(
φk(x)

)
satisfying condition (5.11). It is clear that if

1 < C1 < C2 < ∞, then

M(∞) ⊆ M(C2) ⊆ M(C1) ⊆ M(1).

Now, K. Tandori {17} proved that

M(C) = M(1), 1 ≤ C < ∞.
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In other words, there is no difference between the class of all sign type
ONS and the class of all uniformly bounded ONS as to the convergence a.e.
of the orthogonal series (5.1). But the problem of whether M(∞) = M(1)
is still open.

(v) Rademacher–Menshov inequality revisited: Móricz and Tandori
(1996). The following sharpened form has been proved by Ferenc Móricz
and Károly Tandori {11}.
Convergence theorem of Móricz and Tandori. If for some 0 < ε ≤ 2
we have

(5.12)
∞∑

m=0

∑

k∈Im

a2
k(log k)ε

(
log

2A2
m

a2
k

)2−ε

< ∞,

where

(5.13) Im := {2m + 1, 2m + 2, . . . , 2m+1}
and

A2
m :=

∑

k∈Im

a2
k, m = 0, 1, . . . ,

then the orthogonal series (5.1) converges a.e.

Denote by
∑

ε the sum of the series occurring in (5.12). It is not difficult
to show that if 0 ≤ δ < ε ≤ 2 and

∑
ε < ∞, then

∑
δ < ∞ as well. Thus,

the smaller ε is, the weaker is condition (5.12). Furthermore, if the sequence
(ak) satisfies condition (5.6) and

∑
ε < ∞ for some 0 ≤ ε ≤ 2, then

∑
ε < ∞

for all 0 ≤ ε ≤ 2.
It is interesting to point out that condition (5.12) for ε = 0 no longer

guarantees the a.e. convergence of the orthogonal series (5.1). However,
condition (5.12) for ε = 0 is necessary in order that the orthogonal series
(5.1) converge a.e. for all ONS

(
φk(x)

)
. Even somewhat more was shown

by Károly Tandori {18}: If the orthogonal series
∑

akφk(x) converges a.e.
for all ONS

(
φk(x)

)
, then

(5.14)
∞∑

k=1

a2
k

(
log+

1
a2

k

)2

< ∞,

where

log+ u :=

{
log u if u ≥ 2

1 if u < 2.
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Obviously, (5.14) implies (5.12) for ε = 0. To sum up, condition (5.12)
for some ε > 0 is sufficient, while for ε = 0 is necessary in order that the
orthogonal series (5.1) converge a.e. for all ONS

(
φk(x)

)
. Furthermore,

these conditions are equivalent in the special case when (ak) satisfies condi-
tion (5.6).

6. Cesàro Summability of Orthogonal Series

Similarly to trigonometric Fourier series, one can expect better convergence
behavior of orthogonal series if ordinary convergence is replaced by (C, 1)-
summability. In fact, this is the case, but the improvement is less than that
in the case of trigonometric series.

We recall that the first arithmetic or (C, 1)-mean of the orthogonal series
(5.1) with partial sum

sn(x) :=
n∑

k=1

akφk(x)

is defined by

σn(x) :=
1
n

n∑

k=1

sk(x) =
n∑

k=1

(
1− k − 1

n

)
akφk(x), n = 1, 2, . . . .

The whole theory of (C, 1)-summability of orthogonal series is based on the
following observations of A. N. Kolmogorov {7} and Stefan Kaczmarz {4},
respectively.

Theorem of Kolmogorov and Kaczmarz. If condition (5.3) is satisfied,
then

lim
m→∞

{
s2m(x)− σ2m(x)

}
= 0 a.e.

and
lim

m→∞ max
2m<k<2m+1

∣∣σk(x)− σ2m(x)
∣∣ = 0 a.e.

As a corollary we obtain that, under condition (5.3), the orthogonal
series (5.1) is (C, 1)-summable a.e. if and only if the subsequence

(
s2m(x) :

m = 0, 1, . . .
)

of the partial sums converges a.e. Now, it is a simple
consequence of the Rademacher–Menshov theorem that if

(6.1)
∞∑

m=1

( ∑

k∈Im

a2
k

)
(log m)2 < ∞,
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where Im is defined in (5.13), then the partial sums s2m(x) of the orthogonal
series (5.1) converge a.e. It is clear that (6.1) is equivalent to the condition

(6.2)
∞∑

k=4

a2
k(log log k)2 < ∞.

Combining this observation with the theorem of Kolmogorov and Kacz-
marz yields the following.

Theorem of Menshov and Kaczmarz. If condition (6.2) is satisfied,
then the orthogonal series (5.1) is (C, 1)-summable a.e.

This theorem was first proved by D. E. Menshov {10} and S. Kaczmarz
{5}. D. E. Menshov {10} also proved that condition (6.2) is the best
possible.

Theorem of Menshov. If
(
w(k) : k = 1, 2, . . .

)
is an increasing sequence

of positive numbers such that

w(k) = o(log log k) as k →∞,

then there exists a sequence (ak) of numbers and an ONS
(
φk(x)

)
such

that condition (5.5) is satisfied and the orthogonal series (5.1) is nowhere
(C, 1)-summable.

K. Tandori {19} also sharpened this result of Menshov into a necessary
and sufficient condition for certain sequences (ak) of numbers as follows.

Theorem of Tandori. If (ak) is a sequence of numbers for which

√
k|ak| ≥

√
k + 1|ak+1|, k = 1, 2, . . .

and
∞∑

k=4

a2
k(log log k)2 = ∞,

then there exists an ONS
(
φk(x)

)
depending on (ak) such that the orthog-

onal series (5.1) is nowhere (C, 1)-summable.
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7. Unconditional Convergence of Orthogonal Series

One of the deepest results of K. Tandori {20} completely solved the problem
of unconditional convergence of general orthogonal series. Since a general
ONS

(
φk(x)

)
(unlike the classical trigonometric system, for example) has

no a priori given arrangement of its terms, it is quite natural to study the
question of convergence of the orthogonal series (5.1) in every rearrangement
of its terms; that is, the convergence of the rearranged series

(7.1)
∞∑

`=1

ak(`)φk(`)(x),

where
{

k : ` → k(`) : ` = 1, 2, . . .
}

is a bijective mapping of the set of
the positive integers (so-called permutation). By a.e. convergence of series
(7.1), we mean the term “almost everywhere” in the sense that the set
of measure zero of divergence points may vary with every rearrangement.
Otherwise, the a.e. convergence in every rearrangement would reduce to the
a.e. absolute convergence. Now, the aforementioned theorem of Tandori can
be formulated as follows. Let

νp := 22p
and Jp := {νp + 1, νp + 2, . . . , νp+1}, p = 0, 1, . . . .

We agree to say that the orthogonal series (5.1) converges unconditionally
a.e. if the series in (7.1) converges a.e. for each permutation

{
k : ` → k(`) :

` = 1, 2, . . .
}

.

Unconditional convergence theorem of Tandori. Let

|a∗1| ≥ |a∗2| ≥ . . . ≥ |a∗k| ≥ . . .

be a decreasing rearrangement of the sequence (ak) of numbers. Then the
orthogonal series (5.1) converges unconditionally a.e. if and only if

∞∑

p=0

{ ∑

k∈Jp

|a∗k|2(log k)2
}1/2

< ∞.

The idea of studying unconditional convergence is due to Wladislaw
Orlicz {12}, who proved the first basic result in this direction. His result,
which is actually a consequence of the above theorem of Tandori, is formu-
lated in terms of the so-called Weyl multiplier.
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Corollary. Let
(
λ(k) : k = 1, 2, . . .

)
be an increasing sequence of positive

numbers.

(i) (due to Orlicz). If

(7.2)
∞∑

p=0

1
λ(νp)

< ∞, or equivalently
∞∑

m=1

1
mλ(2m)

< ∞,

and

(7.3)
∞∑

k=1

a2
k(log k)2λ(k) < ∞,

then the orthogonal series (5.1) converges unconditionally a.e.

(ii) (due to Tandori). On the other hand, if

∞∑

p=0

1
λ(νp)

= ∞, or equivalently
∞∑

m=1

1
mλ(2m)

= ∞,

then there exist a sequence (ak) of numbers and an ONS
(
φk(x)

)
such that

condition (7.3) is satisfied and the orthogonal series (5.1) diverges a.e. in
some rearrangement of its terms.

For instance, if

λ(k) := (log log k)1+ε, k = 4, 5, . . . ,

then condition (7.2) holds whenever ε > 0, but fails to hold when ε = 0. The
above corollary can be reformulated as follows: The sequence

(
(log k)2λ(k)

)
is a Weyl multiplier for the unconditional convergence of orthogonal series
for ε > 0, while it is not for ε = 0.
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{8} D. Menchoff, Sur les séries de fonctions orthogonales. I, Fund. Math., 4 (1923),
82–105.
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{11} F. Móricz and K. Tandori, An improved Menshov–Rademacher theorem, Proc.
Amer. Math. Soc., 124 (1996), 877–885.

{12} W. Orlicz, Zur Theorie der Orthogonalreihen, Bulletin Internat. Acad. Sci. Polon-
aise Cracovie, (1927), 81–115.



54 F. Móricz
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