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The works of Kornél Lánczos on the Theory
of Relativity
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1. Introduction

Lánczos was a true acolyte of Einstein, and he kept returning to the study
of relativity theory throughout his life. About thirty scientific publications,
one-third of his full list, were written on this very subject. He had an open
mind both to the geometrical and physical issues abundantly encountered
in the theory.

He realized, for example {8}, that the redshift of light signals traveling
in gravitational fields is, in fact, a Doppler-shift phenomenon as opposed to
being a genuine gravitational effect. This contradicts {18} a statement,
often made in general relativity. However, the Riemann tensor of the
gravitational field does not appear anywhere in the redshift when expressed
in terms of the four-velocities of the emitter and the observer.

He enlivened his radiant personal communication by characteristic ges-
tures with his long fingers. The overall impression that he made arguing
with the perpetual whirl of his hands was that he may have been born to live
in an extraordinary neurotic state, a kind of like the Angelman syndrome.

Lánczos investigated a large number of research problems many of which
are still of interest today. These include the formulation of junction con-
ditions on the boundary surface of adjacent space-time regions. Known as
the Lánczos–Israel boundary conditions {12, 7}, they are often used in con-
structing relativistic models of astrophysical bodies. He has written several
papers on higher-derivative gravitational theories and their variational prin-
ciples. His further contribution to the subject covers the asymptotic and
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exact symmetries in the formulation of conservation laws, gravitational ra-
diation, tetrad methods and the Cauchy problem. Of special interest today
is his work on the problem of motion, the potential he introduced for the
Weyl tensor and his thoughts on a unified description of nature.

In a brief review of these latter works below, familiarity with the basic
mathematical conventions of relativists will be an advantage for the reader.
But for an added convenience, here is a summary. Space-time in general
relativity is four-dimensional. Coordinates and geometrical quantities are
labeled with indices assuming the values 0, 1, 2 or 3. The Einstein conven-
tion is used for the contraction of indices. For example, the contraction of
the symmetric tensor density Tik and the vector nk is written, suppressing
the symbol of summation over the repeated pair of indices,

(1.1)
3∑

k=0

Tikn
k = Tikn

k.

Symmetrization of indexed quantities is denoted by enclosing the indices in
parentheses. Skew symmetrization is similarly indicated by square brackets.
Indices barred from the symmetrization are enclosed in bars.

Taking a covariant derivative (or a partial derivative) is indicated by a
semicolon (or a comma, respectively) in the subscript. An example is the
covariant derivative of the Lánczos potential Labc when skewed in a pair of
indices:

Lab[c;d] =
1
2!

(Labc;d − Labd;c).

A convenient table to help comparison of the fluctuations in the notation is
found on the red pages of {15}.

2. The problem of motion

In his 1941 paper {10}, Lánczos gave a detailed description of the motion
of an isolated body in general relativity. The gist of this work is as follows.

A material body is said to be isolated in the sense that it is moving in
vacuo. Other bodies may be present, but his treatment is not concerned
with them. The gravitational equations inside the world tube of the particle
are

Gik = −8πTik.
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Let Σ be the boundary of the world tube, with outward pointing unit normal
ni. Outside the boundary, the vacuum equations hold,

Gik = 0

and Gik is discontinuous across the hypersurface Σ. This discontinuity,
however, is subject to the boundary condition on Σ, [Cf. (1.1)],

Tikn
k = 0.

Inside the tube the conservation law holds for the matter

(2.1) T ik
;k = 0.

To write this in a detailed form, we introduce the tensor density

T ik = (−g)−1/2T ik.

We then have

(2.2) T ik
,k = Γi

(where Γi = −Γi
rsT rs).

We now choose two space-like hypersurfaces x0 = a and x0 = b, which
enclose a section V4 of the world tube. By Green’s theorem,

∫

x0=b
T i0d3x−

∫

x0=a
T i0 d3x =

∫

V4

Γi d4x.

Passing to the limit b → a we get

(2.3)
d

dx0

∫
T i0 d3x =

∫
Γi d3x,

where the integrals are taken on any section x0 = a.
By using the identity

(xjT ik),k = T ij + xjΓi

we can derive other relations,

d

dx0

∫
xαT i0 d3x =

∫
(T iα + xαΓi) d3x(2.4)

d

dx0

∫
(xαT β0 − xβT α0) d3x =

∫
(xαΓβ − xβΓα) d3x(2.5)
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where the Greek indices refer to the three-space and range through the
values 1, 2 and 3.

We now introduce a more compact new notation. The four-momentum
of the body is

pi =
∫
T i0 d3x.

The angular momentum of the body will be denoted

Mαβ =
∫

(xαT β0 − xβT α0) d3x

and the center of mass of the body is

x̄α =
1
p0

∫
xαT 00 d3x.

We may then write Eqs. (2.3) and (2.5) in the form

dpi

dt
=

∫
Γi d3x(2.6)

dMαβ

dt
=

∫
(xαΓβ − xβΓα) d3x

where t = x0. From (2.4),

d

dt
(p0x̄α) = pα +

∫
xαΓ0 d3x.

Finally we find the physically very suggestive equation for the three-velocity
of the center of mass

(2.7)
dx̄α

dt
=

pα

p0
+

1
p0

∫
(xα − x̄α)Γ0 d3x.

In Eq. (2.6), the rate of change in the four-momentum and angular mo-
mentum is expressed in terms of quantities which may be regarded as the
gravitational force and torque acting on the body. The last term in Eq.
(2.7) expresses the amount by which the direction of the four-momentum
diverges from the direction of the four-velocity. In case of a very small body,
it is reasonable to neglect this term.

Synge {18} carried out an in-depth analysis of the above approach. He
commented that the principal weakness of the treatment was due to its
non-invariant character.
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3. The Lánczos potential

In 1962, Lánczos {11} proposed that the Weyl tensor Cabcd (the traceless
part of the Riemann tensor) in four dimensions can be given locally in
terms of a potential Labc. Later, however, Bampi and Caviglia {2} showed
that his argument was flawed. These authors provided a new proof for the
local existence of the Lánczos potential Labc, which holds independently of
the value of the metric signature. Yet another, spinorial derivation was
presented by {6}.

The Lánczos potential has the symmetries

(3.1) Labc = −Lbac, L[abc] = 0.

The Weyl tensor is given in terms of it in the form

Cabcd = 2Lab[c;d] + 2Lcd[a;b] − ga[c(L|b|d] + L|d|b])(3.2)

+gb[c(L|a|d] + L|d|a]) +
2
3
ga[cgd]bL

r
r

where
Lab = 2Lc

a[c;b].

This construction is analogous to that of the Maxwell tensor in terms
of the vector potential. The Weyl tensor is invariant under the gauge
transformations

L′abc = Labc + χagbc − χbgac

with χa an arbitrary four-vector. As with electromagnetism, various gauges
can be introduced; one may set Lab

b = 0 (this is known as the algebraic
gauge) or Labc

;c = 0 (the differential gauge).

The Lánczos potential can be utilized in the linearized theory of gravi-
tation. Writing the metric in the form

(3.3) gab = ηab + hab

where ηab is the flat metric and hab the perturbation and introducing the
de Donder gauge

(3.4) hab
,b =

1
2
h,a
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with h = habηab, the linearized Lánczos potential reads

(3.5) Labc =
1
2(

hc[a,b] −
1
6
ηc[ah,b]).

Recently, there has been a revival of interest in the Lánczos potential.
Novello and Neto {16} employed the linearized Lánczos potential as a
model of a spin-2 field. {3} formulated the linearized gravitation theory
in terms of the Lánczos potential. In a series of papers {1}, Edgar and his
collaborators investigated the existence conditions of a Lánczos potential,
using the Newmann–Penrose formalism.

4. The Lorentzian signature

Lánczos was deeply worried about the feature of general relativity that the
signature of space-time was Lorentzian. He often argued with Einstein who
was not as much concerned about this character of space-time geometry.
According to Pythagoras’ theorem, the distance of two neighboring points
on the plane has the form

(4.1) ds2 = dx2 + dy2

in Cartesian coordinates. In two more dimensions, one has

(4.2) ds2 = dx2 + dy2 + dz2 + du2.

However, in the physical world, one finds instead

(4.3) ds2 = dx2 + dy2 + dz2 − du2.

Although Einstein himself was not overtly worried about this state of affairs,
he surmised that some deep mystery lurked behind the Lorentzian signature
in (4.3). In Einstein’s view, the essential feature of the theory was that
the Riemann tensor describing the curvature of space-time is a covariant
quantity and as such, it could be used in any coordinate system. From his
point of view, the signature of the metric played a secondary role. However,
in Lánczos’s mind, the indefinite metric could not be a genuine ingredient
of differential geometry since the latter is built upon the notion of small
neighborhoods. With a Lorentzian metric, he argues, one cannot speak
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of two points being close together. In Riemannian geometry proper, zero
separation means that the points coincide. However, in space-time, a pair
of points can be at zero distance yet separated from each other in space by
million light years. A photon that now hits one’s eye from the Andromeda
nebula left 3 million years before. And yet, the distance between the photon
and our eyes has been zero during the whole travel. Why was there no
interaction between the photon and us during the course of these 3 million
years, save the moment of arrival – he asks {13}. Lánczos believed that if
the notion of neighborhood lost its meaning, then differential geometry did
not make sense.

In retrospect, the Lorentzian nature of the metric signature kept many
researchers worried for a long time. Let us not forget that it had been a
common practice right from the outset to use an imaginary time coordinate
and in this way preserve, at least formally, the familiar definite form of
the line element. But by now, a different viewpoint has, gradually, been
adopted. This is best appreciated when recognizing that the Lorentzian
geometry of space-time is a source of an abundantly rich structure and
beauty. While today the topology of the manifold still occupies a central
position in differential geometry, the edifice of an independent and elaborate
theory of relativistic causality has grown to coexist with it. Causality theory
yields deep insights into the global properties of space-time {5}. General
relativity would be a good deal less appealing without the variegated world
of causal phenomena.

In many other respects, Lánczos’s scientific aspirations bore the influence
of contemporary schools of thinking. He followed Einstein in spending much
effort on attempting to geometrize all other properties of matter, including
electromagnetism and quantum physics. He asked: “With the enormous
perspective allowing to interpret all material properties as special properties
of space, how can it be that we can only derive gravitation from these very
complicated relations, but both electromagnetism and quantum phenomena
remain outside the scope?”

He argued that there was a juncture in Einstein’s argument leading to
relativity theory where we must really take a different route to get the
desired universal description of matter. This is not the description of the
geometrical space by fundamental differential equations – a feature that
he insisted on keeping. But in Lánczos’s view, it is at the choice of the
Lagrangian whence one must depart. He criticizes the Einstein-Hilbert
Lagrangian L = R on the grounds that it gives rise to a dimensioned
action. In fact, this dimension is cm2. Weyl pointed out in 1918 that it
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is nonsensical to seek the minimum of a dimensioned quantity since this
can take any values with the appropriate choice of units. One can make
the action dimensionless by choosing the Lagrangian to be quadratic in the
curvature.

In 1938 Lánczos showed that the most general allowable Lagrangian can
be brought to the form

(4.4) L = RikR
ik − σR2

where Rik is the Ricci tensor, R the Einstein scalar and σ a free constant.
He then considered the metric gik and the Ricci tensor as independent quan-
tities. In this way he obtained 20 second-order differential equations for 20
unknowns. Originally, Lánczos hoped to unify gravitation and electromag-
netism in this theory. To his disappointment, however, in the weak-field
approximation the field equations reduce to the vacuum conditions Rik = 0
of general relativity. Thus no room is left here for the electromagnetic field.

Later, in the sixties, Lánczos came to the idea that the class of solutions
of his theory that is relevant to physics is not the one containing the weak-
field limit. On the contrary, as he then held it, the required fields are
strong periodic wave-like solutions. He conjectured that the period is the
Planck length, LP = 10−32 cm. How come then that the world as we know
is isotropic? To answer this, he resorted to the physics of the isometric
crystals whose three principal axes are mutually orthogonal and they are
equal in length. In an isotropic universe, the Ricci tensor and the metric
are related by

(4.5) Rik = λgik.

This is essentially Einstein’s cosmological equation. In general relativity,
the constant λ has the dimension (length)−2. There λ is extremely small
because the mean ‘length’ of curvature of the universe is large. For Lánczos,
on the other hand, this characteristic length is extremely small, whence λ
must be large.

In this strong-field approximation, the computation of the Ricci tensor
is quite unlike the procedure for weak fields. For the latter, the connection
quantities are small, thus only the linear terms in the connection are kept.
In the strong-field case, however, it is the linear terms in the curvature that
can be dropped and the quadratic terms dominate. The metric does not
determine the effect of the background geometry. Instead, it is the mean
square of the first derivatives of the metric that does this.
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Lánczos abandons the Lorentz signature of the metric and explores a
genuine Riemannian geometry. He notes that the field equations derived
from the Lagrangian (4.4) imply a constant scalar curvature R. He next
observes that with the special choice σ = 1/2 in the Lagrangian, the Ricci-
tensor can be substituted for by

(4.6) Pik = Rik − µgik

where µ is a constant. If one chooses µ = λ then one would have Pik = 0.
The meaning of this is that the submetric does not give any contribution to
the slow perturbations. In such circumstances, nothing would correspond to
the Minkowski-like constants (1, 1, 1,−1). Hence he concludes that macro-
scopically there must be a small deviation from perfect isotropy. He de-
scribes this deviation by adopting the diagonal elements of the macroscopic
metric to have the mean values

(4.7) (1 + ε, 1 + ε, 1 + ε, 1− 3ε).

This form satisfies that the trace of the deviations is zero. He then asserts
that the four 1’s in the diagonal are unobservable and the effective metric
becomes

[ηik] = diag (1, 1, 1,−3).

We see that this effective metric is indefinite.
The weak perturbations of the effective metric are to describe electro-

magnetism in this theory. Denoting these metric perturbations by hik, one
can use the traceless and divergence-free property of the tensor Pik to derive
the following relations:

hikη
ik = 0(4.8)

hik,mηkm = 0(4.9)

where a comma in the subscript denotes partial derivative.
Lánczos proposes that the perturbations can be described by a vector

ϕi as follows,

(4.10) hik = ϕi,k + ϕk,i.

In his view, the vector ϕi should be interpreted as the four-potential of the
Maxwell field,

Fik = ϕi,k − ϕk,i.
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According to this interpretation, the scalar constraint (4.8) is the Lorentz
gauge condition and the vector constraint (4.9) becomes the wave equation.

Thirty years later, theoreticians picture the microstructure of space-
time much the same way as Lánczos did. It is being acknowledged that
the smooth nature of the manifold according the description of differential
geometry is inadequate on a microscopic scale. Quantum fluctuations ripple
the structure of the geometry more and more forcefully as we go down to
the Planck scale.

Despite the general acceptance of this picture of quantum space-time,
Lánczos’s theory has submerged in oblivion, much the same way as Ein-
stein’s late unified theories did. In conclusion, let me try to outline the
weaknesses of this bold attempt which are discernible from a perspective
of the past three decades. At several points in this theory, apparently ar-
bitrary assumptions have been made. The first of these is the assumption
that the strong wave solutions of the field equations are periodic. One would
not expect such periodicity in a stochastic description of the quantum fluc-
tuations. Of course, this assumption of Lánczos enormously eases the task
of describing the geometry in mathematical terms. A description, which is
likely to provide a more realistic picture of physics, would require at least
the full machinery of relativistic quantum field theory, and possibly more
from beyond that theory. Another objection I would like to raise is to the
way electromagnetism is geometrized in the model. Much of the standard
model of fundamental interactions was unknown three decades ago. Today
a minimal task would be seen to provide a coherent description of gravita-
tional and electroweak phenomena. It is hard to assess if the past thirty
years brought the dreams of theoreticians about a glorious completion any
closer to coming true.
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