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Non-Commutative Harmonic Analysis

JONATHAN ROSENBERG

For present purposes, we shall define non-commutative harmonic analysis
to mean the decomposition of functions on a locally compact G-space X,1

where G is some (locally compact) group, into functions well-behaved with
respect to the action of G. The classical cases are of course Fourier series,
when G = X = T, the circle group, and the Fourier transform, when
G = X = R, but we will mostly be concerned with the case when G is
non-commutative. Since this subject is inextricably linked with the subject
of representations of G (unitary representations, if we specialize to the case
of L2-functions), we will also consider the general theory of representations
of locally compact groups and of various related structures, such as Lie
algebras and Jordan algebras.

The subject of group representations was created by Georg Frobenius
{9} in a remarkable series of papers in the 1890’s, and continued in the first
decade of the twentieth century in the work of his student Issai Schur {17}.
However, Frobenius worked exclusively with finite groups, and his treatment
was purely algebraic. It took a while before it was realized that Frobenius’
theory had important implications for harmonic analysis. The generaliza-
tion of the theory to compact groups was largely carried out by Hermann
Weyl, and applications to harmonic analysis on compact groups did not
come until the Peter–Weyl Theorem ({16}; reprinted in {28}, pp. 387–404).

It is against this background that we shall consider the contributions of
a few great Hungarian mathematicians: Alfred Haar, John von Neumann,
and Eugene Wigner in the 1920’s, 1930’s, and 1940’s; and in somewhat later
generations, Béla Szőkefalvi-Nagy and Lajos Pukánszky. As there is room
here to discuss only a few of their contributions, we refer the reader to the

1This means that X is a locally compact space and we are given a continuous map
G×X → X, (g, x) 7→ gx, such that (gh)x = g(hx) and ex = x for all g, h ∈ G and x ∈ X,
where e is the identity element of G.
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scientific obituaries {18}, {23}, {15}, {10}, {14}, {29}, {24}, {6}, and {5}
for more details.

1. Haar, von Neumann, and Wigner

Alfred (Alfréd) Haar, Eugene Paul (Jenő Pál) Wigner, and John (János)
von Neumann were all born in Budapest: Haar in 1885, Wigner in 1902,
von Neumann in 1903. All three had the good fortune to have as their sec-
ondary school mathematics teacher László Rátz of the Evangelical Lutheran
High School in Budapest. Rátz seems to have done a remarkable job in en-
couraging mathematical talent, and was also the founder of the Mathemati-
cal Journal for Secondary Schools, or Középiskolai Matematikai Lapok. (See
{23} and “Eugene Paul Wigner: A Biographical Sketch” in [199], pp. 3–14.)
These three students of Rátz were among the most important contributors
to the development of non-commutative harmonic analysis.

1.1. Hilbert’s Fifth Problem

Hilbert’s Fifth Problem {11} asked “how far Lie’s concept of continuous
groups of transformations is approachable in our investigations without the
assumption of the differentiability of the functions.” Hilbert’s Fifth Problem
can be said to mark the beginning of the subject of non-commutative
harmonic analysis.

Among the very first results in the direction of a solution was a paper
of von Neumann, “Zur Theorie der Darstellungen kontinuierlichen Grup-
pen” (Sitzungber. der Preuss. Akad. (1927), 76–90; reprinted in [118], vol. 1,
pp. 134–148). This paper basically proves that any continuous finite-
dimensional representation of a Lie group is automatically differentiable,
in fact analytic.

1.2. Invariant Measures and Analysis on Locally Compact Groups

It was soon realized that a reasonable attack on more substantial cases of
Hilbert’s Fifth Problem requires a means of doing analysis on a locally
compact group, comparable to the sort of analysis one does with func-
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tions in Euclidean space. Since analysis on Euclidean space is based in
large part on Lebesgue integration, the “search was on” for a means of in-
variant integration on a general locally compact group. In the case of an
n-dimensional Lie group G, since G is an orientable manifold, G always ad-
mits left-invariant smooth measures, which can be identified with non-zero
left-invariant differential n-forms, or in other words with non-zero elements
of the one-dimensional vector space

∧ng∗, where g is the Lie algebra of
G, that is, the vector space of left-invariant vector fields. Note that one-
dimensionality of

∧ng∗ implies that left-invariant measures on G are unique
up to a scalar multiple.

One of Haar’s greatest mathematical contributions was his proof, in the
paper “Der Massbegriff in der Theorie der kontinuierlichen Gruppen,” (Ann.
of Math. (2) 34 (1933), 147–169; reprinted in [62], 600–622), that every
locally compact group G admits a left-invariant measure. Haar’s paper also
appeared slightly earlier in Hungarian (Mat. Term. Ért. 49 (1932), 287–
307; reprinted in [62], 579–599). While various improved reformulations of
Haar’s method have been given, notably the elegant ones due to Weil {27}
and Cartan {3}, to this author’s knowledge, no one has ever improved on
his main idea, which is to compare the relative size of two compact sets A
and B with dense interiors, by letting h(A; B) be the minimal number of
translates of B required to cover A. From this data Haar constructs his
measure m by letting

m(A) = lim
n

h(A;Bn)
h(C; Bn)

,

where C is fixed once and for all and where the sets Bn run over a compact
neighborhood base of the identity. Haar was well aware that his theorem
made possible harmonic analysis on non-Lie topological groups, and he
remarks at the end of his paper that it immediately follows that one can
prove the Peter–Weyl Theorem ({16}; reprinted in {28}, pp. 387–404),
giving a decomposition of L2(G) into an orthogonal direct sum of matrix
coefficients of irreducible representations, for any compact group G, not just
a Lie group.

Haar and von Neumann were in close contact at the time of this work,
and a paper of von Neumann on Hilbert’s Fifth Problem, “Die Einführung
analytischer Parameter in topologischen Gruppen” ([118], vol. 2, pp. 366–
386) was submitted to the Annals the same day as Haar’s paper and pub-
lished right next to it. In it, von Neumann proves that every compact group
which is topologically locally Euclidean is a Lie group, i.e., admits an an-
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alytic structure. From this and the Peter–Weyl Theorem, it follows that
every compact group is an inverse limit of Lie groups.

Two other important papers of von Neumann follow up on the theme of
Haar’s work. In “Zum Haarschen Maß in topologischen Gruppen” (Compo-
sitio Math. 1 (1934), 106–114; also [118], vol. 2, pp. 445–453), von Neumann
gives an easier proof of the existence of Haar measures on a compact group
G, by proving that if f is a continuous function on G, then the closed con-
vex hull of the translates of f contains a unique constant function (the value
of the constant being of course

∫
f(g) dg). This remains the easiest proof of

existence of Haar measure for compact groups. Then in “The uniqueness of
Haar’s measure” (Mat. Sb. 1 (1936), 721–734; also [118], vol. 4, pp. 91–104),
von Neumann gives a proof that a left (or right) Haar measure is unique
up to scalar multiples, just as in the case of invariant smooth measure on a
Lie group. This important result was proved independently, using different
methods, by André Weil {27} and Henri Cartan {3}.

1.3. Representation Theory and Quantum Physics

Among the most important motivations for the development of non-com-
mutative harmonic analysis in the years between the two World Wars was
the development of quantum mechanics. Indeed, Weyl, von Neumann, and
Wigner all approached the subject of non-commutative harmonic analysis
with quantum mechanics in mind, and Wigner always considered himself
more of a physicist than a mathematician.

As early as his paper “Über nicht kombinierende Terme in der neueren
Quantentheorie” of 1926 (Z. für Physik 40 (1926–27), 492–500 and 883–
892; reprinted in [199], pp. 34–52), Wigner realized that Frobenius’ theory
of representations of the symmetric group was relevant to the study of wave
functions of multi-particle systems. This can be regarded as an example of
non-commutative harmonic analysis in the sense of this article, with G = Sn.
In his paper, Wigner thanks von Neumann for telling him about the work
of Frobenius and Schur.

The following year, 1927, Wigner spent at Göttingen as Hilbert’s as-
sistant. There he met several mathematicians and physicists and began
to collaborate with Pascual Jordan. In their paper “Über das Paulische
Äquivalenzverbot” of 1928 (Z. für Physik 47 (1928), 631–651; reprinted in
[199], pp. 109–129), Jordan and Wigner first reformulated the Pauli exclu-
sion principle in terms of representations of the “canonical anticommutation
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relations” (CAR). The Clifford algebras defined by the CAR of course play a
pivotal role in the Dirac equation of the electron, and in fact the connection
between Dirac and Wigner was more than scientific: Dirac later married
Wigner’s sister.

The work of Wigner and Jordan was the precursor of the famous paper
“On an algebraic generalization of the quantum mechanical formalism” by
Jordan, von Neumann, and Wigner (Ann. of Math. (2) 35 (1934), 29–64;
reprinted in [199], pp. 298–333 and in [118], vol. 2, pp. 408–444) that founded
the study of what are now called Jordan algebras. In their paper, Jordan,
von Neumann, and Wigner obtain the classification of the finite-dimensional
simple Jordan algebras over R, including the exceptional ones coming from
the Cayley octonians. We now know that one can trace the existence of the
exceptional compact Lie groups G2, F4, E6, E7, and E8 to these exceptional
Jordan algebras.

We have mentioned the CAR, the anticommutation relations that gov-
ern the behavior of fermions. Of equal importance are the “canonical com-
mutation relations” (CCR) for bosons, that the position operators Qk and
momentum operators Pj should satisfy

(1) QkPj − PjQk = i~δkj , Q∗
k = Qk, P ∗

j = Pj ,

where ~ is Planck’s constant. These simple relations, familiar to every
physics student, hide a serious mathematical difficulty: the equations (1)
have no finite-dimensional solutions,2 in fact no solutions in bounded op-
erators! And for unbounded operators which are not everywhere defined,
what is the meaning of the commutator? The problem of making rigorous
sense of (1), and of showing that there is essentially only one irreducible
solution (satisfying certain nice regularity properties), was solved by Her-
mann Weyl, Marshall Stone, and von Neumann. The final result, in von
Neumann’s important paper “Die Eindeutigkeit der Schrödingerschen Op-
eratoren” (Math. Ann. 104 (1931), 570–578; also [118], vol. 2, pp. 221–229),
turned out to be important not only for theoretical physics but also for the
future development of unitary representation theory.

The idea is to note that (1) amounts to looking for a representation
through skew-adjoint operators of what is now called the Heisenberg Lie al-
gebra g of dimension 2n+1, with a basis X1, . . . , Xn, Y1, . . . , Yn, Z satisfying

(2) [Xj , Yk] = δkjZ, [Z, Xj ] = 0, [Z, Yk] = 0.
2The reason is that for any finite-size matrices Q and P , Tr (QP−PQ) = 0, so QP−PQ

cannot be a non-zero multiple of the identity.
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Now to the Lie algebra g we can attach a simply connected nilpotent Lie
group G. Topologically it looks like R2n+1, but the multiplication is slightly
twisted. We can impose a regularity condition on our Lie algebra represen-
tations by requiring that they come from unitary representations π of G,
that is, strongly continuous homomorphisms from G to the unitary group
of some Hilbert space, for which the corresponding “infinitesimal represen-
tation” is dπ(Z) = i~, dπ(Xj) = iPj , dπ(Yk) = iQk. Von Neumann’s
Theorem says that up to unitary equivalence, there is one and only one ir-
reducible such representation, and every unitary representation π of G with
dπ(Z) = i~ is a multiple of this irreducible representation.

1.4. Invariant Means and Almost Periodic Functions and Groups

In von Neumann’s paper “Zum Haarschen Maß in topologischen Gruppen,”
cited above, there appears an interesting “Zusatz während der Korrektur,”
in which von Neumann mentions that he had noticed that his argument
for constructing the Haar measure on a compact group can be extended to
some non-compact groups as well, but that in this case it gives rise not to
Haar measure but to an invariant “mean” f 7→ ∫

f for which the constant
function 1 has “mean value” 1. (On the other hand, Haar measure on a
non-compact group is never a finite measure, so on a non-compact group,
constant functions are never integrable with respect to Haar measure.)
The study of such means was to lead to a whole other direction in non-
commutative harmonic analysis. Von Neumann’s Zusatz asserts that “die
Ausführung erscheint demnächst in den Annals of Mathematics.” Evidently
he misspoke; the paper von Neumann refers to, “Almost periodic functions
in a group, I” was to come out in the Transactions of the Amer. Math. Soc.
(36 (1934), 445–492; also [118], vol. 2, 454–501), not the Annals.

To explain von Neumann’s discovery, we have to back up a bit and
review Harald Bohr’s theory of almost periodic functions {2}. In its simplest
version, this refers to bounded uniformly continuous functions f on the
line with a “Fourier series” expansion f(x) ∼ ∑

j cje
iλjx (convergent in

a suitable sense), where the frequencies λj are not necessarily rationally
related to one another, and thus f is not necessarily periodic. Of course
we cannot expect expect the Fourier series of f to converge uniformly to f ,
since this is not always true even when f is literally periodic. Instead, Bohr
found that a natural notion of convergence in this context is convergence in
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mean over bigger and bigger intervals, i.e., that

lim
N→∞

lim
T→∞

1
2T

∫ T

−T

∣∣∣∣f(x)−
N∑

j=1

cje
iλjx

∣∣∣∣
2

dx = 0,

and that there is a well-defined notion of mean for such functions, namely

f = lim
T→∞

1
2T

∫ T

−T
f(x) dx.

Existence of the limit here is Bohr’s “Mittelwertsatz” in {2}. What von
Neumann noticed is that for almost periodic functions f on R, the closed
convex hull of the translates of f contains a unique constant function, and
the value of this constant is the Bohr mean value of f .

Now in the earlier paper “Zur allgemeinen Theorie des Masses” (Fund.
Math. 13 (1929), 76–116 and 333; reprinted in [118], vol. 1, pp. 599–643),
von Neumann had studied the similar subject of means on discrete groups,
and had defined a group G to be “messbar” (literally measurable, but we
will instead use the now-standard terminology amenable) if it admits a left-
invariant mean. Such a mean can be viewed as an “integration” process
f 7→ ∫

f on bounded functions, for which the constant function 1 has “mean
value” 1, and for which

∫
f =

∫
λ(x)f , if λ(x)f denotes the left translate of

f by x ∈ G, i.e.,
(
λ(x)f

)
(y) = f(x−1y). Von Neumann proved that finite

and abelian (discrete) groups are amenable, and that the class of amenable
groups is closed under extensions and direct limits. It follows that there
is a fairly large class of “obviously” amenable groups, what are now called
elementary amenable groups: the smallest class containing the solvable and
finite groups and closed under extensions and direct limits. On the other
hand, von Neumann exhibited countable groups that are not amenable, for
example, the free group on two generators. It is important to note that
on infinite amenable groups, invariant means are not at all unique. For
example, a bounded function f on the group G = Z is simply a two-sided
bounded infinite sequence f = {fn}n∈Z, and the possible means of f are all
the various limit points of the sequence of approximating averages

1
2N + 1

(
f−N + · · ·+ f0 + · · ·+ fN

)

as N →∞.
Let us come back to von Neumann’s work on almost periodic functions,

continued in two later papers (the first with Salomon Bochner, “Almost
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periodic functions in a group, II,” Trans. Amer. Math. Soc. (37 (1935),
no. 1, 21–50; also [118], vol. 2, 528–557; and the second with E. Wigner,
“Minimally almost periodic groups,” Ann. of Math. (2) 41 (1940), 746–750;
in [118], vol. 4, 220–224 and in [199], pp. 390–394). To make a long story
short, von Neumann defines two classes of groups, which are in some sense
opposite extremes. Minimally almost periodic groups admit no non-constant
almost periodic functions (in a natural sense extending Bohr’s). Maximally
almost periodic groups admit enough almost periodic functions to separate
points. André Weil {27} eventually cleaned up the theory and showed that,
for every maximally almost periodic group G, there exists a compact group
G∗ which contains G as a dense subgroup and such that every continuous
real-valued almost periodic function on G can be uniquely extended to a
continuous (and hence almost periodic) function on G∗. In fact, a locally
compact group is maximally almost periodic if and only if it has a continuous
embedding into a compact group. Thus as von Neumann pointed out, the
Bohr mean on almost periodic functions really comes from the construction
of Haar measure on compact groups, and in the case of an abelian locally
compact group, it coincides with the restriction of an invariant mean on all
bounded uniformly continuous functions. However, residually finite discrete
groups3 are always maximally almost periodic, but not always amenable,
so even in the case of discrete groups, the Bohr mean on almost periodic
functions does not always extend to a mean on all bounded functions.

1.5. Von Neumann Algebras

Among von Neumann’s greatest contributions was the development of the
theory of what he called rings of operators, and what are now called von
Neumann algebras. A von Neumann algebra is simply a subalgebra of B(H),
the algebra of all bounded operators on a Hilbert space H, which is stable
under the involution T 7→ T ∗ and closed under the strong (or equivalently,
weak) operator topology. The massive papers of von Neumann on this
subject, almost all of them joint with Francis Joseph Murray, fill all of
volume III of [118]. It would be impossible to do justice to them here,
so we refer the reader to {10} and to the article on functional analysis
by Á. Császár and D. Petz in this volume for more information, but we

3This means groups like SL(n,Z), the n × n matrices with integer entries and deter-
minant 1, with enough homomorphisms to finite groups to separate points.
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just briefly point out what this huge body of work has to do with non-
commutative harmonic analysis.

Suppose G is a locally compact group. A unitary representation π of
G on a Hilbert space H means a homomorphism π from G to the group of
unitary operators on H, which is continuous with respect to the strong op-
erator topology (or the weak operator topology—it gives exactly the same
notion). Note that we do not require continuity in the norm topology for
operators, since this fails for the standard example of a unitary represen-
tation, namely the left regular representation λ of G on L2(G) (L2 being
defined with respect to Haar measure). Then the possible decompositions
of π into subrepresentations are governed by the structure of the commutant
of the representation,

π(G)′ =
{

T ∈ B(H) : Tπ(g) = π(g)T for all g ∈ G
}

.

For example, Schur’s Lemma says that π is irreducible if and only if
π(G)′ = C. But π(G)′ is a von Neumann algebra, so the classification
theory of von Neumann algebras comes into play at this point. For exam-
ple, we call π multiplicity-free if π(G)′ is abelian and a factor representation
if π(G)′ is a factor, that is, a von Neumann algebra with one-dimensional
center. The Murray-von Neumann papers classify factors into three types.
If π(G)′ is a type I factor, then π is simply a multiple of a single irreducible
representation. But if π(G)′ is a type II or type III factor, then there is
no canonical way to decompose π into irreducible representations, so that
type II or type III factor representations should themselves be regarded as
basic building blocks of representation theory. Some groups (for example,
abelian or compact groups, or the Heisenberg group defined by (2)) are
type I, in the sense that the commutants of their unitary representations
are always type I. For such groups, at least if G is second countable, von
Neumann’s theory of direct integral decompositions (“On rings of operators.
Reduction theory,” Ann. of Math. (2) 50 (1949), 401–485; [118], vol. 3, pp.
400–484) provides a canonical way of decomposing all unitary representa-
tions (on separable Hilbert spaces) into irreducible pieces, and there is a
hope to copy many features of the Frobenius–Schur theory for finite groups.
But for non-type I groups, one is forced to contend with non-type I factor
representations. For example, Murray-von Neumann proved that the com-
mutant of the regular representation of a discrete group G is a finite type II
factor if and only if G is an ICC-group,4 that is, if the identity of G is the
only element whose conjugacy class is finite.

4This stands for “infinite conjugacy classes”.
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One of the other great contributions of Murray and von Neumann was
the theory of the trace on a type II factor. If π is a finite-dimensional
unitary representation, then one can define its character χπ, a class function
on G, by χπ(g) = Trπ(g). (This definition was introduced by Frobenius.)
Furthermore, all one needs to know about π can be recovered from the
character χπ. It would be nice to do something similar for certain other
factor representations. If π is a finite type II factor representation, then
there is a continuous linear functional Tr on the von Neumann algebra
generated5 by π(G), satisfying Tr (1) = 1 and the usual trace property
Tr (ab) = Tr (ba), and so it is again possible to develop a theory of group
characters similar to the one for finite groups. If π is an infinite-dimensional
irreducible representation or a II∞ factor representation, then π(G)′′ admits
a trace, but it is only partially defined, and in particular Tr (u) is undefined
for u unitary. So in this case, while it is possible that χπ(g) = Trπ(g)
might make sense as an equality of distributions, provided there are enough
functions φ on G for which π(φ) =

∫
φ(g)π(g) dg is trace-class, χπ = Tr ◦π

does not make sense directly as a function on the group G.6

1.6. Development of Unitary Representation Theory
of Non-Compact Lie Groups

The modern development of the unitary representation theory of non-
compact Lie groups, which today is now a large subject, grew out of the work
of Gelfand–Naimark, Bargmann, Mackey, and Harish-Chandra in the late
1940’s and the 1950’s. One of the key papers that prompted this develop-
ment was Wigner’s paper “On unitary representations of the inhomogeneous
Lorentz group” (Ann. of Math. (2) 40 (1939), 149–204; reprinted in [199],
pp. 334–389). Curiously, this paper was first submitted to the American
Journal of Mathematics, usually regarded as being somewhat less presti-
gious than the Annals, and was rejected there with the remark that “this
work is not interesting for mathematics” ([199], p. 9). In any event, this

5By von Neumann’s Double Commutant Theorem, found in §II of “Zur Algebra der
Funktionaloperationen und Theorie der normalen Operatoren” (Math. Ann. 102 (1929),
370–427; [118], vol. 2, pp. 86–143), this is just the commutant π(G)′′ of π(G)′. The
Double Commutant Theorem implies that a ∗-subalgebra A of B(H) is a von Neumann
algebra if and only if it is equal to its double commutant A′′.

6Note that π(φ) as we have just defined it can be viewed as a sort of operator-valued
Fourier coefficient of φ. Its trace χπ(φ), when defined, is a sort of scalar-valued Fourier
coefficient.
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paper is important for two reasons: it promoted interest in the unitary rep-
resentations of the actual Lorentz groups SO0(2, 1) and SO0(3, 1), classified
soon afterwards by Bargmann {1}, and it amounted to the working out of
an important special case of what was later formulated as the Mackey Im-
primitivity Theorem {13}, and thus motivated the modern point of view on
the decomposition of representations of group extensions.7 More precisely,
Wigner’s paper studies unitary representations of the semidirect product
G = V o H, where V = R3,1 is Minkowski space and H = SO0(3, 1) is
the Lorentz group acting on V the usual way. Wigner proves that each ir-
reducible unitary representation of G is supported on a single H-orbit in
V̂ ∼= V . Wigner only studies the cases where this orbit is either one of
the light cones or else half of a two-sheeted hyperboloid. (The represen-
tations supported on the trivial H-orbit {0} factor through H, and were
only classified later in {1}.) In either case, if one thinks of an elementary
particle corresponding to such an irreducible representation, and views its
wave function φ as a vector-valued L2-function on Minkowski space V , then
this analysis shows that the Fourier transform of φ is supported on one of
the two components of the variety where x̂2

4 − x̂2
1 − x̂2

2 − x̂2
3 = m2, where

m is a constant corresponding to the mass of the particle and the x̂j are
the Fourier transform variables, and thus φ itself satisfies the Klein–Gordon
equation

¤φ = m2φ, where ¤ =
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

− ∂2

∂x2
4

.

We have already discussed (in section 1.5) the work of von Neumann
on unitary representations of discrete groups, and the application of von
Neumann’s theory of direct integral decompositions to the decomposition
of unitary representations of arbitrary second countable locally compact
groups. However, Haar also worked on representation theory. A little-
known paper of Haar, “Über die Gruppencharaktere gewisser unendlichen
Gruppen” (Acta Sci. Math. (Szeged) 5 (1932), 172–186; reprinted in [62],
pp. 172–186) extended the Frobenius theory of group characters from finite
groups to what are now usually called FC-groups,8 groups in which every
conjugacy class is finite. What Haar called characters in this case turn out
to be the same thing as characters in the more modern sense of traces of

7The other key case of the Imprimitivity Theorem that was known before was von
Neumann’s theorem on uniqueness of representations of the Heisenberg commutation
relations, discussed above in Section 1.3.

8“FC” stands for “finite conjugacy classes.”
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finite factor representations, as later studied by Elmar Thoma {25}. An
interesting fact about FC-groups is that if they are finitely generated, then
they are virtually abelian groups, that is, have an abelian subgroup of finite
index. It was eventually shown by Thoma {26} that the virtually abelian
groups are precisely the class of type I groups, discrete groups whose unitary
representations always generate type I von Neumann algebras, and in fact
the dimensions of their irreducible representations are bounded. Hence
for finitely generated FC-groups, non-commutative harmonic analysis in
the sense of Haar is precisely the decomposition of functions into matrix
coefficients of irreducible representations, as in the situation of the Peter–
Weyl Theorem.

2. Sz.-Nagy and Pukánszky

2.1. Béla Sz.-Nagy

Béla Sz.-Nagy, one of the great operator theorists of the twentieth century,
made a few interesting contributions to non-commutative harmonic analy-
sis, even though this was not his primary mathematical interest.9 Here we
will just mention four of them. The first is a strengthening of von Neu-
mann’s automatic analyticity theorem for homomorphisms of Lie groups
(see Section 1.1): Nagy {19} proves that measurability is enough to guar-
antee analyticity; one does not need to assume continuity from the start.

The second contribution, on its face, only deals with commutative har-
monic analysis. In {20}, Nagy proved that a one-parameter group {Tn}n∈Z
or {Ts}s∈R of invertible linear operators on a Hilbert space H is similar to a
unitary representation (of Z or R) if and only if it is uniformly bounded, i.e.,
there is a constant K > 0 such that ‖Tn‖ ≤ K for all n ∈ Z or ‖Ts‖ ≤ K
for all s ∈ R. The connection with unitary representation theory is that
essentially the same theorem, with almost the same proof, holds for uni-
formly bounded representations π of arbitrary amenable locally compact
groups G, as was pointed out by Jacques Dixmier {4}. In other words, if
π is a strongly continuous homomorphism from G to the invertible linear

9The bulk of Sz.-Nagy’s work is discussed in the companion article in this volume by
Á. Császár and D. Petz.
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operators on H, and if
∥∥π(g)

∥∥ ≤ K for all g ∈ G, then

〈ξ, η〉′ =
∫

G

〈
π(g)ξ, π(g)η

〉
dg,

with
∫
G denoting an invariant mean on G, defines a new inner product on

the Hilbert space, equivalent to the original one, with respect to which the
representation π is unitary. Incidentally, the requirement of amenability
is essential here; the group SL(2,R) was shown in {7} to have uniformly
bounded representations that are not unitarizable.

The third concerns the following problem. Suppose H is a Hilbert
space and σ : G → B(H) is a map from a discrete group to bounded
operators on H. What is the necessary and sufficient condition for σ to be
the compression of a unitary representation, or in other words, for there
to be a Hilbert space H′ ⊇ H and a unitary representation π of G on H′
such that if P : H′ → H is the orthogonal projection, then σ(g) = Pπ(g)P
for all g ∈ G? Nagy solved this problem in {21}. This can be viewed as
an operator-valued analogue of the characterization of matrix coefficients
g 7→ 〈π(g)ξ, ξ〉 of unitary representations as the positive-definite functions,
which follows from the Gelfand–Naimark–Segal construction.

The fourth problem studied by Nagy (in joint work with Ciprian Foiaş
and László Gehér {8} and in {22}) can be viewed as a postscript to von
Neumann’s work (cited above in Section 1.3) on uniqueness of representa-
tions of the canonical commutation relations (1). Recall that the method of
Weyl and von Neumann was to study unitary representations of the Heisen-
berg Lie group, not representations by unbounded operators of the original
relations, which are more numerous and which pose difficult analytic ques-
tions. However, Nagy was able to give necessary and sufficient conditions
for a representation of the CCR to come from a representation of the group:
an irreducible pair of closed symmetric operators Q and P on a Hilbert
space H is a “Schrödinger couple” if and only if QP − PQ = iI holds on a
subspace D ⊂ DQP − PQ which is large enough so that the restrictions of
Q and P to D are essentially selfadjoint and that at least one of the eight
sets (Q± iI)(P ± iI)D, (P ± iI)(Q±−iI)D is dense in H.

2.2. Lajos Pukánszky

Lajos Pukánszky, who was born in Budapest in 1928, studied with Sz.-
Nagy in Szeged. His earliest papers (dating from 1951 through 1960) deal
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with von Neumann algebras; all his subsequent publications were on the
unitary representation theory of Lie groups. While it was von Neumann
who first anticipated the importance of the theory of rings of operators
(i.e., von Neumann algebras) to non-commutative harmonic analysis, it was
Pukánszky who finally achieved a deep synthesis of these two subjects.
Again, we have no room here to go into details, some of which may be
found in {6} and {5}. The reader interested in Pukánszky’s work could also
see his posthumous monograph [139]. The subject of this book, indeed of
much of Pukánszky’s work, concerns the following question. For a type I Lie
group G, there is a bijective correspondence between Ĝ, the set of unitary
equivalence classes of irreducible unitary representations π, and the set of
“characters” of G, the generalized functions g 7→ Trπ(g). What is the
substitute for this bijection in the case of non-type I Lie groups?

The answer, which is quite remarkable, is that for non-type I Lie groups,

one needs to replace Ĝ by
∩
G, the set of quasi-equivalence classes10 of

“normal” representations. These are factor representations π of G of types
I or II, for which the (usually unbounded) trace Tr on the factor π(G)′′

is finite and non-zero on some ideal in C∗(G), the C∗-completion of the
convolution algebra L1(G). On a type I group, there is no difference between

Ĝ and
∩
G. But on non-type I connected Lie groups, Pukánszky showed

that
∩
G is big enough to support the canonical (i.e., central) direct integral

decomposition of the left regular representation of G on L2(G). Thus
harmonic analysis of L2 functions on the group sometimes forces one to
consider normal representations that are not irreducible, and the left regular
representation of G on L2(G) generates a von Neumann algebra with no
type III summand. (This last fact was proved through the joint efforts
of Pukánszky and Dixmier.) Not only this, but every primitive ideal of
C∗(G) (that is, the kernel of an irreducible representation of this algebra)
is the kernel of a unique quasi-equivalence class of normal representations,

so that there is a natural bijection between
∩
G and PrimC∗(G). Finally,

in a stunning generalization of Alexander Kirillov’s character formula {12},
Pukánszky [139] was able to give a geometric parametrization of the normal
representations and a formula for their characters, at least for connected
solvable Lie groups.

10Two factor representations π1 and π2 of G are called quasi-equivalent if there is an
isomorphism Φ : π1(G)′′ → π2(G)′′ such that π2 = Φ◦π1. This is the natural equivalence
relation on factor representations. The difference between this and unitary equivalence is
that Φ need not be given by conjugation by a unitary operator.
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Acta Univ. SzegedṠect. Sci. Math., 11 (1947), 152–157.
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