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Orthogonal Polynomials

JÓZSEF SZABADOS

The theory of orthogonal polynomials plays an important role in many
branches of mathematics, such as approximation theory (best approxima-
tion, interpolation, quadrature), special functions, continued fractions, dif-
ferential and integral equations. The notion of orthogonality originated
from the theory of continued fractions, but later became an independent
(and possibly more important) discipline. Among the contributors to the
theory of orthogonal polynomials, we can find such outstanding mathemati-
cians as Abel, Chebyshev, Fourier, Hermite, Laguerre, Laplace, Legendre,
Markov, and Stieltjes, just to name a few. Beginning with Gábor Szegő,
Hungarian mathematicians like Pál Erdős, Pál Turán, Géza Freud, Ervin
Feldheim and others have made essential contributions to the flourishing
theory of orthogonal polynomials in the last century. At this point I would
like to mention two names who have made considerable efforts to propa-
gate the work of the above mentioned Hungarian mathematicians: Richard
Askey and Doron Lubinsky.

A considerable part of the material to be presented below is based on
the classical book of Szegő [174]. Since its first publication in 1939, this
monograph has reached three more editions, and until now is the most
comprehensive, most quoted source on the subject. Another source of in-
formation concerning more recent developments in the theory of orthogonal
polynomials is the monograph [47] of Géza Freud and a survey paper by
Paul Nevai (J. Approx. Theory 48 (1986), pp. 3–167).

Problems connected with interpolation and mechanical quadrature on
the roots of orthogonal polynomials are considered in another chapter writ-
ten by Péter Vértesi.

Let α be a real valued increasing function on R. We call such an α a
distribution function if it assumes infinitely many values and the improper
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Stieltjes integrals

(1) cn =
∫

R
xn dα(x), n = 0, 1, . . .

(called moments) exist and are finite. If α is absolutely continuous we write
dα(x) = w(x) dx, and call w a weight function. Let Pn and Pc

n, n = 0, 1, . . .
be the set of real and complex algebraic polynomials of degree at most n,
respectively. Associated with each distribution function α, there is a unique
sequence of orthonormal polynomials pn ∈ Pn, deg pn = n, n = 0, 1, . . .
with positive leading coefficients γn and having the property

∫

R
pn(x)pm(x) dα(x) = δmn, m, n = 0, 1, . . . .

Of course, the region of the above integration can be restricted to the support
of the distribution α which, in general, may be a finite interval, the half line,
or R.

We list some important properties of orthogonal polynomials.

1. pn, n = 0, 1, . . . are linearly independent.

2. All roots of pn are real, simple, and lie in the interior of the support
of α (which is a finite or infinite interval [a, b]).

3. With the help of the moments (1), the representation

pn(x) = (Dn−1Dn)−1/2

∣∣∣∣∣∣∣∣∣∣∣

c0 c1 c2 . . . cn

c1 c2 c3 . . . cn+1
...

...
...

. . .
...

cn−1 cn cn+1 . . . c2n−1

1 x x2 . . . xn

∣∣∣∣∣∣∣∣∣∣∣

holds, where Dn = det [ci+j ]i,j=0,...,n, n = 1, 2, . . . .

4. There is a three term recurrence relation

(2) xpn(x) = an+1pn+1(x) + bnpn(x) + anpn−1(x), n = 2, 3, . . . ,

where

an =
γn−1

γn
and bn =

∫

R
tpn(t)2 dα(t).
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5. The Christoffel–Darboux formula

(3) Kn(x, y) :=
n−1∑

k=0

pk(x)pk(y) =
γn−1

γn

pn(x)pn−1(y)− pn−1(x)pn(y)
x− y

holds.
Note also the following important property of Kn:

(4) λn(x) :=
1

Kn(x, x)
= inf

p(x)=1, p∈Pn−1

∫ b

a
p2(t) dα(t).

The latter is called the nth Christoffel function associated with dα. Perhaps
this is the most important notion in connection with orthogonal polynomi-
als, since results concerning this function have a deep effect on various fields
of approximation theory, harmonic and numerical analysis.

6. The Gauss–Jacobi quadrature formula
∫

R
p dα =

n∑

k=0

λkp(xk)

valid for every polynomial p ∈ P2n−1, where xk = xkn are the roots of the
orthogonal polynomial pn, and

λk =
∫ b

a

pn(x)
p′n(xk)(x− xk)

dx =
1

Kn(xk, xk)
> 0, k = 0, 1, . . . ,

are the Cotes numbers.
With each function f such that

∫
R f2 dα < ∞, we can associate the nth

partial sum

(5) Sn(dα, f, x) :=
n∑

k=0

fkpk(x),

of the orthogonal expansion, where

fk :=
∫

R
fpk dα, k = 0, 1, . . . .

Of particular interest are the classical orthogonal polynomials, when

w(x) =





(1− x)α(1 + x)β (α, β > −1) (Jacobi polynomials on [−1, 1],

xαe−x (α > −1) (Laguerre polynomials on [0,∞),

e−x2
(Hermite polynomials on R).
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What makes these cases interesting is the existence of second order linear
differential equations

(1− x2)p′′n(x) +
[
β − α− (α + β + 2)x

]
p′n(x) + n(n + α + β + 1)pn(x) = 0,

xp′′n(x) + (α + 1− x)p′n(x) + npn(x) = 0,

p′′n(x)− 2xp′n(x) + 2npn(x) = 0,

respectively. These differential equations (which do not exist in the general
case) make all considerations much easier. Hence our knowledge concerning
the classical orthogonal polynomials is much more exhaustive.

The special case α = β = 0 of the above mentioned Jacobi polynomials,
i.e. the Legendre polynomials, were generalized by Leopold Fejér in the
following way. Let f(z) =

∑∞
n=0 anzn be a generator function analytic in a

neighborhood of the origin with all an real. Consider

∣∣f(reiθ)
∣∣2 =

∞∑

n=0

pn(cos θ)rn,

where

pn(cos θ) =
n∑

k=0

akan−k cos(n− 2k)θ

is a polynomial of degree n of the variable cos θ. These are generaliza-
tions of the Legendre polynomials which are obtained in the special case
f(z) = (1− z)−1/2. More generally, for f(z) = (1− z)−λ, λ > −1/2, we
obtain the ultraspherical Jacobi polynomials (with the above notation, for
α = β = λ−1/2). Imposing proper monotony and asymptotic conditions on
the sequence {an}, one can obtain polynomials pn with different interesting
properties (see Ch. 6.5 of Szegő’s monograph [174]). The most intriguing
question in this context is whether the polynomials pn are orthogonal with
respect to some weight function. Ervin Feldheim (Izv. Akad. Nauk SSSR,
Ser. Math. 5 (1941), 241–248) and independently I. L. Lanzewizky showed
that in case of orthogonality, these polynomials pn can be rescaled to Cn to
satisfy a three term recurrence relation of the form (2):

2x(1− βqn)Cn(x) = (1− qn+1)Cn+1(x) + (1− β2qn−1)Cn−1(x)

for n ≥ 1, where

C0(x) = 1, C1(x) = 2x
1− β

1− q
, |β|, |q| < 1.
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(When β = qλ we obtain the ultraspherical polynomials mentioned above.)
Although Feldheim was unable to obtain explicit representation for these
polynomials, as well as for the weight function, this was a crucial step
in characterizing these polynomials. Later the polynomials were found
explicitly by Richard Askey who did pioneering work in the theory of so-
called q-polynomials (cf. e.g. R. Askey, M. Ismail, Studies in Pure Math.,
P. Erdős editor, Birkhäuser, Basel, 1983, pp. 55–78.).

The notion of orthogonal polynomials was extended to complex domains
mainly by the pioneering work of Szegő (cf. [174], Chs. XI and XVI). The
most interesting case is the unit circle |z| = 1. Let µ be an increasing 2π
periodic function which takes infinitely many values in any interval of length
2π. Then there is a uniquely determined sequence of complex polynomials
φn(z) = κnzn + . . . , φn ∈ Pn, κ > 0 real numbers, such that

1
2π

∫ π

−π
φm(z)φn(z) dµ(θ) = δmn, z = eiθ; m,n = 0, 1, . . . .

Szegő has shown that properties of these polynomials are somewhat simpler
than those of the real orthogonal polynomials, to which they are related (in
case of a finite interval). Such properties enable us to derive statements for
real orthogonal polynomials from those of complex ones.

All roots of the complex orthonormal polynomials lie in the open unit
circle. The problem of distribution of roots in the unit circle is a delicate
question. Turán (J. Approx. Theory 29 (1980), 23–85.) raised the question
whether the accumulation points of the roots of the orthogonal polynomials
can fill up the whole unit disk. I (Acta Math. Acad. Sci. Hungar. 33 (1979),
197–210.) gave a partial answer to this question by constructing a weight
function for any given ε > 0 such that the two dimensional Lebesgue
measure of the above mentioned accumulation points greater than π − ε.
The complete positive answer to Turán’s problem was given later by M. P.
Alfaro and L. Vigil (J. Approx. Theory 53 (1988), 195–197.).

Besides the three term recurrence relation (2), complex orthogonal poly-
nomials on the unit circle obey the simpler two term forward-backward re-
currence relations

κnzφn(z) = κn+1φn+1(z)− φn+1(0)φ?
n+1(z)

and
κnφn+1(z) = κn+1φn(z) + φn+1(0)φ?

n(z),
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where φ?
n(z) := znφn(z−1) are the so-called reciprocal polynomials, where

the bar indicates that the coefficients of the corresponding polynomial are
conjugated (cf. Szegő [174]). These formulas play an important role in
constructing a simpler algorithm for the prediction of a stationary time
series (cf. [173], pp. 43–44).

In order to discover further properties of orthogonal polynomials, we
have to consider the analog

Kn(z, u) :=
n−1∑

k=0

φk(z)φk(u) =
φ?

n(z)φ?
n(u)− φn(z)φn(u)

1− zu

of the Christoffel–Darboux formula (3). The analogue of the Christoffel
function (4) is

ωn(dµ, z) := Kn(z, z)−1 =
[ n−1∑

k=0

∣∣φk(z)
∣∣2

]−1

(6)

= inf
p∈Pc

n−1

p(z)=1

1
2π

∫ 2π

0

∣∣p(u)
∣∣2

dµ(t), u = eit.

Let 0 ≤ g ∈ L1 be a positive measurable function in [0, 2π]. The Szegő
function associated with g is defined as

(7) D(g, z) = exp
{

1
4π

∫ 2π

0

u + z

u− z
log g(t) dt

}
, u = eit, |z| < 1.

D(g, 0) 6= 0 in |z| < 1, D(g) is square integrable in the unit disk, D(g, 0) > 0,
the radial limit D(g, eit) exists, and

∣∣D(g, eit)
∣∣2 = g(t) almost everywhere.

Szegő [174] proved that if µ is differentiable and log µ′ ∈ L1, then the
asymptotic relation

lim
n→∞φ?

n(z) = D(µ′, z−1)

holds uniformly in every compact subset of |z| < 1. Moreover,

lim
n→∞ z−nφn(z) = D(µ′, z−1), |z| > 1,

and
lim

n→∞κn = D(µ′, 0)−1
,
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or equivalently

lim
n→∞

∫ 2π

0
[
∣∣φn(z)

∣∣µ′(t)1/2 − 1]
2
dt = 0, z = eit.

The latter result was later extended by Attila Máté, Paul Nevai, and Vilmos
Totik to the case when log µ′ ∈ L1 is replaced by the weaker condition that
µ′ > 0 almost everywhere.

As for the behavior of the orthogonal polynomials on the unit circle,
Szegő and U. Grenander [59] showed that

(8) lim
n→∞ [φn(eit)− eintD−1(µ′, eit)] = 0

uniformly in t, provided 0 < m ≤ µ′(t) ≤ M < ∞ and the modulus
of continuity ω(µ′, h) of µ′ is of order

(
log(1/h)

)−β, β > 1. The latter

condition was later weakened to
∫ π
0

ω(µ′,h)
h dh < ∞ by Freud, who also gave

similar conditions for the pointwise convergence in (8) (cf. [47]). The idea
of localization of the asymptotic behavior of orthogonal polynomials is due
to Tamás Frey (Mat. Sbornik 49 (1959), 133–180.).

The Szegő function (7) plays role in solving Szegő’s generalized extremal
problem: find

ω(dµ, z) := lim
n→∞ωn(dµ, z), |z| < 1

(note that

ω(dµ, z) =





µ(z)
2π

, if |z| = 1,

0, if |z| > 1,

where µ(z) is the dµ-measure of the point z).
Szegő found this limit function when µ is absolutely continuous. The

case when µ is not necessarily absolutely continuous was proved by A. N.
Kolmogorov and generalized by M. G. Krein for Lp

dµ measures (p > 0) in
(6) instead of L2

dµ-measure.
In the above quoted work of Szegő and Grenander it is proved that

ω(dµ, z) =
(
1− |z|2)∣∣D(µ′, z)

∣∣2
, |z| < 1

for every measure dµ on the unit circle.
The considerations resulting in the asymptotic formula (8) in the case

of the unit circle led Szegő to the investigation of the asymptotic behavior



62 J. Szabados

of the Christoffel function (see (4)) in case of the interval [−1, 1]. He proved
that if the support of dα is in [−1, 1] and the derivative of the function

1
| sin t|α′(cos t)

≥ 1

is in some Lipschitz class, then (cf. Freud [47], p. 269)

λ−1
n (x) = n− 1

2
+ Re

[
eiξ D′(µ′, eiξ)

D(µ′, eiξ)

]

+
1

2 sin ξ
Im

[
e(2n−1)iξ D(µ′, eiξ)

D(µ′, eiξ)

]
+ o(1), x = cos ξ,

where
µ(t) := (sgn t)

[
α(1)− α(cos t)

]
, |t| ≤ π.

Purely in terms of orthogonal polynomials on the interval [−1, 1], a
complete and general asymptotic of the Christoffel function can be found
in a paper by Paul Nevai {1}. He proved that if log α′(cos t) ∈ L1 then

(9) lim
n→∞nλn(x) = πα′(x)(1− x2)1/2

for almost all x in an interval where 1/α′(x) ∈ L1. In addition, if x ∈ (−1, 1),
α is absolutely continuous in a neighborhood of x and α′ is continuous at
x then (9) holds. The condition on α later was relaxed to log α′ ∈ L1 by
Máté, Nevai and Totik (Annals of Math. 134 (1991), 433–453.).

Convergence problems of orthogonal expansions can be simplified by
considering only Fourier series. This idea of equiconvergence theorems was
developed by Alfréd Haar (Math. Annalen 78 (1917), 121–136.), and later
generalized by Szegő (Math. Zeitschrift 12 (1921), 61–94.) and Freud ([47],
p. 260.). The latter proved the following: Let f ∈ L2 with respect to an
absolutely continuous distribution function α whose support is in [−1, 1]
such that its derivative has a positive polynomial minorant and is in a
Lipschitz class. Further let f? be that function which coincides with f
in a neighborhood of f and zero otherwise. With the notation (5) and

dα0(x) = (1− x2)−1/2
dx we have

lim
n→∞

[
Sn(dα, f, x)− Sn(dα0, f

?, x)
]

= 0.
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Note that the convergence properties of Sn(dα, f) depend only values of f
taken in an arbitrarily small interval around the fixed point x. Under some
additional conditions the above results can be made uniform in x.

The theory of orthogonal polynomials on infinite intervals is significantly
different from that on a finite interval. Until the 1960’s not much was
known about this topic, except possibly the Hermite, Laguerre and a few
other polynomials. Amazingly, while Szegő has made pioneering work in
the theory on finite intervals, he was not interested in carrying over his
ideas to infinite intervals. It was Freud who founded the now flourishing
theory of orthogonal polynomials on the real line, and the corresponding
representative polynomials are named after him. In the rest of this chapter
we will describe this theory, except problems connected with interpolation
and quadrature which are considered in the above mentioned work of Péter
Vértesi.

Freud’s aim was to extend the theory of best approximation, Jackson–
Bernstein type estimates to the real axis. The natural way to do this was
to explore properties of orthogonal polynomials, since the expectation was
that orthogonal expansions, Cesàro and de la Vallée-Poussin means, may
serve as near-best approximation.

What Freud did was to start from Hermite polynomials (orthogonal
with respect to the weight e−x2

), and generalize this weight. He considered
weights of the form

(10) w(x) = e−Q(x)

where the even, twice differentiable function Q > 0 behaves like a polyno-
mial at infinity, and xQ′(x) is increasing. More exactly, we assume that

(11) 0 < α = lim inf
x→∞

(
xQ′(x)

) ′
Q′(x)

≤ lim sup
x→∞

(
xQ′(x)

) ′
Q′(x)

< ∞.

An important role is played by the number qn which is defined (by Freud)
as the unique solution of the equation

qnQ′(qn) = n, n = 1, 2 . . . .

We mention that a closely related number an (which is of the same or-
der of magnitude as qn) was later determined independently by Mhaskar,
Rahmanov and Saff as the unique positive solution of the integral equation

1
π

∫ an

−an

tQ′(t) dt√
a2

n − t2
= n, n = 1, 2, . . . .
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The number an describes the behavior of polynomials at infinity, namely
the so-called infinite-finite range relation (this terminology was coined by
D. Lubinsky)

max
|x|≤an

w(x)
∣∣pn(x)

∣∣ = max
x∈R

w(x)
∣∣pn(x)

∣∣

holds for every polynomial pn ∈ Pn. While this result tells us that the
behavior of a weighted polynomial can be learned by studying it on a finite
interval (whose length is independent of the polynomial and depends only on
the weight and the degree), the number an plays the same role in considering
Lp norms: we have

(12)
(∫

R
w(x)

∣∣pn(x)
∣∣p

dx

)1/p

≤ c

(∫ an

−an

w(x)
∣∣pn(x)

∣∣p
dx

)1/p

,

for pn ∈ Pn, p ≥ 1 where c > 0 are constants depending only on the weight.
This infinite-finite range inequality was discovered by Freud for p = 2 and
Q =polynomial, and later generalized for weights (10) with the property
(11) by D. Lubinsky and others. As a further generalization, I (Advanced
Problems in Constructive Approximation, Birkhäuser 2002, pp. 223–236.)
considered weights with infinitely many zeros on R. Let

0 < t1 < t2 < . . . , lim
k→∞

tk = ∞

and
mk > 0, k = 1, . . . , lim inf

k→∞
mk > 0

be two sequences of real numbers satisfying the condition

∞∑

k=1

mk

t%+ε
k

< ∞, and
∞∑

k=1

mk

t%−ε
k

= ∞

for some % ≥ 0 and all ε > 0. Now consider the weight

w(x) = e−Q(x)
∞∏

k=1

∣∣∣∣∣1−
(

x

tk

)2q
∣∣∣∣∣
mk

, q = [%/2] + 1,

where Q again satisfies (11). Here the infinite product converges uniformly
in each compact subset of R. Then (12) still holds for p ≥ 1 provided
0 ≤ % < α.

(12) is the key tool for investigating practically all problems arising in
connection with orthogonal polynomials on infinite intervals.
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The most important step in developing the theory of orthogonal polyno-
mials on infinite intervals, just like in case of finite intervals, is to determine
the exact order of magnitude of the Christoffel functions (4). Freud did this
in the 1960’s for the Hermite weight e−x2

, using ad hoc methods. What he
found was an interesting phenomenon. Namely, while

(13) max
|x|≤(1−ε)

√
2n

ex2
λn(x) ∼ n−1/2

for any fixed 0 < ε < 1, at the same time

(14) max
x∈R

ex2
λn(x) ∼ n−1/6.

In other words, the behavior of the Christoffel function (and, in fact, that
of the orthogonal polynomials) is different near the critical point an =

√
2n.

This “irregularity” caused problems in finding the optimal value of the
weighted Lebesgue constant of Lagrange interpolation (for details see the
chapter written by Péter Vértesi).

The key issue to overcome the difficulties in generalizing the above result
e.g. for weights (10) satisfying (11) is the infinite-finite range inequality
(12). Freud’s original idea to generalize (13)–(14) for weights (10) when Q
is restricted to polynomials of the form x2m (m ≥ 1 is an integer), was to
use one-sided approximation for these weights, where it was essential that Q
be a polynomial. Later he was able to remove this restriction and generalize
(13)–(14) to

min
x∈R

λn(x)
w(x)

≥ can

n
and max

|x|≤c1an

λn(x)
w(x)

≤ c2an

n

for weights (10) satisfying (11). Freud’s idea was to approximate w by
polynomials in the sense

p2
n(x) ∼ w, |x| ≤ c1an, pn ∈ Pn.

The next important task is to find a good approximation for functions
with the property that lim|x|→∞ f(x)w(x) = 0. Freud proved the weighted
Lp-boundedness of the (C, 1)-means of Fourier series, i.e.

{∫

R

∣∣∣∣
1
n

n∑

k=0

Sk(w, f, t)w(t)
∣∣∣∣
p

dt

}1/p

≤ K

{ ∫

R

∣∣f(t)w(t)
∣∣p

dt

}1/p

,
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1 ≤ p ≤ ∞, for weights (10) under some conditions which basically ensure
that Q behaves like a polynomial at infinity. This boundedness easily implies
that the de la Vallée-Poussin means

1
n

2n∑

k=n+1

Sk(w, f, x)

converge (in the weighted norm) in the order of best weighted approxima-
tion.

In order to obtain so-called converse theorems, that is statements about
structural properties of functions deduced from the order of best approxi-
mation, one needs Bernstein–Markov type inequalities. These inequalities
restrict the order of magnitude of the derivative of polynomials in terms of
the weighted norm and the degree of the polynomial. The classical Markov–
Bernstein inequality on the finite interval [−1, 1] states that

max
|x|≤1

∣∣p′n(x)
∣∣ ≤ cn2

1 + n
√

1− x2
max
|x|≤1

∣∣pn(x)
∣∣

for all pn ∈ Pn. Freud proved the Lp-version of this for Hermite weights:
( ∫

R
e−x2∣∣p′n(x)

∣∣p
dx

)1/p

≤ c
√

n

(∫

R
e−x2∣∣pn(x)

∣∣p
dx

)1/p

, 1 ≤ p ≤ ∞.

Later this was generalized to

(
∫
R e−|x|

α∣∣p′n(x)
∣∣p

dx)
1/p

(
∫
R e−x2

∣∣pn(x)
∣∣p

dx)
1/p

≤





cn1−1/α if α > 1,

c log n if α = 1,

c if 0 < α < 1,

1 ≤ p ≤ ∞

(15)

(for α ≥ 2 see Freud (J. Approx. Theory 19 (1977), 22–37.), for 1 < α < 2
see Levin and Lubinsky (J. Approx. Theory 49 (1987), 149–169.), and for
0 < α ≤ 1 see Nevai and Totik (Constr. Approx. 2 (1986), 113–127.)). All
these inequalities are sharp in the order of magnitude.

A further generalization of (15) is given by Levin and Lubinsky (SIAM
J. Math. Anal. 21 (1990), 1065–182.) for weights (10)–(11) and p = ∞:
then the right hand side of (15) becomes

c

∫ Q[−1](n)

1

Q(t)
t2

dt.
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The sharpness of this “Markov factor” was proved by Kroó and Szabados
(J. Approx. Theory 83 (1995), 41–64.).

Another class of polynomial inequalities is the so-called Nikolski-type
inequalities. These compare Lp and Lq norms of polynomials. Concerning
Freud weights e−|x|

α
with α > 0, Nevai and Totik proved the following:

(
∫
R e−|x|

α∣∣pn(x)
∣∣p

dx)
1/p

(
∫
R e−|x|α

∣∣pn(x)
∣∣ q

dx)
1/q

≤





cn1/α if p ≤ q,

cn1−1/α if p > q, α > 1,

c log n if p > q, α = 1,

c if p > q, 0 < α < 1,

where c > 0 depends only on p and q. The proof uses the infinite-finite
range inequality and estimates for the Christoffel function.

In the 1970’s Freud made two remarkable conjectures concerning the
recursion coefficients (2) and the greatest zero x1n of the orthogonal poly-
nomials with respect to the weight w(x) = e−|x|

α
, α > 1. These are the

following:

(16) lim
n→∞n−1/αan =

[
Γ(α/2)Γ(α/2 + 1)

Γ(α + 1)

]1/α

and

(17) lim
n→∞n−1/αx1n = 2

[
Γ(α/2)Γ(α/2 + 1)

Γ(α + 1)

]1/α

.

Besides their beauty, these limit relations have a practical use in the theory
of polynomial approximation. Using ad hoc methods, Freud was able to
prove (16) for α = 2, 4 and 6. His method breaks down for α ≥ 8. Even-
tually, A. Máté, P. Nevai and T. Zaslavsky (Trans. Amer. Math. Soc. 287
(1985), 495–505.) proved for any even integer α the asymptotic expansion

n−1/αan =
∞∑

j=0

cjn
−2j ,

where c0 is the right hand side of (16).
As for (17), it is easy to see that (16) implies it (but not conversely). (17)

in full generality (α > 1 is a real number) was proved by E. A. Rakhmanov
(Math. USSR Sbornik 47 (1984), 155–193.). A similar asymptotic relation
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for the kth root of the orthogonal polynomials was proved by Máté, Nevai,
and Totik when α is an even integer.

Saff and Totik [160] established a very general result concerning the
limit distribution of zeros of orthogonal polynomials with respect to certain
measures. Let α be a finite Borel measure with support consisting of
infinitely many points in [0, 1], and let the zeros of the corresponding nth
orthogonal polynomial pn,α be x1(α, n), . . . , xn(α, n). In general, the limit
distribution of these roots does not exist, so one should analyze the weak∗

limit of the “zero measures”

(18) ν(pn,α) =
1
n

n∑

i=1

δxi(α,n)

in the space of all unit Borel measures supported on [0, 1], where δt is the
unit mass at t. The carrier of α is any Borel set whose complement has zero
α-measure, and the minimal carrier capacity of α is cα = inf

{
cap (C) | C is

a carrier of α
}

, where “cap” means logarithmic capacity. Now if cα > 0 and
C is a minimal carrier of α, then any weak∗ limit ν of the zero distributions
(18) satisfies

(19) C“⊆”MAXUν and supp (ν) ⊆ C̄

where “⊆” means inclusion except for a set of zero capacity, and MAXUν

is the set of maximum points of the logarithmic potential function

Uν(z) =
∫ 1

0
log

1
|z − t| dν(t)

associated with the limit distribution ν. Conversely, if C ⊆ [0, 1] is of
positive capacity and MC is the set of probability measures ν satisfying
(19), then there is a measure α such that C is a minimal carrier of α and
MC =

{
ν | ν is a weak? limit point of the measures ν(pn,α)

}
.

Finally, we mention that recently the notion of orthogonality e.g. on the
interval [−1, 1] was extended to varying weights, mostly due to the work of
Vilmos Totik. Let u be a measurable function satisfying the so-called Szegő
condition ∫ 1

−1

log u(t)√
1− t2

dt > −∞,
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and let wn be a sequence of weights (in the sense discussed above). Then the
kth orthonormal polynomial pn,k with positive leading coefficient is defined
by

∫ 1

−1
pn,k(x)pn,m(x)w2n

n (x)u2(x) dx = δk,m, k, n,m = 0, 1, . . . .

Totik [182, Ch. 14] gave asymptotics for these polynomials, and discussed
their fundamental properties.

In this survey on orthogonal polynomials we tried to recite the most out-
standing results achieved by Hungarian mathematicians. There are many
other contributors (among them, of course, foreigners who were inspired
mostly by the work of Szegő and Freud), but perhaps the mentioned results
convince the reader that Hungarians were always in the forefront of research
in this significant area of mathematics.
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