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Differential Geometry

LAJOS TAMÁSSY

In the thirties of the 19th century János Bolyai and Nikolai Ivanovič
Lobacevskii created the hyperbolic geometry. Thus they proved that not
only the Euclidean but also other geometries may exist. Concerning its ge-
ometrical importance, this discovery can be compared to the change which
replaced the Ptolemaic geocentric concept of astronomy by the heliocentric
point of view of Copernicus. Hyperbolic geometry opened new horizons.
Indeed, only 30 years had to pass, and in Göttingen, in the presence of the
elder Gauss, Bernhard Riemann (1826–1866) announced in his habilitation
lecture (Über die Hypothesen die der Geometrie zu Grunde liegen) the basic
concepts of the new geometry later named after him. His main idea joins
Gauss’ work.

Let us consider the hypersurface

(1) φ : U2 → E3, (u1, u2) 7→ xi(u1, u2) i = 1, 2, 3

of the Euclidean space E3(x). According to Gauss the arc length sE of the
curve C = φ ◦ C∗, C∗ : I → U2, t ∈ (a, b) = I 7→ uα = uα(t), α = 1, 2 has
(in modern notation), the form

(2) s = sE =
∫ b

a

√∑
gαβ

(
u(t)

)
u̇αu̇β dt, α, β = 1, 2.

If φ◦U2 ⊂ E3 is the plane E2(x1, x2) (i.e. x3(u1, u2) = 0), then sE gives the
Euclidean arc length of C expressed in the curvilinear coordinate system
(u) of E2, where the

(3) gαβ(u) =
∑

σ

∂xσ

∂uα

∂xσ

∂uβ

are derived from the functions (1) describing the transition to the curvilinear
system (u). Riemann’s idea was to give gαβ

(
Det |gαβ | 6= 0

)
arbitrarily,
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and to define the arc length by the integral (2). Today this is called the
Riemannian arc length sV of the curve C. sV produces the Euclidean arc
length in the plane E2 related to the curvilinear coordinate system (u1, u2),
i.e. the geometry defined by sV is Euclidean iff (3), considered as a system of
partial differential equations for the given gαβ(u) and the unknown functions
xα(u1, u2), is solvable. However, this occurs rarely. Hence, Riemann’s
geometry gives the Euclidean geometry as a special case only. If we start
with an n-dimensional manifold M in place of the E2, and give on M a
tensor g of type (0, 2) (in local coordinates by gik(x)), then we obtain the
Riemannian manifold V n = (M, g).

This lecture of Riemann was first published only after his death, in 1868,
in the volume of his collected works. However, in this lecture one can find
certain signs of the Finsler geometry too. The integrand of (2) is a special
positive valued function L(u, u̇) positively homogeneous of degree 1 in u̇. If
we are given such a function on M , and define the arc length in the form

sF :=
∫ b

a
L(

u(t), u̇(t)
)

dt,

then we arrive at a still more general geometry. In 1918 Paul Finsler
obtained such a geometry (see his Göttingen thesis “Über Kurven und
Flächen in allgeneinen Räumen” written under the supervision of Con-
stantin Carathéodory). He called this a geometry with general metric, and
later it was designated by others by the shorter name of Finsler geome-
try. This geometry is the most general, under certain natural requirements,
among those geometries for which the arc length is the integral of the in-
finitesimal distance. According to Shiing-shen Chern Finsler geometry is
nothing other than Riemannian geometry without the quadratic restriction
on the function L2. He sees in this the geometry of the new century. The
architect of the early part of Finsler geometry was Ludwig Berwald, the ex-
cellent professor of the Charles University in Prague, who later came to a
tragic end during his deportation in the Lodz (Litzmannstadt) Ghetto. He
laid the foundation of this geometry between 1920 and 1940. His pupil and
later private-docent of Prague University was Ottó Varga, who after the
German occupation of Prague came to Kolozsvár, and later to Debrecen.

It is well known that every differential geometry, and so the Finsler
and the Riemannian geometry too, has two key concepts: the notion of
metric and the parallelism of vectors. The fundamental function L(x, y),
x ∈ M , y ∈ TxM determines the metric of the Finsler manifold Fn =
(M,L), L(x, y) = ‖y‖F gives the Finsler norm of the vector y ∈ TxM ,
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and L(x, dx) = ‖dx‖F the Finsler distance between the points x and x+dx.
Also Lmakes each tangent space TxM into a Minkowski space (i.e. a normed
vector space). The endpoints of the unit vectors of TxM form a convex and
centrally symmetric hypersurface I(x) called an indicatrix. In a V n they are
ellipsoids, and unit spheres in an En. The parallelism of the vectors y of the
tangent bundle TM =

{
(x, y)

}
is defined by a linear connection. This is a

mapping ϕ : TxM → Tx+dxM between the vectors of the neighbouring
tangent spaces, the differential dy being linear in y : ϕ(y) = y + dy,
dyi =

∑
j,k

Γi
jk(x)yj dxk. Among these mappings those which preserve the

length of the vectors are most applicable (they are called metrical), and take
indicatrices into indicatrices. Nevertheless while two ellipsoids (indicatrices
of a Riemannian space) can always be taken into each other by a linear
transformation, this is not true for indicatrices of a Finsler space. Thus
in a Finsler space among the vectors of the tangent spaces there does not
exist, in general, a linear and metrical connection, and this makes impossible
the development of an absolute differential calculus and curvature theory
similar to the Riemannian geometry. This difficulty was surmounted by
Élie Cartan in 1931. He osculated the indicatrix I(x0) in each direction
y0 by an ellipsoid of equation

∑
gik(x0, y0)yiyk = 1. He considered the

vectors at line-elements (x, y). These are the Finsler vectors: ξi(x, y). Then
he defined their norm by

∥∥ξ(x, y)
∥∥2 =

∑
gik(x, y)ξi(x, y)ξk(x, y), and thus

he was able to introduce a metrical and linear connection. After several
additional requirements this connection is unique, and nowadays it is called
Cartan connection.

At this time began Varga’s scientific carrier which, with a few exceptions,
focused on Finsler geometry or questions connected with it. A deep geo-
metric thinking was a characteristic feature of his scientific activity. In one
of his early works {43} he gives a completely geometric construction which
leads without any further requirement to the just mentioned metrical and
linear Cartan connection. Let us consider a line-element field xi = xi(τ),
ẋi = ẋi(τ), τ ∈ [τ1, τ2] = T and along this a vector field ξi

(
x(τ), ẋ(τ)

)
.

From each point x(τ0), τ0 ∈ T there goes out in the direction of ẋ(τ0) a
unique geodesic of the Finsler space Fn. These yield a 1-parameter family,
γ1, of geodesics. γ1 can be completed by further geodesics of the Fn to a
family, γ2, such that γ2 covers one-fold a small tube B around the curve
x(τ). This completion can be done in several different ways. The tangents,
r(x), of the geodesics at the points x ∈ B determine a line-element field,(
x, r(x)

)
, and by
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γij(x) := gij

(
x, r(x)

)
gij(x, y) :=

1
2

∂2L2

∂yi∂yj

a Riemannian space V n on B. This V n osculates the Fn in the sense that
the geodesics of V n resp. Fn starting out from x ∈ B in the direction
r(x) osculate each other in the second order, and the ẋ(τ) turn out to be
parallel along x(τ) in V n. Now ξi

(
x(τ), ẋ(τ)

)
will be called parallel in the

Fn if ξi(τ) := ξi
(
x(τ), ẋ(τ)

)
is parallel along x(τ) in the V n. Moreover,

Varga shows that with an appropriate choice of the extension of γ1 to γ2

we can show that the Finsler connection obtained on B is just the Cartan
connection.

With the problem of the linear connection of Finsler vector fields, Varga
has already dealt earlier in his Ph.D. thesis. Slightly before publishing his
thesis, in 1933 there appeared in the C.R. Paris a short announcement by
Cartan, whose contents were explained in detail in his famous booklet “Les
espaces de Finsler” (Actualités Scientifiques et Industrielles No. 79, Paris,
Hermann, 1934) which is considered still the foundation of the Cartan theory
of Finsler spaces. Varga’s thesis showed a considerable overlap with this, so
only a summary was published in the Prague journal Lotos (vol. 84 (1936),
1–4). The above discussed osculating Riemannian space represents another
geometric solution of the problem leading to the same result.

He was able to apply with success the osculation of an Fn by a Rieman-
nian space to other problems also. As well known, the sectional curvature,
R(x, p), of a Riemannian space V n at a point x and plane position p is the
curvature of the 2-dimensional V 2 induced by V n on the subspace φ2 con-
sisting of the geodesics of V n tangent to p at x, and this curvature equals
the Gaussian curvature of the surface representing V 2 in Euclidean three-
space. This R(x, p) was generalized and transferred into the Finsler space
Fn partly on the basis of its formal expression, and partly on the basis of
its role in certain variational problems. This generalization, the Riemann–
Berwald curvature R(x, v;X) (today called flag curvature) of the Fn, is
defined at a line-element (x, v) and a vector X defined at this (x, v). Varga
has shown in {46} that R(x, v; X) too is the curvature of a 2-dimensional
subspace F 2 induced by Fn on the subspace φ2 consisting of geodesics of
Fn tangent to the plane-position (v, X) = p, similarly to the case of the
Riemannian geometry. He considered the geodesic C starting from x in the
direction of X (belonging to both F 2 and Fn), and constructed a Rieman-
nian space V n osculating Fn along this C (this is a little different from
the previous osculating Riemannian space). Then he proved that the cur-
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vature R̄(x) of the V̄ 2 := V n ¹ φ2 (i.e. the restriction of V n to φ2) equals
R(x, v; X). On the other hand he proved that this R̄(x) equals the Finsler
curvature S(x, v) (introduced by Finsler) at x in the direction of v of the
above F 2. Thus R(x, v;X) = S(x, v). This shows a complete analogy to
the Riemannian case.

Finsler geometry is a most natural generalization of Riemannian geom-
etry, using notions and apparatus which may be more sophisticated than
that of Riemannian geometry, but is essentially similar and closely related
to it. Therefore it is of basic interest to see how and to what extent the
notions and theorems of Riemannian geometry can be transferred and ex-
tended to Finsler geometry. Ottó Varga has important achievements in this
direction, especially concerning Finsler spaces of scalar or constant curva-
ture. Riemannian spaces of constant curvature which are near Euclidean
spaces have an exceptional importance. Their first well known characteriza-
tion was given by Beltrami according to whom V n is of constant curvature
iff it admits a geodesic mapping ϕ onto an affine space An such that ϕ
takes every geodesic of the V n into a straight line of An. This is equiv-
alent to the vanishing of the projective curvature tensor of Weyl or the
property that the difference vector Pξ − ξ of any vector ξ and its parallel
translated Pξ along an infinitesimal parallelogram Π lies in the same paral-
lelogram Π (up to quantities of the third order in the measure of the area of
the parallelogram). It is clear that this last property also characterizes the
projectively flat affinely connected spaces (spaces with a linear connection,
but without Riemannian metric). Among Finsler spaces or affinely con-
nected line-element spaces in the sense of O. Varga {47} there are spaces of
constant- and also of scalar-curvature. Berwald called an Fn of scalar cur-
vature R(x, v) if R(x, v;X) is independent of X, and of constant curvature
if R(x, v) is independent of v. The independence of R(x, v) of v implies its
independence of x too. Varga showed in {49} that Finsler spaces of scalar
or constant curvature can also be characterized in a quite similar way. Ac-
cording to his results, Fn is of scalar curvature iff Pξ − ξ belongs to the
vector space spanned by Π and ξ, and Fn is of constant curvature iff Pξ− ξ
lies in Π. From his calculation it also follows that one can build the whole
curvature theory on the main curvature tensor, T , introduced by him and
defined by T i

jk` = Ri
jk`−

∑
s,m

Ai
s`R

s
jkm`m, where the Ri

jk` are the components

of the first curvature tensor of Cartan, Ai
s` those of the torsion tensor, and

`m = vm are the components of the unit line-element.
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Varga also gave other interesting characterizations of Finsler spaces
of constant curvature. An Fn = (M,L) makes any of its k-dimensional
(k < n) submanifolds N ⊂ M into a Finsler space F k = (N, L̃). A curve
C ⊂ N ⊂ M has the same arc length in Fn and in F k, but a geodesic of F k

between two points p, q ∈ N ⊂ M is not, in general, a geodesic of the Fn, for
in M there may exist curves between p and q shorter than C. A submanifold
in which every geodesic is at the same time a geodesic of the embedding
space is called a totally geodesic submanifold. This is a generalization of
the Euclidean k-dimensional planes. In a Euclidean space En there exists
through each point and every plane position a totally geodesic submanifold
(a k-plane). In a V n or Fn this is not so. Varga showed that among the
Finsler spaces this holds exactly for the spaces of constant curvature. In
the case of constant negative curvature the metric induced on these totally
geodesic submanifolds is Euclidean.

Of fundamental importance are his results concerning the angular-
metric. For two unit vectors ξ and η at the same line-element (x0, v0)
the angle ϕ = ](ξ, η) is defined by the Euclidean metric at the given line-
element

cos2 ϕ =
∑

i,k

gik(x0, v0)ξiηk, gik(x, y) =
1
2

∂2L2

∂yi∂yk
.

These gik induce on the indicatrix I(x0) ⊂ Tx0M a Riemannian space V n−1.
If the direction of the unit vectors ξ(x0, v) and η(x0, v̂) coincides with the
direction of their line-elements, i.e. we have ξ(x0, v) = av and η(x0, v̂) = bv̂,
a, b ∈ R; and moreover v̂ is sufficiently near to v: v̂ = v + dv, then for
](ξ, η) ≡ ](v, v + dv) = dϕ we can put

cos2 dϕ =
∑

i,k

gik(x0, v) dvi dvk = ‖dv‖V .

Thus the measure of the infinitesimal angle equals the Riemannian measure
of the corresponding arc. So this V n−1 and its metric play a distinguished
role in the angular metric of the Fn. Varga has shown in {51} that the
curvature tensor of this V n−1 is the sum of the curvature tensor S (the
third curvature tensor of Cartan) and the metric tensor of the bivectors of
the V n−1. The geometric meaning of the first and second curvature tensor
R and P was already known, however, the geometric role of S was revealed
by this result. He also gave a simple criterion for this V n−1 to be of constant
curvature.
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We cannot discuss in detail his numerous other results, yet we mention
a few here. He had valuable results on Minkowski geometry. He gave a
very clever and direct geometric derivation of the Euclidean connection in
the Minkowski geometry making no use of the roundabout way of Finsler
geometry, see {44}. He showed that if a hypersurface of a Minkowski space
has constant normal curvature at every line-element, then the geometry in-
duced by the Minkowski space on the hypersurface is a Finsler geometry
of constant curvature with respect to the induced connection, see {54}. He
achieved a number of results concerning hypersurfaces. Each of them is
a little masterpiece of Finsler geometry. He studied Finsler spaces which
generalize the non-Euclidean spaces, see {45}; the metrizability of affinely
connected line-element spaces, i.e. the possibility of endowing a Finsler con-
nection with a Finsler metric such that parallel vector fields have constant
Finsler norms, and obtained nice results for them, see {50}. He studied
Hilbert geometry (the generalization of the Cayley–Klein model of hyper-
bolic geometry). This not-Riemannian geometry has the important property
that geodesics are straight lines. He gave an analytic characterization of all
functions which represent the arclength of this geometry in {53}. He has
important theorems concerning the decomposition of a Finsler space into a
product of other spaces, see {52}; the coincidence of the induced and the
intrinsic connection on a hypersurface of an Fn, etc.

Although the main field of Varga’s activity was Finsler geometry, he
also obtained notable results concerning Riemann spaces V n of constant
curvature. It was known for a long time that if through any hyperplane
position of a V n totally geodesic hypersurfaces can be laid, i.e. if the plane
axiom is fulfilled, then the space is of constant curvature. But this criterion-
like quality does not separate a) the spaces of constant negative and b) the
spaces of constant positive curvature. Varga showed in {55} that in case
of a) two hyperplanes can be laid through any plane position so that the
geometry induced on them by the V n is Euclidean (they are paraspheres),
and in the case of b) a totally geodesic hyperplane can be laid through any
plane position which is turned by the V n into a V n−1 of constant curvature.
These qualities are characteristic. He could extend the above mentioned
criterion-like quality of the V n of constant curvature to Finsler spaces,
i.e. he also proved that the Fn of constant curvature are characterized
by the property that through any hyperplane-position a totally geodesic
hyperplane can be laid, see {56}.

He also had several works on integral geometry (Math. Z., 40 (1935),
384–405; 41 (1936), 768–784; 42 (1937), 710–736; Acta Sci. Math. Szeged,
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9 (1939), 88–102; etc.). They are products of his collaboration with
W. Blaschke in Hamburg in 1934–35. In these he found parameter trans-
formation and motion invariant measures, i.e. geometric densities on differ-
ent sets of geometrical configurations, and disclosed the relations existing
between them, i.e. with the aid of the Crofton formulae, he established re-
lations between integral invariants.

Varga was always intent on seizing and putting into relief the geometric
meaning behind the often rather complicated formalism of Finsler geome-
try. This is a characteristic feature of his scientific work. His mathematical
thinking was guided by simple geometric ideas. If we divide the history of
Finsler geometry into three periods: I) the beginning, 1918–1940; II) devel-
opment of the local theory, 1940–1970; III) use of intrinsic tools and global
theory, 1970–, then we can state that Varga played a decisive role in the
second period. He also created a school of differential geometry in Debrecen
which continues even now, and he was one of the founders of the journal
Publicationes Mathematicae Debrecen in 1949.

András Rapcsák was a colleague and collaborator of O. Varga at De-
brecen University. The field of his research was line-element (or support-
element) spaces and connected areas. His first investigations were related
to normal coordinate systems. A fortunate choice of a coordinate system
can considerably facilitate the treatment of a geometrical problem. Such
good coordinate systems are in Euclidean or affine spaces the Cartesian or
the polar coordinate system. In affinely connected or Riemannian spaces
there exist in general no Cartesian coordinate systems, but we have an ana-
logue of the polar coordinate system called normal coordinate system in
which the equations of the geodesics (in affinely connected spaces geodesic
means auto-parallel curve) starting from the origin are linear. A coordinate
system is a device of investigation only. Geometrical statements must be in-
dependent of it, they must express relations between invariant geometrical
objects. The importance of normal coordinates stems from the fact that by
them normal affinors and with their aid a complete system of invariants can
be obtained, i.e. such invariants may be gained by which any other invari-
ant of the space is expressible. This parallels the Erlanger Program of Felix
Klein. However, Jesse Douglas proved that the above normal coordinates
do not exist in general in line-element spaces. Thus it seemed that insur-
mountable obstacles stood in the way of employing this successful method
for the determination of a complete system of invariants of a line-element
space, a task of fundamental importance from a theoretical point of view.
It turned out that the negative result was due to the inappropriate man-
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ner of carrying over the notion of geodesics. The appropriate notion, the
quasigeodesic introduced by Varga is a curve x(s) whose tangents are par-
allel translated with respect to a field of line-elements

(
x(s), `(s)

)
, where

the `(s) are parallel along x(s):

d2xi

ds2
=

∑

k,j

−
∗
Γk

i
j(x, `)

dxk

ds

dxj

ds
,

d`i

ds
=

∑

k,j

−
∗
Γk

i
j `k dxj

ds
.

Quasigeodesics reduce in point spaces to geodesics. Quasigeodesics cover
one-fold a region of the 2n-dimensional tangent bundle TMn, and so are
suited for introducing normal coordinates in line-element spaces. With their
aid Varga showed that the coefficients determining the affine connection of
a line-element space, Ln, the main curvature tensor and the partial- and
covariant-derivatives of these, form a complete system of invariants of the
Ln, see {48}. Rapcsák proved that these normal coordinates can be charac-
terized by the same properties by which H. S. Ruse characterized the nor-
mal coordinates in Riemannian spaces. He also succeeded in establishing an
invariant Taylor series (i.e. a Taylor series, where the coefficients are invari-
ants) in Finsler spaces, see {35}. In order to obtain a complete system of
differential invariants in affinely connected point- and Riemannian-spaces
normal coordinates were already applied also by Ruse, T. Y. Taylor and
Oscar Veblen. Rapcsák successfully used the normal coordinate systems
introduced through quasigeodesics for obtaining a complete system of in-
variants in Cartan spaces, see {36}. These spaces originate with and are
named after Élie Cartan, and concerning their structure they are very simi-
lar to Finsler spaces. While in an Fn a vector ξ is defined at a line-element
(x, v), in a Cartan space the support element of a vector ξ is a point x and
a hyperplane u through x : ξ(x, u). The fundamental metric function of
the Cartan space has the form L(x, u), and it has properties similar to that
of an Fn.

The geodesics (or autoparallel curves) of an n-dimensional manifold
(endowed with an appropriate geometric structure) form a 2n− 2 parameter
family xi = xi(t; a1, . . . , a2n−2). The members of the family are called paths.
The investigation of paths in point spaces was initiated by J. Douglas
in 1928. In line-element spaces the more involved theory was developed
by Rapcsák {34}. Here paths form a 3n − 3 parameter family of curves.
Quasigeodesics of an Fn yield an example for such a family. He developed
the affine connection theory of these paths. This is a little different from
that of the Fn. He established curvature and torsion tensors and gave a
method to resolve the equivalence problem of these spaces. The equivalence
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problem poses the question of whether two differential-geometric spaces are
the same, but in different coordinate systems or whether their geometries are
basically different. He also posed and answered the inverse question: given
in a line-element space a 3n−3 parameter family of curves

(
x(t), v(t)

)
, does

there exist an Fn in which these curves become quasigeodesics?

A Euclidean space En makes any n− 1-dimensional submanifold H also
a metric space. However a geodesic of H (with respect to the induced
metric) is in general not a geodesic (straight line) of the En. If, however,
this happens for every geodesic of H, then H is called totally geodesic, and
it is a hyperplane. H is also a hyperplane if its unit normals are parallel
in En. Both of these properties can be carried over into Finsler spaces,
moreover in the first case geodesics can be replaced by quasigeodesics. In
an Fn these three properties yield three different notions: hyperplanes of
I, II and III kind. We must mention that here unit normal vectors of H
are considered at line-elements tangent to H, i.e. H is considered as an
n−1-dimensional line-element space. Another difference is that in Fn these
hyperplanes do not exist unrestrictedly (through every point and plane-
position). Rapcsák showed in {37} that A): hyperplanes of the I kind
exist unrestrictedly in an Fn iff Fn is of scalar curvature and projectively
flat. This last property means that in an appropriate coordinate system
the geodesics coincide with the straight lines or equivalently: there exists a
smooth mapping ϕ : Fn → En such that the image of each geodesic is a
straight line. Since in a V n the condition of the unrestricted existence of
totally geodesic hyperplanes is that V n is of constant curvature (Friedrich
Schur), and this is equivalent to the property that V n is projectively flat
(Enrico Bompiani), Rapcsák’s result is the Finsler geometric counterpart
of this famous theorem; B): hyperplanes of the II kind exist unrestrictedly
iff Fn is projectively flat and the torsion tensor A satisfies the relation
Aαβγ|0 = 0; C): hyperplanes of the III kind exist unrestrictedly iff Fn is a
V n of constant curvature.

J. M. Wegener and E. T. Davies investigated hyperplanes H, where nor-
mals are considered at line-elements transversal to H. In this case H is
a point space. If these normals are parallel along H, then H is called a
hyperplane of the IV kind. Rapcsák showed in {38} that in an Fn with
vanishing projective curvature hyperplanes of the IV kind exist unrestrict-
edly iff Fn is of constant curvature. This means a considerable sharpening
of a similar result of Wegener, who considered an Fn of scalar curvature
and found a sufficient condition only. Rapcsák also found conditions for the
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metric induced by an Fn on hyperplanes of the IV kind to be the metric of
a Riemannian space of constant curvature or the metric of an En.

Two affinely connected (point) spaces L1(x) and L2(u) allow, in general,
no path preserving mapping ϕ : L1 → L2, where paths (i.e. geodesics) of L1

are taken into paths of L2. An important question is, when do they allow
a path-preserving mapping? If we perform a coordinate transformation
x̄i = x̄i(u) on L2 such that the x̄i equal the coordinates xi of the original
point, then the question takes the form: how can we change (deform)
the connection on L1, so that the paths remain unchanged. Rapcsák’s
studies in {39} led in a natural way to this question on line-element spaces.
He solved the problem by giving necessary and sufficient relations (not
complicated, but not quite short ones) between the Weyl and Douglas
tensors of the original and deformed spaces. One of his nicest results {40}
gives an elegant and amazingly simple answer to the question: what relation
must exist between the metric functions L(x, y) and L̄(x, y) of two Finsler
spaces Fn and F̄n with common base manifold in order that their geodesics
be the same? According to his result this is the case iff

(4) L̄|i −
∑

s

∂L̄|s
∂vi

vs = 0.

This result seems to be independent of L. But this is not true, for the
operator |i denotes the Berwald covariant derivation in Fn determined by L.
Berwald too has dealt with this problem. His answer is also very simple,
but it does not contain the functions L and L̄, at least not in an explicit
form. Continuing his considerations Rapcsák was able to answer in {41} the
following important and interesting questions closely related to the above
ones. A): given a 2n− 2 parameter family of curves, when does there exist
an Fn (i.e. a fundamental function L) such that the geodesics of Fn are just
the curves of the given family? This means the metrizability of the path-
space. B): When do the geodesics of an Fn coincide with the geodesics of a
Riemannian space V n? C): When are the geodesics of an Fn straight lines
in an appropriate coordinate system? This last question is the Finslerian
version of Hilbert’s 4th problem. The answers are similar to (4).

Arthur Moór also belonged to the Debrecen school of Finsler geometry.
He dealt not only with Finsler geometry, but also with many related fields.
He was a very productive mathematician who used and applied the appa-
ratus of differential geometry with utmost ease and efficiency. He wrote
more than hundred papers all of them, with a few exceptions, in German,
similarly to Ottó Varga, András Rapcsák and L. Berwald.
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He started with the investigation of several special Finsler spaces, special
concerning the dimension or the metric function. He gave a necessary and
sufficient condition in order that the curvature scalar K of an F 2 be con-
stant, and gave an explicit form of the metric function L(x, y; ẋ, ẏ) along a
geodesic if K = const., see {15}. L = f/g, where f =

∑N
k=0 ak(x, y)ẋN−kẏk

and g =
∑N−1

k=0 bk(x, y)ẋN−k−1ẏk (i.e. f and g are homogeneous polynomi-
als in ẋ and ẏ with coefficients dependent on x and y) is a special metric
(fundamental) function of an F 2 investigated first by Moór. He determined
for an F 2 with such an L the main scalar J and the curvature scalar K in
case of N = 2 or 3, see {16}. If g ≡ 1 then L is not first order homogeneous
in ẋ and ẏ, but N

√
f is. Such F 2 with N = 3 were investigated by J. M.

Wegener. Moór investigated such F 2 in case of N = 4, see {17}. Of course
this can be generalized to dimension n. A Finsler space with L = N

√
fN (y),

where fN is a homogeneous polynomial in y1, . . . , yn of order N with coef-
ficients dependent on x1, . . . , xn is an interesting type of Finsler space, and
many special cases of it are investigated. If N = n and

(5) fn(y) = y1y2 . . . yn

(
=

n∏

A=1

yA

)
,

then Fn is a Minkowski space, for L = n
√

fn(y) is independent of x and in
the case of n = 2 it is a pseudo-Riemannian space with an indefinite Lorentz
metric and non-convex indicatrix. Let us replace each yA, A = 1, 2, . . . , n

by a linear form
n∑

m=1
SA

m(x)ym. An Fn with the metric function

(6) L(x, y) =
( n∏

A=1

n∑

m=1

SA
m(x)ym

) 1
n

is called a Finsler space with Berwald–Moór metric (G. S. Asanov: [11], p.
53). It has an interesting and important geometric interpretation. Suppose
det

∣∣SA
m(x)

∣∣ 6= 0, and denote the inverse matrix by Sm
A (x):

∑
m SA

m(x)Sm
B (x)

= δA
B. Then to each vector y = (y1, . . . , ym) ∈ TxM there exist scalars λA

such that ym =
n∑

A=1

Sm
A (x)λA, and hence λA equals

∑
m SA

m(x)ym, which can

be considered as components of y in the base Sm
1 , . . . , Sm

n . Then Ln(x, y) =∏n
A=1 λA = V (P)

V (SA) , where V (P) means the volume of the parallelotope P
whose edges are parallel to the base vectors and whose diagonal is the vector
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y. V (SA) is the volume of the parallelotope, SA, spanned by Sm
A . Hence

the Finsler measure of the vector y(x) is

∥∥y(x)
∥∥

F
= L(x, y) =

(
V (P)
V (SA)

) 1
n

.

Thus, in this Fn the Finsler length of a vector is measured by volumes. The
length can be deduced from the area. If fn(y) of (5) is replaced by

(F(y)
)n,

where F is an arbitrary first order homogeneous function, then (6) gets the

form L(x, y) = F
(∑

m
S1

m(x)ym, . . . ,
∑
m

Sn
m(x)ym

)
. This is the renowned

1-form metric investigated by M. Matsumoto, H. Shimada and others. It has
a number of beautiful properties, e.g. it allows a linear metrical connection
for the vectors of the tangent bundle (connection in a Finsler space without
line-elements, i.e. point Finsler spaces). The Berwald–Moór metric is clearly
a simple special case of this.

The well known theorem of A. Deicke states that an Fn with vanishing
torsion vector Ai and positive fundamental function L is Riemannian. The
Berwald–Moór metric (6) was up to now the only known example, where
Ai = 0, yet the space is not Riemannian (for L is not everywhere positive).
The Berwald–Moór metric has still a number of interesting properties: the
signature of its metric tensor gij is (+ − − . . . ), det |gij | is independent of
y, etc.

Finsler and Cartan spaces have very similar structures, as it was men-
tioned a few pages earlier. In an Fn all vectors and geometric objects are
defined at line-elements (x, ẋ) (i.e. at a point x and a direction or oriented
line ẋ), while in a Cartan space vectors and geometric objects are given at
(oriented) hyperplane-elements (x, u), where u is an n− 1 dimensional lin-
ear subspace, i.e. a hyperplane in the tangent space TxM through the origin
having an equation

∑
µiy

i = 0, where the yi are coordinates in TxM and
µi is the normal of u. Thus the coordinates of (x, u) are (xi, µi). A duality
between Finsler and Cartan spaces was investigated by L. Berwald. Some-
what differently from him, Moór in {18} and {21} called a Finsler and a
Cartan space dual if

(7) µi =
1√
g∗

∑

k

g∗ikẋ
k and ẋi =

√
g

∑

k

gikµk

establish a 1 − 1 correspondence between the line-elements (x, ẋ) of the
Finsler space and the hyperplane-elements (x, u) of the Cartan space having
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the same underlying manifold. Here gik(x, µ) is the metric tensor of the
Cartan space and g(x, µ) is its determinant. The corresponding objects of
the Fn are denoted by an asterisk ∗. If between a Finsler and a Cartan space
(7) establishes a duality, then g∗ij(x, ẋ) = gij(x, µ) and L∗(x, ẋ) = L(x, µ)
at the corresponding elements, and also the torsion vectors A∗i (x, ẋ) and
Ai(x, µ) vanish. With Berwald A∗i = Ai = 0 was a requirement. For Moór
this is a consequence of the existence of the given dual mapping. Because
of A∗i = Ai = 0 volume elements independent of ẋ, resp. µ, exist and the
dual mapping is volume preserving. It should be mentioned that according
to Deicke’s theorem A∗i = 0 yields that Fn is a Riemannian space, however
this holds only if L∗(x, ẋ) is everywhere positive, which is not the case in
general.

Moór investigated Varga’s osculating Riemannian space V n (reviewed
11 pages earlier) in dual Finsler and Cartan spaces, see {19} and {20}. He
proved that the Riemannian spaces osculating the dual Finsler and Cartan
spaces along a 1-parameter family of line-elements

(8)
(
x(t), ẋ(t)

)
, resp.

(
x(t), µ(t)

)

are the same. From this it follows that if ξi
(
x(t), ẋ(t)

)
and ξi

(
x(t), µ(t)

)
are corresponding vector fields along (8) in the two dual spaces, then their
invariant derivatives with respect to the dual Finsler and Cartan spaces are
also the same. Moreover, under a mild further condition, the curvature
tensor RV of the osculating V n coincides along (8) with Varga’s main
curvature tensor T (x, ẋ) of the Fn and also with the curvature tensor R̄(x, µ)
of the Cartan space.

ẋi and µi in (x, ẋ) and (x, µ) are vector densities (of weight 0, resp. −1).
Thus, by replacing of ẋ or µ by a vector density u of certain weight p one
obtains a common generalization of Finsler and Cartan spaces which can be
given by a metric function L(x, u). Investigations concerning such so called
general metric spaces Rn were initiated by J. A. Schouten, J. Haantjes,
E. T. Davies and R. S. Clark.

The detailed development of the geometry of the generalized spaces Rn

was completed by Moór in several papers. First he succeeded in expanding
his above sketched duality to general vector density spaces in {21}. Two
spaces Rn and R̃n are called by him dual, if between the elements (x, u),
resp. (x, ũ), of the two spaces there exists a mapping ũi = ϕi(x, u) such that
gik(x, u) = g̃ik(x, ũ). Then by Varga’s osculating Riemannian space method
he obtained results similar to his duality theory between Finsler and Cartan
spaces.
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In {22} he developed the curvature theory of the Rn, and determined
four curvature tensors. One of them, R̄j

i
k`, reduces in an Fn to Varga’s

main curvature tensor T , and another: Rj
i
k` generalizes Riemann’s cur-

vature tensor of a V n. He also found two curvature invariants: B(x, u, η)
and B̄(x, u, η) depending on u and another vector η and generalizing the
Riemann–Berwald curvature tensor of the Fn. In the case of an Rn of scalar
curvature, i.e. when B and B̄ are independent of η, he obtained results which
are counterparts of several theorems of Berwald in Finsler spaces.

Conformal transformations

g̃rs(x, u) = e2σ(x)grs(x, u), grs =
1
2

∂2L2

∂ur∂us

of the metric of an Rn were investigated first by R. S. Clark. Moór in {26}
obtained a generalization partly by starting directly from the grs which in
Clark’s work is deduced from the fundamental function L(x, u) similarly
to Finsler and Riemannian geometry; partly by replacing σ(x) by σ(x, u).
Then he developed the conformal geometry of the Rn in this general setting.

A Finsler space is determined by its fundamental function L(x, y), and
the basic geometric objects, e.g. the metric tensor

(9) gij(x, y) =
1
2

∂2L2

∂yi∂yi

are derived from L. However one can start directly with the gij(x, y) =
gji(x, y). This is obviously a more general case, because for a given gij (9)
is, in general, not solvable for L. Moór was always intent on new generaliza-
tions. Between 1955 and 1960 his attention turned to these so called general
metric line-element spaces which he denoted by Ln. Finsler spaces built di-
rectly on gij(x, y) have been investigated since then by a number of authors;
in particular by R. Miron, and many Roumanian and Japanese geometers.
Moór investigated these spaces from several points of view, see {23}. First
he constructed the connection theory of the Ln developing a metrical con-
nection with the new essential generalization that the connection coefficients
are allowed to be not symmetric. Dropping the symmetry of the connec-
tion coefficients is essential. In Finsler, and thus also in Riemannian spaces,
where connection coefficients are symmetric, autoparallel curves coincide
with geodesics. However in case of their asymmetry these curves may be
different. Moór gave several concrete examples for the Ln, and characterized
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the case when these Ln reduce to an Fn. He investigated the infinitesimal
transformations

(10) x̄i = xi + ξi(x)δt which yield ȳi = yi +
∑

r

yr ∂ξi

∂xr
δt

of the Ln, and determined the corresponding Lie derivation denoted by ∆.
Transformations generated by the velocity vectors ξi(x) of (10) are motions
if they preserve length. This is assured by the Killing equations

(11) ∆gik = 0.

He determined the integrability condition of the Killing equations (the
unknowns are the ξi), and determined the paths of the motions. He called
a motion a translation if its paths are also autoparallels. He found a simple
explicit condition for this case. In an Fn the paths of a translation intersect
a geodesic under the same angle. In an Ln this is not so. According to his
result the condition for this is the vanishing of two tensors Aoor and σioo.

The number of the Killing equations (11) is 1
2n(n + 1). This is the

maximum of the number r of the independent parameters a solution of (11)
may have. H. C. Wang showed that if in an Fn one has r ≥ 1

2n(n− 1) + 1,
then it is a V n. In an Ln this is not true. Here the relation

∑

i,j

∂3

∂yv∂ys∂yr
gij(x, y)yiyj = 0

is a necessary, but not sufficient condition for this. Moór investigated the
case r = 1

2n(n + 1) and found simple additional conditions in order that
a) the curvature R̄ :=

∑
i

R̄i
i, R̄i

s :=
∑
k,`

gksR̄i
`
k` of the Ln vanish; b) Ln is

of scalar curvature; or c) R̄koij has an interesting special form. He published
his results in a number of sometimes comprehensive papers.

F. Schur’s famous result states: if the sectional curvature R(x, p) of a
Riemannian space is independent of the plane position p, then it is indepen-
dent of the point x too, i.e. R is a constant. This is also true in an Fn of
scalar curvature. However this is not so in an Ln. Moór found a nice char-
acterization of the Ln of scalar curvature in which Schur’s theorem holds,
see {24}.

Geodesic deviation plays an important role in the theory of Riemannian
and also in that of Finsler spaces. Moór derived the equation of autoparallel
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deviation in an Ln and obtained conditions for the case that autoparallel
curves of an L2 have an envelope, see {25}. Also he developed the anholomic
geometry (where the bases of TxM are not the tangents of the coordinate
lines) of the Ln-s, see {28}.

Albert Einstein was able to derive gravitation from the structure of
a 4-dimensional Riemannian space. To this end he used up the Riemann
curvature tensor and there remained no more geometric objects which would
reflect the impact of the electromagnetic field. More general spaces may offer
more possibility for the incorporation of electromagnetic field. Moór and
his coauthor János Horváth, the physicist from Szeged, discussed in a long
paper {11} the possibility of creating a unified field theory within the frame
of a Finsler space Fn.

In 1949–1953 for the purpose of studying the quantum theory of wave
spaces with the aid of operator calculus H. Yukawa developed a bilocal
space theory in which the objects of the space are defined at pairs of points.
Moór and Horváth converted this space into a general metrical line-element
space Ln, and gave an interpretation of Yukawa’s theory in this frame
(Entwicklung einer Feldtheorie begründet auf einen allgemeinen metrischen
Linienelementraum I. and II. Indag. Math., 17 (1955), 421–429, 581–587).

In the theory of affine or metrical point- or line-element-spaces the
absolute derivation D

dt =
∑
k

dxk

dt ∇k of covariant and contravariant vectors

is performed with the same connection coefficients. In 1958–61 T. Otsuki
introduced a general connection in which this does not hold. Moór called this
the Otsuki connection, and devoted a number of papers to its investigation.
He coupled the Otsuki connection with a recurrent metric tensor gij which
satisfies ∇kgij = γk(x)gij and thus obtained a Weyl–Otsuki space {33}. He
investigated in the Otsuki and Weyl–Otsuki spaces transformation groups,
geodesic deviation, and considered anholonomic coordinate systems. He
also considered Finsler–Otsuki spaces, their duality, etc.

An object at a point with coordinates xi (i = 1, . . . , n) is defined by cer-
tain numbers Ω1, . . . ,ΩN called components of the object. If its components
Ωα, α = 1, . . . , N in an other coordinate system (x̄) can be calculated from
the original Ωα(x) and the coordinate transformation x̄i = x̄i(x) according
to a given rule, then Ω is a geometric object; e.g. vectors, tensors, con-
nection coefficients, etc. (cf. [3]). Moór investigated many problems of the
theory of geometric objects. For example: The covariant derivative ∇kv

i of
the vector vi is a tensor T i

k depending on vi, ∂vi

∂xk and the connection coeffi-
cients Λj

i
k. One can ask, in what form can a tensor T i

k be composed from
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vi, ∂vi

∂xk and Λj
i
k; i.e. which are the possible forms of a “covariant deriva-

tive” in the above sense. He solved a number of problems of the following
type: to construct a tensor from given geometric objects of different kinds
in {29}; to construct covariant derivatives from the metric tensor; connec-
tion coefficients from covariant vectors; etc. He also investigated geometric
objects and covariant derivatives in line-element spaces.

A tensor T is recurrent if its covariant derivative equals the tensorial
product of a covariant vector λ and the tensor itself: ∇T = λ⊗ T . Among
Riemannian manifolds V n those which are near Euclidean space enjoy a
special interest. The nearest class consists of V n of constant curvature (i.e.
non-Euclidean spaces). Next are the locally symmetric V n characterized by
∇R = 0 (where R is the curvature tensor of the V n), and after that the V n

of recurrent curvature. They were investigated in detail by H. S. Ruse and
A. G. Walker. Moór extended the investigations to affinely connected spaces
Ln (spaces with parallelism, but without metric), to metrical spaces with
not symmetric coefficients, generalized metric spaces Rn and general line-
element spaces Ln. He wrote 15 papers on this topic, investigated spaces
with recurrent torsion, and Fn with recurrent metric tensor: ∇kgij = λkgij .
Metric point spaces with this property are the Weyl spaces. They found im-
portant applications in the field theories of physics. Moór also investigated
spaces with double recurrence given by the property∇∇R = T⊗R, where T
is a tensor of type (0, 2). It is easy to see that simple recurrence always yields
double recurrence, but not conversely. To convey the flavour of his results
in this field we mention two of them chosen arbitrarily. 1) He proved that
if an affinely connected space Ln of recurrent curvature (with possibly not
symmetric connection coefficients) splits into two factors: Ln = Lr × Ln−r,
then one of them is flat, i.e. its curvature tensor vanishes, see {27}. 2) An
F 3 is always recurrent with respect to the total curvature tensor, provided
there exists in it an absolute parallelism of the line-elements, see {30}.

Also interesting are his investigations concerning equivalent variational
problems. He called two variational problems

(12) a) δ

∫ b

a
F (x, ẋ, ẍ) dt = 0 and b) δ

∫ b

a
F ∗(x, ẋ, ẍ) dt = 0

equivalent if their solutions (their geodesics) are the same, i.e. if

(13) Ei(F ) = 0 ⇐⇒ Ei(F ∗) = 0, Ei ≡ ∂

∂xi
− d

dt

∂

∂ẋi
+

d

dt

∂

∂ẍi
.

A. Kawaguchi has considered and investigated spaces in which the arc
length of a curve xi(t) is defined by

∫ b
a F(x, ẋ, . . . , x(r)) dt. So (12,a,b) are



Differential Geometry 403

variational problems of Kawaguchi spaces with r = 2, and (13) yields their
equivalence. This equivalence means that the identity mapping between
the two spaces given by F and F ∗ is a geodesic mapping. For r = 1 one
obtains Finsler spaces. In this case ∂F

∂ẍi = 0. Moór investigated the clearly
equivalent variational problems, where

a) Ei(F ∗) = λ(x)Ei(F ),(14)

resp. b) Ei(F ∗) =
∑

k

λk
i Ek(F ), det |λk

i | 6= 0

and obtained results concerning the form of F and F ∗, see {31}, e.g. in the
case of (14,a) with λ 6= const., if F and F ∗ do not depend on ẍ (i.e. in the
case of Finsler spaces) he obtained that

F ∗(x, ẋ) = λ(x)F (x, ẋ) +
∑

k

Sk(x)ẋk, F (x, ẋ) =
∑

k

ak(x)ẋk,

where λ(x) and Sk(x) satisfy a first order partial differential equation in
which ak(x) is also involved as a coefficient function. If λ = const., then Sk

is the gradient of a scalar function S, and the difference F ∗(x, ẋ)−λF (x, ẋ)
is a total differential of S with respect to ẋ. He solved similar problems for
(14,b) (also in the case of rank ‖λk

i ‖ < n) and also for variational problems
in several variables: F(xi(u), ∂xi

∂uα ) i = 1, . . . , n, α = 1, . . . , m < n, and with
multiple integrals

∫
. . .
U

∫
F(x, ∂x

∂u) du, u ∈ U , see {32}.

Hungarian mathematicians performed successful investigations in the
20th century not only on Finsler-, but also on Riemannian-geometry. One
of them was Pál Dienes.

In 1917 Tullio Levi-Cività created a suitable notion of parallelism of
vectors in Riemannian spaces. He considered a surface φ : xi = xi(u1, u2),
i = 1, 2, 3, of a Euclidean 3-space E3, a curve C(t) ⊂ φ : xi(t) = xi

(
uα(t)

)
,

and a tangent vector ξ0 ∈ TC(t0)φ. Then he translated ξ0 parallel in the E3 to

the nearby point C(t0 +∆t) of the curve obtaining in E3 a vector ξ̂(t0 +∆t)
(with components ξ̂i = ξi

0, i = 1, 2, 3), and he called the perpendicular
projection ξ̄ of ξ̂ on TC(t0+∆t)φ parallel to ξ0. Starting this construction

again with ξ̄, then with ¯̄ξ, etc., and performing a limit process ∆t → 0,
he obtained a vector field ξ(t) tangent to φ which he called parallel along
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C ⊂ φ. This construction leads analytically to the differential equation
system

(15)
dξα

dt
+

∑

β,γ

Γβ
α

γ

(
x(t)

)
ξβ dxγ

dt
= 0, α, β, γ = 1, 2

where Γβ
α

γ is the Christoffel symbol of the second kind of φ. This notion
of parallelism opened new paths and gave a considerable impulse to the
investigation of Riemannian geometry.

Pál Dienes graduated at and took his doctor degree from the Péter
Pázmány University in Budapest. At the beginning of his mathematical
career in Hungary he dealt with the theory of functions. In 1920 he left
Hungary, and at this fortunate moment of the development of Riemannian
geometry he started investigations on this geometry in Wales (U.K.).

Since any n-dimensional Riemannian manifold V n has a local isometric
embedding into En+k, the idea of parallelism just described can easily be
extended to V n. In this case (15) takes the form

(15′)
dξi

dt
+

∑

j,k

Γj
i
k

(
x(t)

)
ξj dxk

dt
≡ Dξi

dt
= 0, i, j, k = 1, . . . , n.

The equation (15′) has two important consequences. Since it contains as
data the functions Γj

i
k(x) only, by giving them arbitrarily in a coordinate

space Xn(x), we can define parallelism in it, and thus make Xn into an
affinely connected space Ln (a differential geometric space with parallelism,
but without metric). On the other hand, the left hand side of (15′) behaves
as a vector, hence it can be considered as a derivative (the absolute deriva-
tive Dξi/dt) of the vector field ξi

(
x(t)

)
. Thus the parallelism of a vector

field ξ
(
x(t)

)
in an Ln can be defined by Dξi

dt = 0, similarly as in En by
dξi

dt = 0. Moreover, D
dt can be extended to tensor algebra, and this leads

to the absolute differential calculus (Ricci-calculus) of basic importance in
differential geometry.

Parallelism, affinely connected spaces and absolute differential calculus
raised a number of new questions at the beginning of the 20s of the 20th

century. Dienes rendered important contributions to Riemannian geometry
and its nonmetrical counterpart, the theory of affinely connected spaces.
He found new possible solutions for the main problems raised by the rapid
advance of the differential geometry of his time. He had original ideas and
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realized interesting investigations. His papers appeared in well-known lead-
ing journals. His activity on differential geometry can be divided into two
well separable periods. In the first of these, mainly between 1922 and 1926,
he was interested in the connection theory of tensors and vectors with or
without metric (C.R. Acad. Sci. Paris, 174 (1922), 1167–1170; 175 (1922),
209–211; 176 (1923), 370–372) and their application to electromagnetics
(C.R. Paris, 176 (1923), 238–241). He developed a generalization of the
absolute tensor calculus of Gregorio Ricci–Curbastro and of the parallel
translation of Tullio Levi-Cività. He represented a tensor A by the aid of
certain elementary tensors e1, . . . , en in the form

A0(x) +
∑

i

Ai(x)ei +
∑

i,j

Ai,j(x)eiej + . . . .

Then he investigated their addition, multiplication, contraction and deriva-
tion, and found conditions for the associativity, distributivity and especially
commutativity of these operators. He also discussed a new metric com-
patible with his parallel translation, and the integration of the differential
equation of that general parallel translation {4}.

He also gave another generalization of the parallel translation of a line-
element δx in {5} by the relation

(16) dδxk = fk(x, dx, d2x, . . . , dmx; δx) = 0,

where (x, dx, . . . , dmx) is an m-th order element of a curve and the fk are
first order homogeneous in δx and satisfy a certain homogeneity condition
also in dx, . . . , dmx. This is a very general definition of parallel transla-
tion having some relation to Finsler and also to Kawaguchi geometry. (In
Kawaguchi geometry the arc length of a curve is given by such an integral
ds =

∫ b
a L(x, ẋ, ẍ, . . . , x(m)) dt, where the fundamental function L depends

not only on the first, but also on higher derivatives up to the m-th.) He gave
also an intermediate value theorem in relation with this parallel translation.
Let Ak(t) be a vector field along a curve x(t) and Ak(t, t0) the parallel trans-
lated according to the new parallel displacement of Ak(t) along the curve
to x(t0). Then this intermediate value theorem has the form

Ak(t, t0)−Ak(t0) =
DAk

Dt

∣∣∣∣
t=t0

(t− t0) + µ(t− t0)
2,

where D
Dt is the operator of the absolute derivation related to (16). This

yields a Taylor formula too if fk is linear in δx,
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His paper {6} is also connected to parallel displacement. With the aid of
the parallel displacement of Levi-Cività he constructs osculating p-vectors
and successive curvatures of a curve and finds explicit expressions for these
curvatures. The first curvature coincides with that of Luigi Bianchi.

It is well known that in a V n the square of the norm of a vector ai is
|a|2 =

∑
aiai. In {7} Dienes transfers and extends this important notion

on tensors in a very natural and simple way. For a tensor vij he defines

|v|2 :=
∑

i,j

vijvij ≡ (vv) and cos(vw) :=
(vw)
|v| |w| .

If we are given a vij and we have no metric tensor, then, in order to obtain
vrs =

∑
i,j

vijgirgjs a tensor gk` is needed, and similarly, starting with a vij a

tensor gk` is necessary which may have no relation to gk`. Then he describes
and investigates the most general parallel translation of tensors. He requires
only that the parallel translated of a tensor along a curve C from its point
p to another point q ∈ C be a tensor of the same kind depending on C
alone. This yields the differential equation system dA

dt +f(x, ẋ, ẍ, . . . ; A) = 0
(suppressing the indices of the tensor A and the corresponding complicated
notation at f) (cf. (16)). Then derivation of tensors is obtained in the
form ∆A

∆t = dA
dt + f(x, ẋ, ẍ, . . . ;A). However, the usual good properties

of the tensor derivation are assured only under further requirements. In
an isotropic space he defines a displacement of tensors which operator can
be split into a parallel translation along the curve, followed by a rotation
around the endpoint.

His paper {8} represents a transition from his first period to the second
one. In this paper he considers an affinely connected space Ln and an m-
dimensional subspace Xn

m of it. Then the n-dimensional tangent space splits
into an m-dimensional and an n−m-dimensional one giving rise to another
subspace Xn

n−m. Vectors of Ln also split according to Xn
m and Xn

n−m. Using
non-holonomic coordinate systems in them, four new connections can be
derived from the connection of Ln by the aid of the split vectors of the Xn,
and also the splitting of the curvature and torsion tensors of the Ln will be
obtained.

In the second period of his activity in differential geometry he investi-
gated the infinitesimal deformations of spaces and connections. He consid-
ered the infinitesimal deformation

(17) ′xi = xi + εvi
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of an affinely connected space Ln related to the coordinate system (x).
(17) can be considered as a point transformation and, at the same time,
as a coordinate transformation giving raise to new components T

i of a
tensor T (x). Denoting by ′T the element of the tensor field T (x) at ′x
(i.e. ′T = T (′x)) and by T ∗ the parallel displaced of T (x) to ′x, he obtained
three types of differentials:

δT ≡ ′T − T , ∆T = T ∗ − T , DT = T ∗ − ′T

corresponding to three types of derivations. It is noteworthy that δ can
also be applied to quantities which are not tensors, e.g. to connection
coefficients. He applied these deformations on Ln and V n, and also on
submanifolds Xn

m of these. He described the effect of these operations on
the curvature tensors and connection coefficients using, in the case of a
submanifold Xn

m, a splitting into tangential and transversal components.
The operator δ was used also by W. Slebodzinki and D. van Danzig, and
applied to Lie derivation. It turned out to be a very good tool for the study
and characterization of affine and metrical motions.

His papers reporting on these investigations (Sur la déformation des es-
paces à connexion linéaire générale. C.R. Acad. Sci. Paris, 197 (1933),
1084–1087; Sur la déformation des sous-espaces dans un espace à connex-
ion linéaire générale. C.R. Acad. Sci. Paris, 197 (1933), 1167–1169; On
the deformation of tensor manifolds. Proc. London Math. Soc. (2), 37
(1934), 512–519) are closely related to each other and crowned in his most
comprehensive paper (On the infinitesimal deformations of tensor subman-
ifolds. J. Math. Pures Appl. (9), 16 (1937), 111–150) written together with
E. T. Davies from Southampton who can be considered as his pupil. The
problems treated in these papers were problems of his time, and other math-
ematicians too showed interest in them e.g. J. A. Schouten and E. R. van
Kampen.

István Fáry who worked mainly in Berkeley, dealt with convex geometry,
cell complexes, topology, etc. However, he has a very nice, interesting result
on the global differential geometry of the E3.

One of the first results of global differential geometry states that the
total curvature of a closed curve of the Euclidean two space E2 is at least
2π. This result was extended by W. Fenchel to closed space curves of the
E3 in 1929, and to those of the En by K. Borsuk in 1948. Borsuk also
raised the question whether the total curvature of a knot (i.e. a curve of the
E3 which is homeomorphic to the circle, but is not isotopic to it) is always
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= 4π. This interesting question was answered by Fáry in an affirmative
way in {10}. His proof is based on the interesting observation that the total
curvature of a curve of the E3 equals the mean of the total curvatures of its
orthogonal projections on the 2-dimensional linear subspaces of the E3. He
found this result in France before he settled in the USA. Another positive
answer on Borsuk’s problem was published by J. W. Milnor in {14} a little
later, in 1950 (the two papers were accomplished independently from each
other).

Another differential geometrical result is due to István Vincze who
worked mainly in statistics and probability theory. Let L ⊂ E3 be a curve
related to the arc length s; Q1(s1), Q2(s2) points of L, and S(Q1, Q2) the
center of mass of the arc Q̂1Q2 in case of a homogeneous load-distribution.
If Q1 → P0 ∈ L, Q2 → P0 independently of each other, then S runs over
a two parameter family of points, i.e. a surface F ⊂ E3. Let us denote by
K(Q1, Q2) the Gauss curvature and by H(Q1, Q2) the mean curvature of F
at S(Q1, Q2). Then, according to his result {58},

lim
Q1,Q2→P0

K(Q1, Q2) = −τ2, and lim
Q1,Q2→P0

H(Q1, Q2) = −3
5

1
ρ2

d

ds
(%2τ),

where % is the curvature and τ the torsion of L. He also investigated the
case of a closed curve L loaded with a density µ(s) and he determined,
among other things, the surface area of F . His investigation is related to
a problem of Alfréd Rényi connected to the cosmological theory of O. Yu.
Schmidt (cf. I. Vincze, {57}).

Jenő Egerváry was interested mainly in matrix theory and differential
equations, but as professor of mathematics at Budapest Technical University
he also dealt with different problems of algebra, geometry of E3, analysis,
and certain physical and technical problems. However, Egerváry has in-
teresting results in the differential geometry of the Euclidean n-space En

too.
Let L(s) be a smooth curve of the En given by xi = xi(s) or, in vectorial

form, by x(s) = xi(s)ei with s as arc length, and ei as an orthonormal base
of En. It is an elementary fact that the (first) curvature 1

%1(s) = κ1(s) of
L is the limit of the ratio of the angle of the tangents at s0 and s and of
|s− s0| in case of s → s0; i.e. κ1(s) is the angular velocity of the tangent of
the curves. Similarly, the second curvature κ2 (the torsion τ) is the angular
velocity of the second normal. Further curvatures κ3, . . . , κn−1 of the L in
En or even in a Riemannian space V n (see W. Blaschke, {2}) are defined as
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the coefficients appearing in the Frenet formulas expressing the derivatives
of the vectors of the moving frame linearly by the vectors of the frame itself.

Egerváry considered the Gram determinants

Gk = det |hab|k, hab = 〈x(a), x(b)〉, a, b = 1, . . . k
k = 1, 2, . . . , n,

G0 := 1

of order k, where x(a) = dax
dsa , and 〈 , 〉 denotes the Euclidean scalar product,

and proved that

dηk

ds
= lim

s→s0

ηk

|s− s0| =

√
Gk+1Gk−1

Gk
(s0), k = 1, . . . , n− 1,

where ηk is the angle of the osculating k-planes taken at s and s0. It turns
out that these dηk

ds coincide with the curvatures κ1, . . . , κn−1 of the curve L.
This can easily be seen in the simple case of k = 1. Indeed

G1 = 〈x′,x′〉 = |x′|2 = 1, G2 =
∣∣∣∣
〈x′, x′〉 〈x′, x′′〉
〈x′′, x′〉 〈x′′, x′′〉

∣∣∣∣ =
∣∣∣∣
1 0
0 |x′′|2

∣∣∣∣ = |x′′|2,

for the parameter is the arc length, and because of x′ ⊥ x′′. Thus, taking
into account G0 = 1, we obtain dη1

ds = |x′′| = κ1. These dηk
ds also satisfy the

Frenet formulas. So Egerváry’s result revealed the geometric meaning of
the formally defined curvatures κk both in En and V n. Moreover, he could
express dηk

ds also by volumes of simplexes with vertices on L and by distances
of the vertices. In this form curvatures do not need the differentiability of
the curve. Egerváry’s results and ideas found applications in the book of
L. M. Blumenthal {3}), and are also related to some works of G. Alexits.

One can consider a curve L as the set of points represented by xi =
xi(t) ∈ C0, t ∈ I = (a, b). After Peano’s investigation it became clear that
this set may be a cube. This can not happen if one requires the mapping
I → L to be 1 : 1. Nevertheless this excludes so simple and important cases
as multiple points. A new set theoretical and topological theory of curves
in metrical (distance) space without any differentiability was initiated by
K. Menger {12}, {13} and P. Urysohn {42}. These investigations were pre-
sented to the Hungarian mathematical community by György Alexits {1}.

György Alexits, known for his works on approximation theory and or-
thogonal series, joined these investigations in the 30s. He investigated the
curvatures of a curve in the general distance and semi-distance spaces. He
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called them linear curvatures in order to distinguish them from the curva-
ture of a surface or of a space used in Riemannian geometry. A distance
space is a metric space with its well known three axioms. The space is a
semi-distance space if the triangle axiom is not required (e.g. in a Minkowski
space with non convex indicatrix). It was K. Menger who first started in-
vestigations on the (first) curvature of a curve in distance spaces. Alexits
introduced the notion of the k-th linear curvature, and devoted several pa-
pers, first alone, and then together with Egerváry, to their investigation
(La torsion des espaces distanciés. Comp. Math., 6 (1939), 471–477; Der
Torsionsbegriff in metrischen Räumen. Mat. Fiz. Lapok, 46 (1939), 13–28
in Hungarian with German summary). It turned out that in the case of
a Euclidean space his linear curvatures reduce to Egerváry’s dηk

ds and in a
Riemannian space to Blaschke’s curvatures, see {9}.
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{1} Gy. Alexits, La nouvelle théorie des courbes, Mat. Fiz. Lapok, 44 (1937), 1–37 (in
Hungarian, with French summary).

{2} W. Blaschke, Frenets Formeln für den Raum von Riemann, Math. Z., 6 (1920),
94–99.

{3} L. M. Blumenthal, Theory and Applications of Distance Geometry, Clarendon Press
(Oxford, 1953).
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mung, Monatsh. Math. Phys., 65 (1961), 277–286.

{57} I. Vincze, Determination of distributions with the aid of mean values, Magyar Tud.
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