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SONALI BHATTACHARYA

Symbiosis Centre for Management and Human Resource Development, Plot 15, Phase-I,
Hinjewadi, Pune-411057, Maharashtra, India
e-mail: sonali bhattacharya@scmhrd.edu

Communicated by E. Csáki
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Abstract

In this paper, we have used Eryilmaz’s (2008) multi-colour Pólya urn model to ob-
tain joint distributions of runs of t-types of exact lengths (k1, k2, . . . , kt), at least lengths
(k1, k2, . . . , kt), non-overlapping runs of lengths (k1, k2, . . . , kt) and overlapping runs of
lengths (k1, k2, . . . , kt) when counting of runs is done in a circular set-up. We have also
derived joint distributions of longest runs of various types under similar conditions. Dis-
tributions of runs have found applications in fields of reliability of consecutive-k-out-of n:
F system, consecutive k-out-of-r-from n: F system, start-up demonstration test, molec-
ular biology, radar detection, time sharing systems and quality control. The literature is
profound in discussion of marginal distribution and joint distribution of runs of various
types under linear and circular set up using techniques like urn model with balls of two or
more colours, probability generating function and compounding discrete distribution with
suitable beta functions. Through this paper for first time effort been made to discuss joint
distributions of runs of various lengths and types using Multi-colour urn model.

1. Introduction

Circular Distributions of order k are based on runs of specific length
when the sampling units are arranged circularly i.e., two ends of the linear
sequence of size n are joined together and the counting is made at any point
on the circle, so that, when sample is ordered circularly if we start counting
from sampling unit which is supposed to be the second unit (in case of linear
ordering) now will be counted as the nth unit. Makri and Philippou [5] intro-
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duced the circular binomial distribution based on the non-overlapping and
overlapping success runs. Charalambides [1] gave the factorial moments of
these distributions. Philippou and Tripsiannis [7] used urn model to obtain
circular Pólya-Distributions of order k based on both urn model and also
by compounding binomial distributions by beta distribution. Sen et al. [6]
used Pólya–Eggenberger sampling scheme to obtain marginal as well as joint
distributions of Type-I circular Pólya distribution of order k based on non-
overlapping success runs and denoted by N c

n,k, Type-II circular Pólya distri-

bution of order k based on overlapping success runs and denoted by M c
n,k,

Type-III circular Pólya distribution of order k based on success runs of ex-
act length k and denoted by Ec

n,k and Type-IV circular Pólya distribution

of order k based on success runs of at least length k and denoted by Gc
n,k.

Sen et al. [6] also derived the distributions of various circular inverse Pólya
distributions of order k and a special waiting time distribution of order k,

X
(c,l,k)
y,z,u,v, which is waiting time for first success of run of length k succeeding

the y non-overlapping success runs of length l, z overlapping success runs
of length l, u success runs of exact length l and v success runs of at least
length l.

Eryilmaz [2] used urn model with multicolour scheme to obtain joint
distributions of runs. In this multicolor urn scheme, a ball is drawn from
the urn initially containing mj balls of color j, j = 1, 2, . . . , t, and its color
is noted. If a ball of color j is drawn at a stage, s balls of color j, j =
1, 2, . . . , t, are added to the urn. Drawing a ball of color j is considered
as a trial of type j, j = 1, 2, . . . , t. This scheme is repeated n times and
a sequence consisting of trials, namely {1, 2, . . . , t}, is derived. This model
was used to obtain joint distributions of runs of various lengths. The model
was found to have applications in start-up demonstrations and reliability
of consecutive systems. In this paper [2] multi-colour urn model is used to
obtain the joint distributions of four types of circular distributions of order
(k1, k2, . . . , kt) based on non-overlapping success runs, overlapping success
runs, runs exactly of some specific lengths and runs of at least some specific
lengths. We have also obtained joint distributions of longest runs of type i
(i = 1, 2, . . . , t).

Following lemmas have been used repeatedly in our work.

Lemma 1. The number of distributions of ‘r’ similar balls in n different
cells such that no cell has more than (k − 1) balls is given as:

(1.1) A(k)(r, n) =

[ r
k
]∑

j=0

(−1)j
(
n

j

)(
n+ r − jk − 1

r − jk

)
(Riordan, [8]).
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Lemma 2. The number of ways of distributions of r similar balls in ‘n’
different cells such that no cell has exactly k ball is given as:

C(k)(r, n) =

[ r
k
]∑

u=0

(−1)j
(
n

u

)(
n+ r − uk − u− 1

r − uk

)
(Sen et al., [6]).

(1.2)

Lemma 3. Total number of ways for getting r1 runs of type 1, r2 runs
of type 2, and so on, without two adjacent runs being of the same type is
given as:

Ft(r1, r2, . . . , rt)(1.3)

= (−1)r
r1∑

m1=1

r2∑
m2=1

· · ·
rt∑
mt

(−1)m
(
r1 − 1

m1 − 1

)
. . .

(
rt − 1

mt − 1

)(
m

m1,m2, . . . ,mt

)

where, r =
∑t

r=1 ri 5 n, m =
∑t

r=1mi [4].

Lemma 4. Let A1, A2, . . . , An be non-mutually exclusive and exhaustive
events, then probability of union of A1, A2, . . . , An is given as:

P

( n∪
i=1

Ai

)
=
∑
i

P (Ai)−
∑
(i,j)
i̸=j

P (AiAj) +
∑
(i,j,k)
i̸=j ̸=k

P (AiAjAk)(1.4)

+ · · ·+ (−1)n−1P (A1A2 . . . An) [3].

Also let a(n,s) = a(a+ s)(a+ 2s) . . . (a+ n− 1s).

2. Circular Pólya distributions of order (k1, k2, . . . , kt)

2.1. Type-III circular Pólya distributions of order (k1, k2, . . . , kt).

Let E
(j,C)
n,kj

be the total number of runs of type j with length exactly equal

to kj (j = 1, 2, . . . , t).
Suppose we draw n balls from the urn and nj (j = 1, 2, . . . , t) balls

of colour j are drawn, such that n1 + n2 + · · ·+ nt = n and there are rj
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(j = 1, 2, . . . , t) runs of jth colour. Then we are interested in finding the
probability

P
(
E

(1,C)
n,k1

= x1, E
(2,C)
n,k2

= x2, . . . , E
(t,C)
n,kt

= xt

)
.

Theorem 2.1. Let (x1 = 0, x2 = 0, . . . , xt = 0), s = −1, mi > 0 and∑t
i=1mi = m.

(i) For x1 > 0,

P
(
E

(1,C)
n,k1

= x1, E
(2,C)
n,k2

= x2, . . . , E
(t,C)
n,kt

= xt

)
(2.1)

=
∑
n1=r1

∑
n2=r2

· · ·
∑
nt=rt

∑
r1=x1

∑
r2=x2

. . .
∑
rt=xtFt(r2, r3, . . . rt)

t∏
i=1

((
ri
xi

)
C(ki−1)(ni − kixi − ri + xi, ri − xi)

)

×

(
A(2)

(
r1 − 1,

t∑
i=2

ri − 1

)(
x1
r1

))(∏t
i=1m

(ni,s)
i

m(n,s)

) ,

where,

t∑
i=1

mi = m and

t∑
i=2

ni = n− n1.

(ii) For x1 = 0, n1 > 0,

P
(
E

(1,C)
n,k1

= x1, E
(2,C)
n,k2

= x2, . . . , E
(t,C)
n,kt

= xt

)
(2.2)

=
∑
n1=r1

∑
n2=r2

· · ·
∑
nt=rt

∑
r1=x1

∑
r2=x2

· · ·
∑
rt=xtFt(r2, r3, . . . , rt)

t∏
i=2

((
ri
xi

)
C(ki−1)(ni − kixi − ri + xi, ri − xi)

)

×A(2)

(
r1 − 1,

t∑
i=2

ri − 1

)
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×
n1−r1+1∑

u=1
u ̸=k1

(
C(k1−1)(n1 − u− r1 + 1, r1 − 1)

∏t
i=1m

(ni,s)
i

m(n,s)

) ,

where,

t∑
i=1

mi = m and

t∑
i=1

ni = n.

(iii)

P
(
E

(1,C)
n,k1

= x1, E
(2,C)
n,k2

= x2, . . . , E
(t,C)
n,kt

= xt

)
(2.3)

= P

 t∪
j=1∑t

j=1 nj=n

xj=0, nj>0

(
E

(1,C)
n,k1

= x1, E
(2,C)
n,k2

= x2, . . . , E
(t,C)
n,kt

= xt

) .

Proof. (i) For x1 > 0, let us suppose we start the computation from a
run of exact length k1 of type 1 flanked on both sides by balls of any one
of the types i (i = 2, 3, . . . , t). Total number of ways for getting r2 runs of
type 2, r3 runs of type 3, and so on and rk runs of type k, without two
adjacent runs being of the same type is given as:

(2.4) Ft(r2, r3, . . . , rt).

Number of selection of xi runs of type i from ri runs which has exactly
ki balls if type i (i = 2, 3, . . . , t) is given as

(2.5)

(
ri
xi

)
.

The remaining ni − kixiballs of type i (i = 2, 3, . . . , t) are to be arranged
in ri − xi cells such that each cell has at least 1 ball and not exactly ki balls
of type i (i = 2, 3, . . . , t) in

(2.6) C(ki−1)(ni − kixi − ri + xi, ri − xi) ways.

(r1 − 1) runs type 1 are to be distributed in the (
∑t

i=2 ri − 2) cells created

by the
∑t

i=2 ri runs of types i (i = 2, 3, . . . , t), such that no cell contain more

than 1 run in A(2)(r1 − 1,
∑t

i=2 ri − 1) ways.

Number of selections of (x1 − 1) runs of type 1 from (r1 − 1) runs which

has exactly k1 balls of type 1 is given as
(
r1−1
x1−1

)
ways.
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The remaining n1 − k1x1 balls of type 1 are to be arranged in r1 − x1
cells such that each cell has at least 1 ball and not exactly k1 balls of type 1
in C(k1−1)(n1 − k1x1 − r1 + x1, r1 − x1) ways.

Number of drawing ni, (i = 2, 3, . . . , t) balls of type i from an urn con-
taining mi balls of type i (i = 2, 3, . . . , t) by Pólya–Eggenberger sampling
scheme is given as:

(2.7)

∏t
i=1m

(ni,s)
i

m(n,s)
,

t∑
i=1

mi = m and

t∑
i=1

ni = n.

Hence, by combining (2.4), (2.5), (2.6), and (2.7) we get the probability
given in (2.1)

(ii) For x1 = 0, let us suppose we start the computation from a run of
exact length u(̸= k1) = 1, 2, . . . , n1 − r1 + 1 of type 1 flanked on both sides
by balls of any one of the types i (i = 2, 3, . . . , t).

The remaining n1 − u balls of type 1 are to be arranged in r1 − 1 cells,
such that each cell has at least 1 ball and not exactly k1 balls of type 1 in
C(k1−1)(n1 − u− r1 + 1, r1 − 1) ways.

Hence, we get the probability given in (2.2). �

2.2. Type-IV circular Pólya distributions of order (k1, k2, . . . , kt).

Let G
(j,C)
n,kj

be the total number of runs of type j with length at least

equal to kj (j = 1, 2, . . . , t).
Suppose we draw n balls from the urn and nj (j = 1, 2, . . . , t) balls

of colour j are drawn, such that n1 + n2 + · · ·+ nt = n and there are rj
(j = 1, 2, . . . , t) runs of jth colour. Then, we are interested in finding the
probability

P
(
G

(1,C)
n,k1

= x1, G
(2,C)
n,k2

= x2, . . . , G
(t,C)
n,kt

= xt

)
.

Theorem 2.2. Let (x1 = 0, x2 = 0, . . . , xt = 0), s = −1, mi > 0 and∑t
i=1mi = m.

(i) For x1 > 0,

P
(
G

(1,C)
n,k1

= x1, G
(2,C)
n,k2

= x2, . . . , G
(t,C)
n,kt

= xt

)
(2.8)

=
∑
n1=r1

∑
n2=r2

· · ·
∑
nt=rt

∑
r1=x1

∑
r2=x2

· · ·
∑
rt=xt
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Ft(r2, r3, . . . , rt)

t∏
i=1

(
ri
xi

)( ni−kixi−ri−xi∑
vi=0

(
xi + vi − 1

vi

)

×A(ki−1)(ni − kix− ri + xi − vi, ri − xi)

)

×A(2)

(
r1 − 1,

t∑
i=2

ri − 1

)(
x1
r1

) ∏t
i=1m

(ni,s)
i

m(n,s)
,

where,

t∑
i=1

mi = m and

t∑
i=2

ni = n− n1.

(ii) For x1 = 0, n1 > 0

P
(
G

(1,C)
n,k1

= x1, G
(2,C)
n,k2

= x2, . . . , G
(t,C)
n,kt

= xt

)
(2.9)

=
∑
n1=r1

∑
n2=r2

· · ·
∑
nt=rt

∑
r1=x1

∑
r2=x2

· · ·
∑
rt=xt

Ft(r2, r3, . . . , rt)

t∏
i=2

((
ri
xi

) ni−kixi−ri−xi∑
vi=0

(
xi + vi − 1

vi

)

A(ki−1)(ni − kix− ri + xi − vi, ri − xi)

)

×

(
A(2)

(
r1 − 1,

t∑
i=2

ri − 1

)

×
n1−r1+1∑

u=1
u̸=k1

A(k1−1)(n1 − u− r1 + 1, r1 − 1)

∏t
i=1m

(ni,s)
i

m(n,s)

)
,

where,

t∑
i=1

mi = m and

t∑
i=1

ni = n.
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(iii)

P
(
G

(1,C)
n,k1

= x1, G
(2,C)
n,k2

= x2, . . . , G
(t,C)
n,kt

= xt

)(2.10)

= P

 t∪
j=1∑t

j=1 nj=n, xj=0, nj>0

(
G

(1,C)
n,k1

= x1, G
(2,C)
n,k2

= x2, . . . , G
(t,C)
n,kt

= xt

) .

Proof. For x1 > 0, let us suppose we start the computation of a run of
at least length k1 of type 1 flanked on both sides by balls of any one of the
types i (i = 2, 3, . . . , t). Total number of ways for getting r2 runs of type 2,
r3 runs of type 3, and so on rk runs of type k, without two adjacent runs
being of the same type is given as:

(2.11) Ft(r2, r3, . . . , rt).

Number of selection of xi runs of type i from ri runs which has at least ki
balls if type i (i = 2, 3, . . . , t) is given as

(
ri
xi

)
.

Since each of the ri cells having balls of type i (i = 2, 3, . . . , t) is required
to have at least 1 ball, let us assume that there are vi (= 0, 1, . . . , ni − kixi −
ri + xi) balls which are to be distributed in xi cells in

(
xi+vi−1

vi

)
ways.

The remaining ni − kix− ri + xi − vi balls of type i (i = 2, 3, . . . , t) are
to be arranged in ri − xi cells such that each cell has at the most (ki − 2)
balls of type i (i = 2, 3, . . . , t) in A(ki−1)(ni − kix− ri + xi − vi, ri − xi) ways.

(r1 − 1) runs type1 are to be distributed in the (
∑t

i=2 ri − 2) cells cre-

ated by the
∑t

i=2 ri runs of types i (i = 2, 3, . . . , t), such that no cell contain

more than one run in A(2)(r1 − 1,
∑t

i=2 ri − 1) ways.

Number of selections of (x1 − 1) runs of type 1 from (r1 − 1) runs, which

has at least k1 balls of type 1 is given as
(
r1−1
x1−1

)
ways.

Since each of the r1 cells having balls of type 1 is required to have at
least 1 ball, let us assume there are v1 (= 0, 1, . . . , n1 − k1x1 − r1 + x1) balls

that are to be distributed in x1 cells in
(
x1+v1−1

v1

)
ways.

The remaining n1− k1x1− r1+x1− v1 balls of type 1 are to be arranged
in r1 − x1 cells such that each cell has at the most (k1 − 2) balls of type 1
in A(k1−1)(n1 − k1x1 − r1 + x1 − v1, r1 − x1) ways.

Number of drawing ni, (i = 2, 3, . . . , t) balls of type i from an urn con-
taining mi balls of type i (i = 2, 3, . . . , t) by Pólya–Eggenberger sampling
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scheme is given as

(2.12)

∏t
i=1m

(ni,s)
i

m(n,s)
,

t∑
i=1

mi = m and

t∑
i=1

ni = n.

Hence, we get the probability given in (2.8).
(ii) For x1 = 0, let us suppose we start the computation of from a run of

length u(̸= k1) = 1, 2, . . . , n1 − r1 + 1) of type 1 flanked on both sides balls
of any one of the types i (i = 2, 3, . . . , t).

The remaining n1 − u balls of type 1 are to be arranged in r1 − 1 cells,
such that each cell has at least 1 ball and at most k1 − 1 balls of type 1 in
A(k1−1)(n1 − u− r1 + 1, r1 − 1) ways.

Hence, we get the probability given in (2.9). �

2.3. Type-I circular Pólya distributions of order (k1, k2, . . . , kt).

Let N
(j,C)
n,kj

be the number of non-overlapping runs of type j of length kj

(j = 1, 2, . . . , t).
Suppose we draw n balls from the urn and nj (j = 1, 2, . . . , t) balls

of colour j are drawn, such that n1 + n2 + · · ·+ nt = n and there are rj
(j = 1, 2, . . . , t) runs of jth colour. Then, we are interested in finding the
probability

P
(
N

(1,C)
n,k1

= x1, N
(2,C)
n,k2

= x2, . . . , N
(t,C)
n,kt

= xt

)
.

Theorem 2.3. Let (0 5 xi 5 [nk ], i = 1, 2, . . . , t), s = −1, mi > 0 and∑t
i=1mi = m.

(i) For x1 > 0,

P
(
N

(1,C)
n,k1

= x1, N
(2,C)
n,k2

= x2, . . . , N
(t,C)
n,kt

= xt

)(2.13)

=
∑
n1=r1

∑
n2=r2

· · ·
∑
nt=rt

∑
r1=x1

∑
r2=x2

· · ·
∑
rt=xt

Ft(r2, r3, . . . , rt)
t∏

i=1

(
min (ri,xi)∑

ui=1

(
ri
ui

)(
xi − 1

ui − 1

)
(δi)
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×
ni−kixi−ri+ui∑

vi=0

A(ki)(vi, ui)A(ki−1)(ni − kixi − ri + ui − vi, ri − ui)

)

×A(2)

(
r1 − 1,

t∑
i=2

ri − 1

)∏t
i=1m

(ni,s)
i

m(n,s)
,

where,

t∑
i=1

mi = m,

t∑
i=2

ni = n− n1 and δi =


u1
r1

, if i = 1

1, otherwise.

(ii) For x1 = 0, n1 > 0,

P
(
N

(1,C)
n,k1

= x1, N
(2,C)
n,k2

= x2, . . . , N
(t,C)
n,kt

= xt

)(2.14)

=
∑
n1=r1

∑
n2=r2

· · ·
∑
nt=rt

∑
r1=x1

∑
r2=x2

· · ·
∑
rt=xt

Ft(r2, r3, . . . , rt)

(
t∏

i=2

min (ri,xi)∑
ui=1

(
ri
ui

)(
xi − 1

ui − 1

) ni−kixi−ri+ui∑
vi=0

A(ki)(vi, ui)

×A(ki−1)(ni − kixi − ri + ui − vi, ri − ui)

)

×A(2)

(
r1 − 1,

t∑
i=2

ri − 1

) k1−max (r1,1)∑
u=1

A(k1−2)(n1 − u− r1 + 1, r1 − 1)

×
∏t

i=1m
(ni,s)
i

m(n,s)
, where,

t∑
i=1

mi = m and

t∑
i=2

ni = n− n1.

(iii)

P
(
N

(1,C)
n,k1

= x1, N
(2,C)
n,k2

= x2, . . . , N
(t,C)
n,kt

= xt

)(2.15)
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= P

 t∪
j=1∑t

j=1 nj=n, xj=0, nj>0

(
N

(1,C)
n,k1

= x1, N
(2,C)
n,k2

= x2, . . . , N
(t,C)
n,kt

= xt

) .

Proof. For x1 > 0, let us suppose we start the computation from a run
of at least length k1 of type 1 flanked on both sides by balls of any one of the
types i (i = 2, 3, . . . , t). Total number of ways for getting r2 runs of type 2,
r3 runs of type 3, and so on rk runs of type k, without two adjacent runs
being of the same type is given as:

(2.16) Ft(r2, r3, . . . , rt).

Suppose there are ui runs of type i which contributes to xi non-overlapping
runs of length ki and of type i (i = 2, 3, . . . , t). Number of ways of selection
of these ui runs of type i from ri runs and then distributing the xi non-
overlapping runs of type i in these ui cells (by Balls-into-cells technique) can
be given as:

(2.17)

(
ri
ui

)(
xi − 1

ui − 1

)
where, 1 5 ui 5 min (ri, xi) (i = 2, 3, . . . , t).

Since each of the remaining ri − ui runs having balls of type i (i =
2, 3, . . . , t) is required to have at least 1 ball of type i, let us assume there
are vi balls that are to be distributed in ui cells such that each cell has at
the most (ki − 1) balls by ‘balls-into-cells’ technique can be given as

(2.18) A(ki)(vi, ui).

The remaining ni − kixi − ri + ui − vi balls can be distributed in ri − ui
runs such that no runs have more than (ki − 2) balls in A(ki−1)(ni − kixi −
ri + ui − vi, ri − ui), (i = 2, 3, . . . , t) ways.

(r1 − 1) runs type 1 are to be distributed in the (
∑t

i=2 ri − 2) cells cre-

ated by
∑t

i=2 ri runs of types i (i = 2,3, . . . , t) such that no cell contain more

than 1 run in A(2)(r1 − 1,
∑t

i=2 ri − 1) ways.

Suppose there are u1 runs of type 1 which contributes to x1 non-
overlapping runs of length k1 and of type 1. Number of ways of selection of
u1− 1 runs of type 1 from r1− 1 runs and then distributing the u1−x1 balls
of type 1 in these u1 cells (by Balls-into-cells technique) can be given as:

(2.19)

(
r1 − 1

u1 − 1

)(
x1 − 1

u1 − 1

)
.
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Assuming distribution of v1 balls in u1 cells such that each cell has at
the most (k1 − 1) balls by balls-into cells technique can be given as

(2.20) A(k1)(v1, u1).

Since each of the remaining r1 − u1 runs having balls of type 1 is required
to have at least 1 ball of type 1, the remaining n1 − k1x1 − r1 + u1 − v1 balls
can be distributed in r1 − u1 runs such that no runs have more than (k1 − 2)
balls in A(k1−1)(n1 − k1x1 − r1 + u1 − v1, r1 − u1) ways.

Number of drawing ni, i (i = 1, 2, 3, . . . , t) balls of type i from an urn
containing mi balls of type i (i = 2, 3, . . . , t) by Pólya–Eggenberger sampling
scheme is given as

(2.21)

∏t
i=1m

(ni,s)
i

m(n,s)
,

t∑
i=1

mi = m and

t∑
i=1

ni = n.

Hence, we get the probability given in (2.13).
(ii) For x1 = 0, let us suppose we start the computation from a run of

length u (u = 1, 2, . . . ,
(
k1 −max (r1, 1)

)
) of type 1 flanked on both sides by

balls of any one of the types i (i = 2, 3, . . . , t).
The remaining n1 − u balls of type 1 are to be arranged in r1 − 1 cells

such that each cell has at least 1 ball and at most k1 − 1 balls of type 1 in
A(k1−2)(n1 − u− r1 + 1, r1 − 1) ways.

Hence, we get the probability given in (2.14). �

2.4. Type-IV circular Pólya distributions of order (k1, k2, . . . , kt).

Let M
(j,C)
n,kj

be the number of overlapping runs of type j of length kj

(j = 1, 2, . . . , t).
Suppose we draw n balls from the urn and nj (j = 1, 2, . . . , t) balls

of colour j are drawn, such that n1 + n2 + · · ·+ nt = n and there are rj
(j = 1, 2, . . . , t) runs of jth colour. Then, we are interested in finding the
probability

P
(
M

(1,C)
n,k1

= x1,M
(2,C)
n,k2

= x2, . . . ,M
(t,C)
n,kt

= xt

)
.

Theorem 2.4. Let (0 5 xi 5 n− k + 1, i = 1, 2, . . . , t), s = −1, mi > 0

and
∑t

i=1mi = m.
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(i) For x1 > 0,

P
(
M

(1,C)
n,k1

= x1,M
(2,C)
n,k2

= x2, . . . ,M
(t,C)
n,kt

= xt

)(2.22)

=
∑
n1=r1

∑
n2=r2

· · ·
∑
nt=rt

∑
r1=x1

∑
r2=x2

· · ·
∑
rt=xt

Ft(r2, r3, . . . , rt)
t∏

i=1

(
min (ri,xi)∑

ui=1

(
ri
ui

)(
xi − 1

ui − 1

)
(δi)

×A(k1−1)

(
n1 − (k1 − 2)u1 − x1 − r1, r1 − u1

))

A(2)

(
r1 − 1,

t∑
i=2

ri − 1

)(∏t
i=1m

(ni,s)
i

m(n,s)

)
,

where,

t∑
i=1

mi = m,

t∑
i=2

ni = n− n1 and δi =


u1
r1

, if i = 1

1, otherwise.

(ii) For x1 = 0, n1 > 0,

P
(
M

(1,C)
n,k1

= x1,M
(2,C)
n,k2

= x2, . . . ,M
(t,C)
n,kt

= xt

)
(2.23)

=
∑
n1=r1

∑
n2=r2

· · ·
∑
nt=rt

∑
r1=x1

∑
r2=x2

· · ·
∑
rt=xt

Ft(r2, r3, . . . , rt)
t∏

i=2

(
min (ri,xi)∑

ui=1

(
ri
ui

)(
xi − 1

ui − 1

)

×A(ki−1)(ni − (ki − 2)ui − xi − ri, ri − ui)

)

×A(2)

(
r1 − 1,

t∑
i=2

ri − 1

)
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×

(
k1−max(r1,1)∑

u=1

A(k1−2)(n1 − u− r1 + 1, r1 − 1)

)(∏t
i=1m

(ni,s)
i

m(n,s)

)
,

where,
t∑

i=1

mi = m and
t∑

i=2

ni = n− n1.

(iii)

P
(
M

(1,C)
n,k1

= x1,M
(2,C)
n,k2

= x2, . . . ,M
(t,C)
n,kt

= xt

)(2.24)

= P

 t∪
j=1∑t

j=1 nj=n, xj=0, nj>0

(
M

(1,C)
n,k1

= x1,M
(2,C)
n,k2

= x2, . . . ,M
(t,C)
n,kt

= xt

) .

Proof. For x1 > 0, let us suppose we start the computation from a run
of at least length k1 of type 1 flanked on both sides by balls of any one of the
types i (i = 2, 3, . . . , t). Total number of ways for getting r2 runs of type 2,
r3 runs of type 3, and so on rk runs of type k, without two adjacent runs
being of the same type is given as:

(2.25) Ft(r2, r3, . . . rt).

Suppose there are ui runs of type i which contributes to xi non-overlapping
runs of length ki and of type i (i = 2,3, . . . , t). Each of these ui runs of type i
will contribute to at least ui runs of length ki. Hence, number of ways of
selecting ui runs of type i and then distributing the xi − ui balls of type ‘i’
in these ui cells (by Balls-into-cells technique) can be given as:

(2.26)

(
ri
ui

)(
xi − 1

ui − 1

)
where, 1 5 ui 5 min(ri, xi) (i = 2,3, . . . , t).

The remaining ni−uiki− (xi−ui)− ri+ui balls are to be distributed in

ri−ui cells such that there are at most (ki− 2) balls in a cell in A(ki−1)

(
ni−

(ki − 2)ui − xi − ri, ri − ui
)
ways.

(r1− 1) runs of type 1 are to be distributed in (
∑t

i=2 ri− 2) cells created
by
∑t

i=2 ri runs of types i (i = 2, 3, . . . , t) such that no cell contain more

than 1 run in A(2)(r1 − 1,
∑t

i=2 ri − 1) ways.
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Suppose there are u1 runs of type 1 which contributes to x1overlapping
runs of length k1 and of type 1. Number of ways of selection of u1 − 1 runs
of type 1 from r1 − 1 runs and then distributing the x1 − u1 balls of type 1
in these u1 cells (by Balls-into-cells technique) can be given as:

(2.27)

(
r1 − 1

u1 − 1

)(
x1 − 1

u1 − 1

)
.

The remaining n1 − u1k1 − (x1 − u1)− r1 + u1 balls are to be distributed
in r1 − u1 cells such that there are at most (ki − 2) balls in a cell in

A(k1−1)

(
n1 − (k1 − 2)u1 − x1 − r1, r1 − u1

)
ways.

Number of ways of drawing ni, i (i = 1, 2, 3, . . . , t) balls of type i from
an urn containing mi balls of type i (i = 2, 3, . . . , t) by Pólya–Eggenberger
sampling scheme is given as:

(2.28)

∏t
i=1m

(ni,s)
i

m(n,s)
,

t∑
i=1

mi = m and

t∑
i=1

ni = n.

Hence, we get the probability given in (2.22).
(ii) For x1 = 0, let us suppose we start the computation from a run of

length u (u = 1, 2, . . . ,
(
k1 −max (r1, 1)

)
) of type 1 flanked on both sides by

balls of any one of the types i (i = 2, 3, . . . , t).
The remaining n1 − u balls of type 1 are to be arranged in r1 − 1 cells

such that each cell has at least 1 ball and at most k1 − 1 balls of type 1 in
A(k1−2)(n1 − u− r1 + 1, r1 − 1) ways.

Hence, we get the probability given in (2.23). �

2.5. Joint Distribution of Longest Runs of type i (i = 1, 2, . . . , t)

Let L
(C)
j be the longest run of type j (j = 1, 2, . . . , t).

Suppose we draw n balls from the urn and nj (j = 1, 2, . . . , t) balls
of colour j are drawn, such that n1 + n2 + · · ·+ nt = n and there are rj
(j = 1, 2, . . . , t) runs of jth colour. Then we are interested in finding the
probability

P
(
L
(C)
1 = l1, L

(C)
2 = l2, . . . , L

(C)
t = lt

)
.

Theorem 2.5. Let (0 5 li 5 n, i = 1, 2, . . . t),
∑t

i=1 li 5 n, s = −1,

mi > 0 and
∑t

i=1mi = m.
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(i) For n1 > 0,

P
(
L
(C)
1 = l1, L

(C)
2 = l2, . . . , L

(C)
t = lt

)(2.29)

=
∑
n1=r1

∑
n2=r2

· · ·
∑
nt=rt

∑
r1=x1

∑
r2=x2

· · ·
∑
rt=xt

Ft(r2, r3, . . . , rt)

min (ri,[
ni
li
])∑

ui=1

((
ri
ui

)
A(li−2)(ni − liui − ri + ui, ri − ui)

×A(2)

(
r1 − 1,

t∑
i=2

ri − 1

))

×A(l1)(n1 − l1 − r1 + 1, r1 − 1)

∏t
i=1m

(ni,s)
i

m(n,s)
,

where,
t∑

i=1

mi = m and
t∑

i=2

ni = n− n1.

(ii)

P
(
L
(C)
1 = l1, L

(C)
2 = l2, . . . , L

(C)
t = lt

)
(2.30)

= P

 t∪
j=1∑t

j=1 nj=n, nj>0

(
L
(C)
1 = l1, L

(C)
2 = l2, . . . , L

(C)
t = lt

) .

Proof. For n1 > 0, let us suppose we start the computation from a run
of longest run of type 1 flanked on both sides by balls of any one of the
types i (i = 2, 3, . . . , t). Total number of ways for getting r2 runs of type 2,
r3 runs of type 3, and so on rk runs of type k, without two adjacent runs
being of the same type is given as:

(2.31) Ft(r2, r3, . . . , rt).
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Number of ways of distribution of ni balls of type i in ri cells such that at
least one cell has exactly li balls and rest of the cells should have at least 1
and at most (li − 1) balls is given as

(2.32)

(ri,[
ni
li
])∑

ui=1

(
ri
ui

)
A(li−2)(ni − liui − ri + ui, ri − ui) ways.

(r1 − 1) runs of type 1 are to be distributed in the (
∑t

i=2 ri − 2) cells

created by
∑t

i=2 ri runs of types i (i = 2, 3, . . . , t) such that no cell contain

more than 1 run in A(2)(r1 − 1,
∑t

i=2 ri − 1) ways.

Number of ways of distributing n1 − l1 − r1 + 1 balls in r1 − 1 cells such
that each cell has at most (l1 − 1) cells can be obtained as:

(2.33) A(l1)(n1 − l1 − r1 + 1, r1 − 1).

Number of ways of drawing ni, i (i = 1, 2, 3, . . . , t) balls of type i from an urn
containing mi balls of type i (i = 2, 3, . . . , t) by Pólya–Eggenberger sampling
scheme is given as

(2.34)

∏t
i=1m

(ni,s)
i

m(n,s)
,

t∑
i=1

mi = m and

t∑
i=1

ni = n.

Hence, we get probability given in (2.29). �
Remark. For t = 1, Theorems 2.1, 2.2, 2.3, 2.4 and 2.5 will lead to

circular Pólya distributions of order k discussed in [6].
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